Synlett 2024; 35(12): 1441-1445
DOI: 10.1055/a-2202-0842
letter

Enantioselective Sulfonation of Enones with Sulfinates by Thiourea/Tertiary-Amine Catalysis

Si-fan Wang
a   Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b   Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Ming Yan
a   Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b   Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Jin-yi Shi
a   Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b   Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Guang-xun Li
b   Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Jin-zhong Zhao
a   Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
› Author Affiliations
The West Light Foundation of the Chinese Academy of Sciences (25E0C30), and the Sichuan Science and Technology Program (2021ZYD0061).


Abstract

Chiral γ-keto sulfones are significant structures in both organic synthesis and pharmaceutical chemistry. Although there are many choices for obtaining racemic forms, only a few enantioselective methods have been reported. We have developed a simple way for obtaining chiral γ-keto sulfones in moderate yields and moderate enantiomeric ratios. Readily available sulfinates were directly used as substrates that could be converted into sulfinic acids by treatment with boric acid. The bifunctional catalyst forms a chiral ion pair with the sulfinic acid and controls the enantioselectivity of the sulfonation through hydrogen bonding.

Supporting Information



Publication History

Received: 24 August 2023

Accepted after revision: 31 October 2023

Accepted Manuscript online:
31 October 2023

Article published online:
30 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Trost BM. Acc. Chem. Res. 1978; 11: 453
    • 1b Zhang BJ, Wassermann AM, Vogt M, Bajorath J. J. Chem. Inf. Model. 2012; 52: 3138
    • 1c Scott JS, Birch AM, Brocklehurst KJ, Broo A, Brown HS, Butlin RJ, Clarke DS, Davidsson Ö, Ertan A, Goldberg K, Groombridge SD, Hudson JA, Laber D, Leach AG, MacFaul PA, McKerrecher D, Pickup A, Schofield P, Svensson PH, Sörme P, Teague J. J. Med. Chem. 2012; 55: 5361
    • 1d Wojaczynska E, Wojaczynski J. Nat. Chem. 2023; 15: 165
    • 1e Schmidt TA, Schumann S, Ostertag A, Sparr C. Angew. Chem. Int. Ed. 2023; 62: e202302084
    • 2a Xu W.-M, Han F.-F, He M, Hu D.-Y, He J, Yang S, Song B.-A. J. Agric. Food Chem. 2012; 60: 1036
    • 2b Carreno MC. Chem. Rev. 1995; 95: 1717
    • 2c Liang H.-W, Jiang K, Ding W, Yuan Y, Shuai L, Chen Y.-C, Wei Y. Chem. Commun. 2015; 51: 16928
    • 2d Fu Y, Xu Q.-S, Li Q.-Z, Du Z.-Y, Wang K.-H, Huang D.-F, Hu Y.-L. Org. Biomol. Chem. 2017; 15: 2841
    • 3a Artico M, Silvestri R, Massa S, Loi AG, Corrias S, Piras G, La Colla P. J. Med. Chem. 1996; 39: 522
    • 3b Li W.-T, Hwang D.-R, Song J.-S, Chen C.-P, Chuu J.-J, Hu C.-B, Lin H.-L, Huang C.-L, Huang C.-Y, Tseng H.-Y, Lin C.-C, Chen T.-W, Lin C.-H, Wang H.-S, Shen C.-C, Chang C.-M, Chao Y.-S, Chen C.-T. J. Med. Chem. 2010; 53: 2409
    • 3c Basak A, Goswami M, Rajkumar A, Mitra T, Majumdar S, O’Reilly P. Bdour H. M., Trudeau V. L., Basak A. 2015; 25: 2225
    • 3d Navarro L, Rosell G, Sánchez S, Boixareu N, Pors K, Pouplana R, Campanera JM, Pujol MD. Bioorg. Med. Chem. 2018; 26: 4113
    • 3e Maleki B, Hemmati S, Sedrpoushan A, Ashrafi SS, Veisi H. RSC Adv. 2014; 4: 40505
  • 4 Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
    • 5a Aldea R, Alper H. J. Org. Chem. 1995; 60: 8365
    • 5b Bell HM. J. Org. Chem. 1969; 34: 681
    • 5c Rahimizadeh M, Rajabzadeh G, Khatami S.-M, Eshghi H, Shiri A. J. Mol. Catal. A: Chem. 2010; 323: 59
    • 6a Hiroi K, Makino K. Chem. Lett. 1986; 617
    • 6b Chen Y, Fang D.-m, Huang H.-s, Nie X.-k, Zhang S.-q, Cui X, Tang Z, Li G.-x. Org. Lett. 2023; 25: 2134
    • 6c Dong C.-S, Tong W.-Y, Ye P, Cheng N.-R, Qu S.-L, Zhang B. ACS Catal. 2023; 13: 6983
    • 7a Wu X.-S, Chen Y, Li M.-B, Zhou M.-G, Tian S.-K. J. Am. Chem. Soc. 2012; 134: 14694
    • 7b Cullen SC, Shekhar S, Nere NK. J. Org. Chem. 2013; 78: 12194
    • 7c Tang X, Huang L, Xu Y, Yang J, Wu W, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 4205
    • 8a Katrun P, Mueangkaew C, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. J. Org. Chem. 2014; 79: 1778
    • 8b Chen J, Mao J, Zheng Y, Liu D, Rong G, Yan H, Zhang C, Shi D. Tetrahedron 2015; 71: 5059
    • 9a Liang S, Zhang R.-Y, Xi L.-Y, Chen S.-Y, Yu X.-Q. J. Org. Chem. 2013; 78: 11874
    • 9b Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
  • 10 Jin Z, Xu J, Yang S, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 12354
  • 11 Li L, Liu Y, Peng Y, Yu L, Wu X, Yan H. Angew. Chem. Int. Ed. 2016; 55: 331
  • 12 Cheng X, Wang S, Wei Y, Wang H, Lin Y.-W. RSC Adv. 2022; 12: 35649
    • 13a Han M, Luo L, Tang Z, Li G.-x, Wang Q. Synlett 2023; 34: 1829
    • 13b Yang G.-f, Huang H.-s, Nie X.-k, Zhang S.-q, Cui X, Tang Z, Li G.-x. J. Org. Chem. 2023; 88: 4581
    • 13c Yang G.-f, Yuan Y, Tian Y, Zhang S.-q, Cui X, Xia B, Li G.-x, Tang Z. J. Am. Chem. Soc. 2023; 145: 5439
    • 14a Ma G, Afewerki S, Zhang K, Ibrahem I, Córdova A. Eur. J. Org. Chem. 2021; 2021: 3043
    • 14b Chen D.-H, Sun W.-T, Zhu C.-J, Lu G.-S, Wu D.-P, Wang A.-E, Huang P.-Q. Angew. Chem. Int. Ed. 2021; 60: 8827
    • 14c Wang C, Chen Y.-H, Wu H.-C, Wang C, Liu Y.-K. Org. Lett. 2019; 21: 6750
    • 14d Yu Q.-W, Wu L.-P, Kang T.-C, Xie J, Sha F, Wu X.-Y. Eur. J. Org. Chem. 2018; 2018: 3992
    • 14e Smajlagic I, Duran R, Pilkington M, Dudding T. J. Org. Chem. 2018; 83: 13973
    • 14f Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13525
    • 14g Kang JY, Johnston RC, Snyder KM, Cheong PH.-Y, Carter RG. J. Org. Chem. 2016; 81: 3629
    • 14h Rabalakos C, Wulff WD. Synlett 2008; 2826
    • 14i Kobayashi Y, Nakatsuji Y, Li S, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 3646
  • 15 Enantioselective Catalytic Reaction; General Procedure A 50 mL glass flask was charged with the appropriate arenesulfinate 1 (0.1 mmol) and chalcone 2 (0.1 mmol), and then H3BO3 (0.3 mmol, 3 equiv) was added. DCE (1 mL) and CHCl3 (1 mL) were mixed well and added to the flask. H2O (20 μL) was added, and the flask was placed in a low-temperature isothermal stirring reactor at 5 ℃ for 48 h. The mixture was filtered and concentrated, and the residue was purified by chromatography [silica gel, PE–DCM (1:5)]. (3R)-1,3-Diphenyl-3-(phenylsulfonyl)propan-1-one (3a) White solid; yield: 65%. [α]D 28 = –19.5 (c = 0.1, EtOAc); HPLC [Chiralcel IC, hexane/i-PrOH (90:10), 1.0 mL/min, λ = 254 nm]: t R = 47.028 min (major); t R = 50.073 min (minor). 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 7.7 Hz, 2 H), 7.58 (q, J = 4.9 Hz, 4 H), 7.48 (t, J = 7.7 Hz, 2 H), 7.40 (t, J = 7.8 Hz, 2 H), 7.22 (d, J = 4.3 Hz, 5 H), 4.97 (dd, J = 9.8, 3.5 Hz, 1 H), 4.16 (dd, J = 17.9, 3.6 Hz, 1 H), 3.97 (dd, J = 17.9, 9.7 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 194.9, 136.9, 136.1, 133.7, 133.7, 132.5, 129.8, 129.0, 128.8, 128.8, 128.8, 128.5, 128.2, 66.5, 36.9. HRMS (ESI): m/z: [M + Na]+ calcd for C21H18NaO3S: 373.0869; found: 373.08716.