Synlett
DOI: 10.1055/a-2201-7705
account

The Synthesis of Nitrogen- and Oxygen-Containing Heterocyclic Scaffolds Assisted by Ionic Liquids: A 2022 Literature Survey

a   L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
,
Neha R. Raghani
a   L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
,
Meet S. Desai
b   o2h Discovery Pvt. Ltd., Panchratna Industrial Estate, Changodar, Ahmedabad 382213, Gujarat, India
,
Shraddhaba J. Chudasma
c   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marwadi University, Rajkot-Morbi Highway, Rajkot 360 003, Gujarat, India
,
Kumkum D. Virani
a   L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
› Author Affiliations


Abstract

Heterocycles have gained recognition as vital components in approved drugs, drawing substantial attention from the scientific community. Ionic liquids (ILs) have been utilized for their transformative roles in heterocycle synthesis, showcasing distinctive properties that are pivotal in diverse chemical transformations, while also acting as effective catalysts and offering safer alternatives to volatile organic solvents. This account delves into the synthesis of nitrogen- and oxygen-containing heterocyclic structures, employing various ILs such as ammonium, cholinium, DABCO-based, DBU-based, guanidinium-based, imidazolium, phosphonium, pyridinium, and other miscellaneous examples. They have proven indispensable in facilitating reactions like the Fischer indole synthesis, the Biginelli reaction, Knoevenagel condensations and many more. Notably, the recyclability of ILs serves as a valuable asset, aiding in the completion of intricate synthetic pathways, multicomponent reactions, and one-pot syntheses, ultimately enhancing yields. This account, covering the literature published in 2022, seeks to guide researchers in selecting suitable ILs for specific chemical reactions that enable the synthesis of aza- and/or oxa-heterocycles. The described advancements represent promising prospects for drug development and other applications within the domain of heterocyclic chemistry.

1 Introduction

2 Construction of Heterocycles Catalyzed by Ionic Liquids

2.1 Ammonium Ionic Liquids

2.2 Cholinium-Based Ionic Liquids

2.3 DABCO-Based Ionic Liquids

2.4 DBU-Based Ionic Liquids

2.5 Guanidinium-Based Ionic Liquids

2.6 Imidazolium Ionic Liquids

2.7 Phosphonium Ionic Liquids

2.8 Pyridinium Ionic Liquids

2.9 Other Ionic Liquids

3 Summary and Outlook

4 Abbreviations



Publication History

Received: 05 October 2023

Accepted after revision: 30 October 2023

Accepted Manuscript online:
30 October 2023

Article published online:
20 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Present address: Institute of Pharmacy Nirma University Ahmedabad 382481, Gujarat India; e-mail: tejasm.dhameliya@nirmauni.ac.in.
  • 2 Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. J. Mol. Liq. 2022; 364: 119989
  • 3 Dhameliya TM, Kathuria D, Patel TM, Dave BP, Chaudhari AZ, Vekariya DD. Curr. Top. Med. Chem. 2023; 23: 753
  • 4 Dhameliya TM, Vekariya DD, Patel HY, Patel JT. Eur. J. Med. Chem. 2023; 255: 115409
  • 5 Bhakhar KA, Gajjar ND, Bodiwala KB, Sureja DK, Dhameliya TM. J. Mol. Struct. 2021; 1244: 130941
  • 6 Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
  • 7 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 8 Sheldon RA. Green Chem. 2005; 7: 267
  • 9 Welton T. Green Chem. 2011; 13: 225
  • 10 Chen Y, Mu T. Green Chem. Eng. 2021; 2: 174
  • 11 Patil CM, Borse AU, Meshram JS. Green Mater. 2018; 6: 23
  • 12 Ahmad MG, Chanda K. Coord. Chem. Rev. 2022; 472: 214769
  • 13 Bose P, Agrahari AK, Singh SK, Singh AS, Yadav MS, Rajkhowa S, Tiwari VK. In Green Synthetic Approaches for Biologically Relevant Heterocycles: Volume 2: Green Catalytic Systems and Solvents 2021; 301
  • 14 Neto BA. D, Rocha RO, Lapis AA. M. Curr. Opin. Green Sustainable Chem. 2022; 35: 100608
  • 15 Michalski J, Odrzygóźdź C, Mester P, Narożna D, Cłapa T. J. Mol. Liq. 2023; 369: 120782
  • 16 Santner S, Heine J, Dehnen S. Angew. Chem. Int. Ed. 2016; 55: 876
  • 17 De Los Ríos AP, Irabien A, Hollmann F, Fernández FJ. H. J. Chem. 2013; 2
  • 18 Gazal U, Khan I, Bhat AH, Pathak V. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Solvents for the Pharmaceutical Industry . Inamuddin, Boddula R, Ahamed MI, Asiri AM. Elsevier; Amsterdam: 2021: 41
  • 19 Quintana AA, Sztapka AM, de Carvalho Santos Ebinuma V, Agatemor C. Angew. Chem. Int. Ed. 2022; 61: e202205609
  • 20 Javed F, Ullah F, Zakaria MR, Akil HM. J. Mol. Liq. 2018; 271: 403
  • 21 García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV. Green Chem. 2015; 17: 2693
  • 22 Hulsbosch J, De Vos DE, Binnemans K, Ameloot R. ACS Sustainable Chem. Eng. 2016; 4: 2917
  • 23 Sowmiah S, Cheng CI, Chu Y.-H. Curr. Org. Synth. 2012; 9: 74
  • 24 Kaur G, Kumar H, Singla M. J. Mol. Liq. 2022; 351: 118556
  • 25 Pandolfi F, Bortolami M, Feroci M, Fornari A, Scarano V, Rocco D. Materials (Basel) 2022; 15: 866
  • 26 Goutham R, Rohit P, Vigneshwar SS, Swetha A, Arun J, Gopinath KP, Pugazhendhi A. J. Mol. Liq. 2022; 349: 118150
  • 27 Hulla M, Dyson PJ. Angew. Chem. Int. Ed. 2020; 59: 1002
  • 28 Zhang B, Yan N. Catalysts 2013; 3: 543
  • 29 Cheng W, Su Q, Wang J, Sun J, Ng FT. T. Catalysts 2013; 3: 878
  • 30 Maiuolo L, Algieri V, Olivito F, De Nino A. Catalysts 2020; 10: 65
  • 31 Dai C, Zhang J, Huang C, Lei Z. Chem. Rev. 2017; 117: 6929
  • 32 Karimi B, Tavakolian M, Akbari M, Mansouri F. ChemCatChem 2018; 10: 3173
  • 33 Singhal S, Agarwal S, Singh M, Rana S, Arora S, Singhal N. J. Mol. Liq. 2019; 285: 299
  • 34 Prediger P, Genisson Y, Roque Duarte Correia C. Curr. Org. Chem. 2013; 17: 238
  • 35 Santos CI. M, Barata JF. B, Faustino MA. F, Lodeiro C, Neves MG. P. M. S. RSC Adv. 2013; 3: 19219
  • 36 Mastrorilli P, Monopoli A, Dell’Anna MM, Latronico M, Cotugno P, Nacci A. Top. Organomet. Chem. 2015; 51: 237
  • 37 Dhameliya TM, Patel RJ, Amin RH, Sureja DK, Bodiwala KB. Mini-Rev. Org. Chem. 2022; 20: 800
  • 38 Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV. ChemistrySelect 2022; 7: e202201059
  • 39 Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV, Bhatt AJ. J. Mol. Struct. 2022; 1259: 132732
  • 40 Dhameliya TM, Chudasma SJ, Patel TM, Dave BP. Mol. Diversity 2022; 26: 2967
  • 41 Bhakhar KA, Sureja DK, Dhameliya TM. J. Mol. Struct. 2022; 1248: 131522
  • 42 Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. RSC Adv. 2020; 10: 32740
  • 43 Dhameliya TM, Patel RJ, Gajjar ND, Amin RH, Bodiwala KB, Sureja DK. In Advanced Nanocatalysis for Organic Synthesis and Electroanalysis Singh M., Rai A.; Bentham Science Publishers Singapore 2022; 114
  • 44 Bhakhar KA, Vaghela PV, Varakala SD, Chudasma SJ, Gajjar ND, Nagar PR, Sriram D, Dhameliya TM. ChemistrySelect 2022; 7: e202201813
  • 45 Dhameliya TM, Shah BJ, Patel KM. Ionic Liquids: Fundamental Properties and Classifications. In Ionic Liquids: Eco-friendly Substitutes for Surface and Interface Applications. Verma C. Bentham Science Publishers; Singapore: 2023
  • 46 Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. J Mol. Liq. 2022; 348: 118329
  • 47 Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. J. Mol. Liq. 2022; 361: 119664
  • 48 Ezabadi A, Salami M. Res. Chem. Intermed. 2022; 48: 1287
  • 49 Shirini F, Yahyazadeh A, Mohammadi K. Chin. Chem. Lett. 2014; 25: 341
  • 50 Zare A, Moosavi-Zare AR, Merajoddin M, Zolfigol MA, Hekmat-Zadeh T, Hasaninejad A, Khazaei A, Mokhlesi M, Khakyzadeh V, Derakhshan-Panah F, Beyzavi MH, Rostami E, Arghoon A, Roohandeh R. J. Mol. Liq. 2012; 167: 69
  • 51 Kalantari M. Arabian J. Chem. 2012; 5: 319
  • 52 Dabiri M, Baghbanzadeh M, Arzroomchilar E. Catal. Commun. 2008; 9: 939
  • 53 Niknam K, Damya MJ. Chin. Chem. Soc. 2009; 56: 659
  • 54 Aminian S, Mazloumi M, Zabihzadeh M, Shirini F, Tajik H. ChemistrySelect 2022; 7: e202200104
  • 55 Yue S, Qu HL, Song XX, Feng XN. New J. Chem. 2022; 46: 5881
  • 56 Zare A, Kohzadian A, Filian H, Nezhad MS. G, Karami A. Res. Chem. Intermed. 2022; 48: 1631
  • 57 Sobhani S, Hasaninejad A.-R, Maleki MF, Parizi ZP. Synth. Commun. 2012; 42: 2245
  • 58 Khazaei A, Abbasi F, Moosavi-Zare AR. New J. Chem. 2014; 38: 5287
  • 59 Khalifeh R, Shahimoridi R, Rajabzadeh M. Catal. Lett. 2019; 149: 2864
  • 60 Kohzadian A, Filian H, Kordrostami Z, Zare A, Ghorbani-Choghamarani A. Res. Chem. Intermed. 2020; 46: 1941
  • 61 Tayebi S, Baghernejad M, Saberi D, Niknam K. Chin. J. Catal. 2011; 32: 1477
  • 62 Nezhadramezan-Ghasemabadi H, Mazloumi M, Azimi SC, Shirini F. J. Mol. Struct. 2023; 1274: 134435
  • 63 Shirzaei F, Shaterian HR. J. Mol. Struct. 2022; 1256: 132558
  • 64 Lei Y, Gunaratne HQ. N, Jin L. J. CO2 Util. 2022; 58: 101930
  • 65 Aloia A, Casiello M, D’Accolti L, Fusco C, Nacci A, Monopoli A. Chem. Eur. J. 2022; 28: e202202350
  • 66 Tazeh KS, Heydari R, Fatahpour M. J. Chin. Chem. Soc. 2022; 69: 1680
  • 67 Singh RR, Devi TJ, Devi TJ, Singh OM. Curr. Res. Green Sustainable Chem. 2022; 5: 100272
  • 68 Zhu A, Fan D, You Y, Wang H, Zhao Y, Wang J, Li L. Green Chem. 2022; 8466
  • 69 Pinate P, Makone S. Catal. Lett. 2023; 153: 995
  • 70 Ishtiaq M, Khan MA, Ahmed S, Ali S, Iftikhar S, Moin ST, Hameed A. J. Mol. Struct. 2022; 1268: 133638
  • 71 Gupta P, Rani S, Sah D, Surabhi, Shabir J, Singh B, Pani B, Mozumdar S. J Mol. Struct. 2023; 1274: 134351
  • 72 Patil P, Yadav A, Chandam D, Gurav R, Hangirgekar S, Sankpal S. J. Mol. Struct. 2022; 1259: 132622
  • 73 Luo C, Wang J, Lu H, Wu K, Liu Y, Zhu Y, Wang B, Liang B. Green Chem. 2022; 24: 8292
  • 74 Vishwakarma NK, Singh S, Vishwakarma S, Sahi AK, Patel VK, Kant S, Mahto SK. New J. Chem. 2022; 46: 2887
  • 75 Siddiqui MM, Nagargoje AA, Akolkar SV, Sangshetti JN, Khedkar VM, Pisal PM, Shingate BB. Res. Chem. Intermed. 2022; 48: 1199
  • 76 Li X, Chen Z, Huang Z, Long J. ChemistrySelect 2022; 7: e202103804
  • 77 Li X, Sun J, Xue M, Yin J. J. CO2 Util. 2022; 64: 102168
  • 78 Zhang A, Chen C, Zuo C, Xu X, Cai T, Li X, Yuan Y, Yang H, Meng G. Green Chem. 2022; 24: 7194
  • 79 Sharma R, Kumar A. Tetrahedron Lett. 2022; 114: 154271
  • 80 Samanta S, Chatterjee R, Sarkar S, Pal S, Mukherjee A, Butorin II, Konovalova OA, Choudhuri T, Chakraborty K, Santra S, Zyryanov GV, Majee A. Org. Biomol. Chem. 2022; 20: 9161
  • 81 Kim KM, Sutar SM, Kalkhambkar RG, Refat MS, Alsuhaibani AM. ChemistrySelect 2022; 7: e202103646
  • 82 Kumar S, Rastogi SK, Singh A, Bharati Ahirwar M, Deshmukh MM, Sinha AK, Kumar R. Asian J. Org. Chem. 2022; 11: e202100749
  • 83 Chang J, Yao Y, Xia Y, Liu L, Zhang Y. J. Mol. Struct. 2022; 1256: 132539
  • 84 Verma K, Sharma A, Badru R. Curr. Res. Green Sustainable Chem. 2021; 4: 100060
  • 85 Garg P, Reddy SR. Asian J. Org. Chem. 2022; 11: e202200322
  • 86 Savari M, Varasteh-Moradi A, Sayyed-Alangi SZ, Hossaini Z, Mehrabian RZ. Mol. Diversity 2022; 26: 3279
  • 87 Katariya AP, Gaikwad PB, Kadam GG, Katariya MV, Deshmukh SU. ChemistrySelect 2022; 7: e202201295
  • 88 Patil SA, Patil R, Pfeffer LM, Miller DD. Future Med. Chem. 2013; 5: 1647
  • 89 Kamalraja J, Muralidharan D, Perumal PT. Synlett 2012; 23: 2894
  • 90 Jadhav AM, Krishnammagari SK, Kim JT, Jeong YT. Tetrahedron 2017; 73: 5163
  • 91 Patil P, Kadam S, Patil D, More P. Catal. Commun. 2022; 170: 106500
  • 92 Long G, Su K, Dong H, Zhao T, Yang C, Liu F, Hu X. J. CO2 Util. 2022; 59: 101962
  • 93 Jasim SA, Tanjung FA, Sharma S, Mahmoud MZ, Kadhim SB, Kazemnejadi M. Res. Chem. Intermed. 2022; 48: 3547
  • 94 Jahanbakhshi A, Farahi M. Arabian J. Chem. 2022; 15: 104311
  • 95 Deng L, Su Q, Tan X, Wang Y, Dong L, He H, Li Z, Cheng W. Mol. Catal. 2022; 519: 112153
  • 96 Hui Y, Xia J, Li J, Wang Y, Zhang Y. J. Saudi Chem. Soc. 2022; 26: 101399
  • 97 Li A, Wang X, Li Y, Luo C, Zhang J, Liu K, Zhang C, Zhou C. ChemCatChem 2021; 13: 3772
  • 98 Katariya AP, Yadav AR, Pawar OB, Pisal PM, Sangshetti JN, Katariya MV, Deshmukh SU. ChemistrySelect 2022; 7: e202104184
  • 99 Choi J, Nidetzky B. Mol. Catal. 2022; 526: 112371
  • 100 Zhao J, Li C, Fan X, Liu H, Liu Z, Zhang J, Sun Z, Chu W. Appl. Catal., A 2023; 649: 118981
  • 101 Anjos NS, Chapina AI, Santos AR, Licence P, Longo LS. Eur. J. Org. Chem. 2022; e202200615
  • 102 Pasuparthy SD, Maiti B. ACS Omega 2022; 7: 39147
  • 103 Westphal R, Filho EV, Loureiro LB, Tormena CF, Pessoa C, de Jesus Guimarães C, Manso MP, Fiorot RG, Campos VR, Resende JA. L. C, Medici F, Greco SJ. Molecules 2022; 27: 8051
  • 104 Al Ghatta A, Hallett JP. Green Chem. 2022; 24: 3309
  • 105 Sonawane SA, Pore DM. Catal. Lett. 2022; 152: 3317
  • 106 Deepa Aalam MJ, Singh S. ChemistrySelect 2022; 7: e202103918
  • 107 Li J, He D, Lin Z, Cen L, Wu W, Jiang H. Green Chem. 2022; 24: 1983
  • 108 Kumar MD, Sunny S, Jaccob M. J. CO2 Util. 2022; 57: 101872
  • 109 Ambati SR, Patel JL, Chandrakar K, Sarkar U, Penta S, Banerjee S, Varma RS. J. Mol. Struct. 2022; 1268: 133623
  • 110 Bahrami G, Batooie N, Mousavi SR, Miraghaee SS, Hosseinzadeh N, Mousavian S, Hoshyari A, Sajadimajd S, Mohammadi B, Hatami R. Polycyclic Aromat. Compd. 2022; 42: 6328
  • 111 Jalali-Mola S, Torabi M, Yarie M, Zolfigol MA. RSC Adv. 2022; 12: 34730
  • 112 Bakhtiarian M, Khodaei MM. J. Mol. Liq. 2022; 363: 119883
  • 113 Rajabi F, Sillanpää M, Len C, Luque R. Catalysts 2022; 12: 350
  • 114 Rajabi F, Luque R. Mol. Catal. 2020; 498: 111238
  • 115 Aher DS, Khillare KR, Chavan LD, Shankarwar SG. RSC Adv. 2021; 11: 2783
  • 116 Bosica G, Cachia F, De Nittis R, Mariotti N. Molecules 2021; 26: 3753
  • 117 Diarjani ES, Rajabi F, Yahyazadeh A, Puente-Santiago AR, Luque R. Materials (Basel) 2018; 11: 2458
  • 118 Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L. J. Mol. Catal. A: Chem. 2007; 274: 208
  • 119 Liberto NA, De Paiva Silva S, De Fátima Â, Fernandes SA. Tetrahedron 2013; 69: 8245
  • 120 Saikia M, Bhuyan D, Saikia L. Appl. Catal., A. 2015; 505: 501
  • 121 Tayebee R, Ghadamgahi M. Arabian J. Chem. 2017; 10: S757
  • 122 Chopda LV, Dave PN. ChemistrySelect 2020; 5: 2395
  • 123 Kharazmi A, Ghorbani-Vaghei R, Noori S, Alavinia S. Res. Chem. Intermed. 2022; 48: 1313
  • 124 Wang N, Li Z, Hou Q, Han F, Yan Y, Zhang J, Miao C. J. Org. Chem. 2022; 87: 11669
  • 125 Zheng ZF, Deng H, Cai ZJ, Liao XJ, Xu SH. ChemistrySelect 2022; 7: e202201381
  • 126 Dutta B, Dutta N, Dutta A, Gogoi M, Mehra S, Kumar A, Deori K, Sarma D. J. Org. Chem. 2023; 88: 14748
  • 127 Ehsani-Nasab Z, Ezabadi A. Res. Chem. Intermed. 2022; 48: 1159
  • 128 Zang H, Feng Y, Lou J, Wang K, Wu C, Liu Z, Zhu X. J. Mol. Liq. 2022; 366: 120281
  • 129 Hataminejad E, Ezabadi A. Res. Chem. Intermed. 2022; 48: 2535
  • 130 Araya-Lopez C, Conejeros J, Valdebenito C, Cabezas R, Merlet G, Marco JF, Abarca G, Salazar R, Romero J. ChemCatChem 2022; 14: e202200046
  • 131 Radai Z, Kiss NZ, Keglevich G. Curr. Org. Chem. 2017; 22: 533
  • 132 Ghandi K. Green Sustainable Chem. 2014; 4: 44