Synlett 2024; 35(12): 1441-1445 DOI: 10.1055/a-2202-0842
Enantioselective Sulfonation of Enones with Sulfinates by Thiourea/Tertiary-Amine Catalysis
Si-fan Wang
a
Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b
Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Ming Yan
a
Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b
Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Jin-yi Shi
a
Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
b
Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
b
Natural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China
,
Jin-zhong Zhao∗
a
Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, P. R. of China
› Author Affiliations The West Light Foundation of the Chinese Academy of Sciences (25E0C30), and the Sichuan Science and Technology Program (2021ZYD0061).
Abstract
Chiral γ-keto sulfones are significant structures in both organic synthesis and pharmaceutical chemistry. Although there are many choices for obtaining racemic forms, only a few enantioselective methods have been reported. We have developed a simple way for obtaining chiral γ-keto sulfones in moderate yields and moderate enantiomeric ratios. Readily available sulfinates were directly used as substrates that could be converted into sulfinic acids by treatment with boric acid. The bifunctional catalyst forms a chiral ion pair with the sulfinic acid and controls the enantioselectivity of the sulfonation through hydrogen bonding.
Key words
keto sulfones -
organocatalysis -
thioureas -
tertiary amines -
sulfonation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2202-0842.
Supporting Information
Publication History
Received: 24 August 2023
Accepted after revision: 31 October 2023
Accepted Manuscript online: 31 October 2023
Article published online: 30 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Trost BM.
Acc. Chem. Res. 1978; 11: 453
1b
Zhang BJ,
Wassermann AM,
Vogt M,
Bajorath J.
J. Chem. Inf. Model. 2012; 52: 3138
1c
Scott JS,
Birch AM,
Brocklehurst KJ,
Broo A,
Brown HS,
Butlin RJ,
Clarke DS,
Davidsson Ö,
Ertan A,
Goldberg K,
Groombridge SD,
Hudson JA,
Laber D,
Leach AG,
MacFaul PA,
McKerrecher D,
Pickup A,
Schofield P,
Svensson PH,
Sörme P,
Teague J.
J. Med. Chem. 2012; 55: 5361
1d
Wojaczynska E,
Wojaczynski J.
Nat. Chem. 2023; 15: 165
1e
Schmidt TA,
Schumann S,
Ostertag A,
Sparr C.
Angew. Chem. Int. Ed. 2023; 62: e202302084
2a
Xu W.-M,
Han F.-F,
He M,
Hu D.-Y,
He J,
Yang S,
Song B.-A.
J. Agric. Food Chem. 2012; 60: 1036
2b
Carreno MC.
Chem. Rev. 1995; 95: 1717
2c
Liang H.-W,
Jiang K,
Ding W,
Yuan Y,
Shuai L,
Chen Y.-C,
Wei Y.
Chem. Commun. 2015; 51: 16928
2d
Fu Y,
Xu Q.-S,
Li Q.-Z,
Du Z.-Y,
Wang K.-H,
Huang D.-F,
Hu Y.-L.
Org. Biomol. Chem. 2017; 15: 2841
3a
Artico M,
Silvestri R,
Massa S,
Loi AG,
Corrias S,
Piras G,
La Colla P.
J. Med. Chem. 1996; 39: 522
3b
Li W.-T,
Hwang D.-R,
Song J.-S,
Chen C.-P,
Chuu J.-J,
Hu C.-B,
Lin H.-L,
Huang C.-L,
Huang C.-Y,
Tseng H.-Y,
Lin C.-C,
Chen T.-W,
Lin C.-H,
Wang H.-S,
Shen C.-C,
Chang C.-M,
Chao Y.-S,
Chen C.-T.
J. Med. Chem. 2010; 53: 2409
3c
Basak A,
Goswami M,
Rajkumar A,
Mitra T,
Majumdar S,
O’Reilly P.
Bdour H. M., Trudeau V. L., Basak A. 2015; 25: 2225
3d
Navarro L,
Rosell G,
Sánchez S,
Boixareu N,
Pors K,
Pouplana R,
Campanera JM,
Pujol MD.
Bioorg. Med. Chem. 2018; 26: 4113
3e
Maleki B,
Hemmati S,
Sedrpoushan A,
Ashrafi SS,
Veisi H.
RSC Adv. 2014; 4: 40505
4
Liu N.-W,
Liang S,
Manolikakes G.
Synthesis 2016; 48: 1939
5a
Aldea R,
Alper H.
J. Org. Chem. 1995; 60: 8365
5b
Bell HM.
J. Org. Chem. 1969; 34: 681
5c
Rahimizadeh M,
Rajabzadeh G,
Khatami S.-M,
Eshghi H,
Shiri A.
J. Mol. Catal. A: Chem. 2010; 323: 59
6a
Hiroi K,
Makino K.
Chem. Lett. 1986; 617
6b
Chen Y,
Fang D.-m,
Huang H.-s,
Nie X.-k,
Zhang S.-q,
Cui X,
Tang Z,
Li G.-x.
Org. Lett. 2023; 25: 2134
6c
Dong C.-S,
Tong W.-Y,
Ye P,
Cheng N.-R,
Qu S.-L,
Zhang B.
ACS Catal. 2023; 13: 6983
7a
Wu X.-S,
Chen Y,
Li M.-B,
Zhou M.-G,
Tian S.-K.
J. Am. Chem. Soc. 2012; 134: 14694
7b
Cullen SC,
Shekhar S,
Nere NK.
J. Org. Chem. 2013; 78: 12194
7c
Tang X,
Huang L,
Xu Y,
Yang J,
Wu W,
Jiang H.
Angew. Chem. Int. Ed. 2014; 53: 4205
8a
Katrun P,
Mueangkaew C,
Pohmakotr M,
Reutrakul V,
Jaipetch T,
Soorukram D,
Kuhakarn C.
J. Org. Chem. 2014; 79: 1778
8b
Chen J,
Mao J,
Zheng Y,
Liu D,
Rong G,
Yan H,
Zhang C,
Shi D.
Tetrahedron 2015; 71: 5059
9a
Liang S,
Zhang R.-Y,
Xi L.-Y,
Chen S.-Y,
Yu X.-Q.
J. Org. Chem. 2013; 78: 11874
9b
Umierski N,
Manolikakes G.
Org. Lett. 2013; 15: 188
10
Jin Z,
Xu J,
Yang S,
Song B.-A,
Chi YR.
Angew. Chem. Int. Ed. 2013; 52: 12354
11
Li L,
Liu Y,
Peng Y,
Yu L,
Wu X,
Yan H.
Angew. Chem. Int. Ed. 2016; 55: 331
12
Cheng X,
Wang S,
Wei Y,
Wang H,
Lin Y.-W.
RSC Adv. 2022; 12: 35649
13a
Han M,
Luo L,
Tang Z,
Li G.-x,
Wang Q.
Synlett 2023; 34: 1829
13b
Yang G.-f,
Huang H.-s,
Nie X.-k,
Zhang S.-q,
Cui X,
Tang Z,
Li G.-x.
J. Org. Chem. 2023; 88: 4581
13c
Yang G.-f,
Yuan Y,
Tian Y,
Zhang S.-q,
Cui X,
Xia B,
Li G.-x,
Tang Z.
J. Am. Chem. Soc. 2023; 145: 5439
14a
Ma G,
Afewerki S,
Zhang K,
Ibrahem I,
Córdova A.
Eur. J. Org. Chem. 2021; 2021: 3043
14b
Chen D.-H,
Sun W.-T,
Zhu C.-J,
Lu G.-S,
Wu D.-P,
Wang A.-E,
Huang P.-Q.
Angew. Chem. Int. Ed. 2021; 60: 8827
14c
Wang C,
Chen Y.-H,
Wu H.-C,
Wang C,
Liu Y.-K.
Org. Lett. 2019; 21: 6750
14d
Yu Q.-W,
Wu L.-P,
Kang T.-C,
Xie J,
Sha F,
Wu X.-Y.
Eur. J. Org. Chem. 2018; 2018: 3992
14e
Smajlagic I,
Duran R,
Pilkington M,
Dudding T.
J. Org. Chem. 2018; 83: 13973
14f
Kennedy CR,
Lehnherr D,
Rajapaksa NS,
Ford DD,
Park Y,
Jacobsen EN.
J. Am. Chem. Soc. 2016; 138: 13525
14g
Kang JY,
Johnston RC,
Snyder KM,
Cheong PH.-Y,
Carter RG.
J. Org. Chem. 2016; 81: 3629
14h
Rabalakos C,
Wulff WD.
Synlett 2008; 2826
14i
Kobayashi Y,
Nakatsuji Y,
Li S,
Tsuzuki S,
Takemoto Y.
Angew. Chem. Int. Ed. 2018; 57: 3646
15
Enantioselective Catalytic Reaction; General Procedure
A 50 mL glass flask was charged with the appropriate arenesulfinate 1 (0.1 mmol) and chalcone 2 (0.1 mmol), and then H3 BO3 (0.3 mmol, 3 equiv) was added. DCE (1 mL) and CHCl3 (1 mL) were mixed well and added to the flask. H2 O (20 μL) was added, and the flask was placed in a low-temperature isothermal stirring reactor at 5 ℃ for 48 h. The mixture was filtered and concentrated, and the residue was purified by chromatography [silica gel, PE–DCM (1:5)].
(3R )-1,3-Diphenyl-3-(phenylsulfonyl)propan-1-one (3a)
White solid; yield: 65%. [α]D
28 = –19.5 (c = 0.1, EtOAc); HPLC [Chiralcel IC, hexane/i -PrOH (90:10), 1.0 mL/min, λ = 254 nm]: t
R = 47.028 min (major); t
R = 50.073 min (minor).
1 H NMR (400 MHz, CDCl3 ): δ = 7.96 (d, J = 7.7 Hz, 2 H), 7.58 (q, J = 4.9 Hz, 4 H), 7.48 (t, J = 7.7 Hz, 2 H), 7.40 (t, J = 7.8 Hz, 2 H), 7.22 (d, J = 4.3 Hz, 5 H), 4.97 (dd, J = 9.8, 3.5 Hz, 1 H), 4.16 (dd, J = 17.9, 3.6 Hz, 1 H), 3.97 (dd, J = 17.9, 9.7 Hz, 1 H). 13 C NMR (101 MHz, CDCl3 ): δ = 194.9, 136.9, 136.1, 133.7, 133.7, 132.5, 129.8, 129.0, 128.8, 128.8, 128.8, 128.5, 128.2, 66.5, 36.9. HRMS (ESI): m/z : [M + Na]+ calcd for C21 H18 NaO3 S: 373.0869; found: 373.08716.