Anästhesiol Intensivmed Notfallmed Schmerzther 2024; 59(09): 506-516
DOI: 10.1055/a-2195-8851
CME-Fortbildung
Topthema

Muskelrelaxanzien in der Intensivmedizin

Neuromuscular Blockade in the Critically Ill
Carolin Jung
,
Thomas Stüber

Das Sedierungsmanagement in der Intensivmedizin hat sich im letzten Jahrzehnt erheblich gewandelt. In der modernen Intensivmedizin gilt die Maxime: so viel Sedierung wie nötig, aber so wenig wie möglich. Muskelrelaxanzien sind daher nur noch in Einzelfällen indiziert. Typische Indikationen sind lediglich die Notfallintubation, Kontrolle von Kältezittern bei therapeutischer Hypothermie und schweres ARDS mit hohem Atemantrieb.

Abstract

The management of sedation in intensive care medicine has changed substantially in the last few years. Neuromuscular blocking agents (NMBA) are only rarely indicated in modern intensive care medicine. In this review, the mechanism of action, potential side effects, and special considerations for the application of NMBA to critically ill patients will be discussed. We further present the rationale for the use of NMBA for the remaining indications, such as endotracheal intubation, selected cases of severe acute respiratory distress syndrome, and shivering during temperature control after cardiac arrest. The review will close with a description of potential side effects of NMBA use in the intensive care setting, such as awareness, acquired skeletal muscle weakness as well as corneal injuries, and how monitoring of sedation and peripheral muscle blockade may be handled.

Kernaussagen
  • In der Intensivmedizin sind Muskelrelaxanzien nur in Einzelfällen indiziert.

  • Bei ARDS kann eine kontinuierliche Muskelrelaxation für 24–48 Stunden im Einzelfall erwogen werden. Dies gilt für Erkrankte mit moderatem oder schwerem ARDS, die trotz optimierter Beatmungstherapie mit adäquatem PEEP, Bauchlagerung und optimierter Sedierung eine fortbestehend schwere Oxygenierungsstörung oder eine schädliche Patienten-Ventilator-Asynchronie zeigen.

  • Cisatracurium scheint aufgrund seiner pharmakologischen Eigenschaften am besten für eine kontinuierliche Infusion geeignet und hat möglicherweise eigenständig antiinflammatorische Eigenschaften.

  • Auf die Vermeidung von Komplikationen durch die Anwendung von Muskelrelaxanzien sollte besonderes Augenmerk gelegt werden.

  • Bei der Verwendung von Muskelrelaxanzien muss unbedingt auf eine adäquate Sedierung geachtet werden.



Publication History

Article published online:
28 August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wang H, Yu M, Ochani M. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384-388
  • 2 Zhang G, Thomas AL, Marshall AL. et al. Nicotinic acetylcholine receptor alpha1 promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy. Lab Invest 2011; 91: 106-123
  • 3 Martyn JAJ, Sparling JL, Bittner EA. Molecular mechanisms of muscular and non-muscular actions of neuromuscular blocking agents in critical illness: a narrative review. Br J Anaesth 2023; 130: 39-50
  • 4 Dirkmann D, Britten MW, Pauling H. et al. Anticoagulant effect of sugammadex: just an in vitro artifact. Anesthesiology 2016; 124: 1277-1285
  • 5 Russotto V, Myatra SN, Laffey JG. et al. Intubation practices and adverse peri-intubation events in critically ill patients from 29 countries. JAMA 2021; 325: 1164-1172
  • 6 Oddo M, Frangos S, Maloney-Wilensky E. et al. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury. Neurocrit Care 2010; 12: 10-16
  • 7 May TL, Riker RR, Fraser GL. et al. Variation in sedation and neuromuscular blockade regimens on outcome after cardiac arrest. Crit Care Med 2018; 46: e975-e980
  • 8 Moskowitz A, Andersen LW, Rittenberger JC. et al. Continuous neuromuscular blockade following successful resuscitation from cardiac arrest: a randomized trial. J Am Heart Assoc 2020; 9: e017171
  • 9 Murray MJ, DeBlock HF, Erstad BL. et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient: 2016 update-executive summary. Am J Health Syst Pharm 2017; 74: 76-78
  • 10 Dankiewicz J, Cronberg T, Lilja G. et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 2021; 384: 2283-2294
  • 11 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 12 Plens GM, Droghi MT, Alcala GC. et al. Expiratory muscle activity counteracts positive end-expiratory pressure and is associated with fentanyl dose in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2024; 209: 563-572
  • 13 Fanelli V, Morita Y, Cappello P. et al. Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-alpha1. Anesthesiology 2016; 124: 132-140
  • 14 Grasselli G, Calfee CS, Camporota L. et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49: 727-759
  • 15 Guervilly C, Bisbal M, Forel JM. et al. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med 2017; 43: 408-418
  • 16 Testelmans D, Maes K, Wouters P. et al. Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med 2007; 33: 872-879
  • 17 Ho ATN, Patolia S, Guervilly C. Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. J Intensive Care 2020; 8: 12
  • 18 Dianti J, Fard S, Wong J. et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: a physiological trial. Crit Care 2022; 26: 259
  • 19 Vaporidi K, Akoumianaki E, Telias I. et al. Respiratory drive in critically ill patients. pathophysiology and clinical implications. Am J Respir Crit Care Med 2020; 201: 20-32
  • 20 Hraiech S, Forel JM, Guervilly C. et al. How to reduce cisatracurium consumption in ARDS patients: the TOF-ARDS study. Ann Intensive Care 2017; 7: 79
  • 21 Rezaiguia-Delclaux S, Laverdure F, Genty T. et al. Neuromuscular blockade monitoring in acute respiratory distress syndrome: randomized controlled trial of clinical assessment alone or with peripheral nerve stimulation. Anesth Analg 2021; 132: 1051-1059
  • 22 Moerer O, Bittner J, Hinz J. et al. [Effect of rocuronium on the diaphragm, musculus adductor pollicis and orbicularis oculi in two groups of different age]. Anasthesiol Intensivmed Notfallmed Schmerzther 2005; 40: 217-224
  • 23 Bellaver P, Schaeffer AF, Leitao CB. et al. Association between neuromuscular blocking agents and the development of intensive care unit-acquired weakness (ICU-AW): A systematic review with meta-analysis and trial sequential analysis. Anaesth Crit Care Pain Med 2023; 42: 101202
  • 24 Hight D, Kreuzer M, Ugen G. et al. Five commercial ‘depth of anaesthesia’ monitors provide discordant clinical recommendations in response to identical emergence-like EEG signals. Br J Anaesth 2023; 130: 536-545