Subscribe to RSS
DOI: 10.1055/a-2206-7242
Nachbehandlung nach Knorpeltherapie am Kniegelenk – eine Empfehlung der AG Klinische Geweberegeneration der DGOU
Article in several languages: deutsch | EnglishZusammenfassung
Die erste Nachbehandlungsempfehlung der AG Klinische Geweberegeneration der DGOU stammt aus dem Jahr 2012. Neue wissenschaftliche Evidenz und veränderte Rahmenbedingungen machten eine Aktualisierung der Nachbehandlungsempfehlungen nach Knorpeltherapie erforderlich.
Im Rahmen einer mehrstufigen Mitgliederbefragung wurde ein Konsensus erzielt, der gemeinsam mit der wissenschaftlichen Evidenz die Basis für die vorliegende Nachbehandlungsempfehlung gibt.
Das maßgebliche Kriterium für die Nachbehandlung ist weiterhin die Defektlokalisation. Dabei wird zwischen femorotibialen und patellofemoralen Defekten unterschieden. Zudem werden nun auch weiterführende Kriterien bez. der Knorpeldefekte berücksichtigt (stabiler Knorpelrand, Lage außerhalb der Hauptbelastungszone) und auf die unterschiedlichen Verfahren der Knorpeltherapie (z. B. osteochondrale Transplantation, Minced Cartilage) eingegangen.
Die vorliegende aktualisierte Nachbehandlungsempfehlung beinhaltet unterschiedliche Aspekte der Nachbehandlung, beginnend vom frühen perioperativen Management bis zur Sportfreigabe und Wiederaufnahme von Kontaktsport nach erfolgter Knorpeltherapie.
Publication History
Received: 24 February 2023
Accepted after revision: 01 November 2023
Article published online:
15 January 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Behrens P, Bosch U, Bruns J. et al. [Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT)]. Z Orthop Ihre Grenzgeb 2004; 142: 529-539
- 2 Niemeyer P, Andereya S, Angele P. et al. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU)]. Z Orthop Unfall 2013; 151: 38-47
- 3 Niemeyer P, Albrecht D, Aurich M. et al. Empfehlungen der AG Klinische Geweberegeneration zur Behandlung von Knorpelschaden am Kniegelenk. Z Orthop Unfall 2023; 161: 57-64
- 4 Pietschmann MF, Horng A, Glaser C. et al. [Post-treatment rehabilitation after autologous chondrocyte implantation: State of the art and recommendations of the Clinical Tissue Regeneration Study Group of the German Society for Accident Surgery and the German Society for Orthopedics and Orthopedic Surgery]. Unfallchirurg 2014; 117: 235-241
- 5 Guenther D, Pfeiffer T, Petersen W. et al. Treatment of Combined Injuries to the ACL and the MCL Complex: A Consensus Statement of the Ligament Injury Committee of the German Knee Society (DKG). Orthop J Sports Med 2021; 9
- 6 Ebert JR, Edwards PK, Fallon M. et al. Two-Year Outcomes of a Randomized Trial Investigating a 6-Week Return to Full Weightbearing After Matrix-Induced Autologous Chondrocyte Implantation. Am J Sports Med 2017; 45: 838-848
- 7 Ebert JR, Fallon M, Ackland TR. et al. Minimum 10-Year Clinical and Radiological Outcomes of a Randomized Controlled Trial Evaluating 2 Different Approaches to Full Weightbearing After Matrix-Induced Autologous Chondrocyte Implantation. Am J Sports Med 2020; 48: 133-142
- 8 Ebert JR, Fallon M, Wood DJ. et al. An accelerated 6-week return to full weight bearing after matrix-induced autologous chondrocyte implantation results in good clinical outcomes to 5 years post-surgery. Knee Surg Sports Traumatol Arthrosc 2021; 29: 3825-3833
- 9 Ebert JR, Fallon M, Zheng MH. et al. A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 2012; 40: 1527-1537
- 10 Wondrasch B, Risberg MA, Zak L. et al. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle: a prospective, randomized controlled study presenting MRI-based and clinical outcomes after 5 years. Am J Sports Med 2015; 43: 146-153
- 11 Della Villa S, Kon E, Filardo G. et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes?. Am J Sports Med 2010; 38: 68-77
- 12 Kreuz PC, Steinwachs M, Erggelet C. et al. Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 2007; 35: 1261-1268
- 13 Niethammer TR, Müller PE, Safi E. et al. Early resumption of physical activities leads to inferior clinical outcomes after matrix-based autologous chondrocyte implantation in the knee. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1345-1352
- 14 Li M, Yin H, Yan Z. et al. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140: 23-42
- 15 Khella CM, Horvath JM, Asgarian R. et al. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22: 8005
- 16 Scotti C, Gobbi A, Karnatzikos G. et al. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. Tissue Eng Part B Rev 2016; 22: 149-159
- 17 Diemer F. Temperaturmessung. Sportphysio 2021; 09: 92-97
- 18 Hambly K, Bobic V, Wondrasch B. et al. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 2006; 34: 1020-1038
- 19 McGinty G, Irrgang JJ, Pezzullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech (Bristol, Avon) 2000; 15: 160-166
- 20 Bailey A, Goodstone N, Roberts S. et al. Rehabilitation After Oswestry Autologous-Chondrocyte Implantation: The OsCell Protocol. J Sport Rehabil 2003; 12: 104-118
- 21 Flanigan DC, Sherman SL, Chilelli B. et al. Consensus on Rehabilitation Guidelines among Orthopedic Surgeons in the United States following Use of Third-Generation Articular Cartilage Repair (MACI) for Treatment of Knee Cartilage Lesions. Cartilage 2021; 13: 1782S-1790S
- 22 Ebert JR, Robertson WB, Lloyd DG. et al. Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthritis Cartilage 2008; 16: 1131-1140
- 23 Rogan S, Taeymans J, Hirschmüller A. et al. [Effect of continuous passive motion for cartilage regenerative surgery – a systematic literature review]. Z Orthop Unfall 2013; 151: 468-474
- 24 Marder RA, Hopkins jr G, Timmerman LA. Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthroscopy 2005; 21: 152-158
- 25 Minas T, Gomoll AH, Solhpour S. et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 2010; 468: 147-157
- 26 Smidt GL. Biomechanical analysis of knee flexion and extension. J Biomech 1973; 6: 79-92
- 27 Kulas AS, Hortobagyi T, DeVita P. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat. Clin Biomech (Bristol, Avon) 2012; 27: 16-21
- 28 Schmitt LC, Quatman CE, Paterno MV. et al. Functional outcomes after surgical management of articular cartilage lesions in the knee: a systematic literature review to guide postoperative rehabilitation. J Orthop Sports Phys Ther 2014; 44: 565-578
- 29 Buckthorpe M, La Rosa G, Villa FD. Restoring Knee Extensor Strength after Anterior Cruciate Ligament Reconstruction: A Clinical Commentary. Int J Sports Phys Ther 2019; 14: 159-172
- 30 Stien N, Saeterbakken AH, Andersen V. Electromyographic Comparison of Five Lower-Limb Muscles between Single- and Multi-Joint Exercises among Trained Men. J Sports Sci Med 2021; 20: 56-61
- 31 Bennell KL, Dobson F, Roos EM. et al. Influence of Biomechanical Characteristics on Pain and Function Outcomes From Exercise in Medial Knee Osteoarthritis and Varus Malalignment: Exploratory Analyses From a Randomized Controlled Trial. Arthritis Care Res (Hoboken) 2015; 67: 1281-1288
- 32 Hirschmüller A, Andres T, Schoch W. et al. Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results. Orthop J Sports Med 2017; 5: 2325967117703726
- 33 Mosler AB, Kemp J, King M. et al. Standardised measurement of physical capacity in young and middle-aged active adults with hip-related pain: recommendations from the first International Hip-related Pain Research Network (IHiPRN) meeting, Zurich, 2018. Br J Sports Med 2020; 54: 702-710
- 34 Kierkegaard S, Mechlenburg I, Lund B. et al. Is hip muscle strength normalised in patients with femoroacetabular impingement syndrome one year after surgery?: Results from the HAFAI cohort. J Sci Med Sport 2019; 22: 413-419
- 35 Pietrosimone B, Lepley AS, Harkey MS. et al. Quadriceps Strength Predicts Self-reported Function Post-ACL Reconstruction. Med Sci Sports Exerc 2016; 48: 1671-1677
- 36 Pietrosimone B, Pfeiffer SJ, Harkey MS. et al. Quadriceps weakness associates with greater T1rho relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 2632-2642
- 37 Nawasreh Z, Logerstedt D, Cummer K. et al. Functional performance 6 months after ACL reconstruction can predict return to participation in the same preinjury activity level 12 and 24 months after surgery. Br J Sports Med 2018; 52: 375
- 38 Lepley AS, Lepley LK. Mechanisms of Arthrogenic Muscle Inhibition. J Sport Rehabil 2022; 31: 707-716
- 39 Rice DA, McNair PJ, Lewis GN. et al. Quadriceps arthrogenic muscle inhibition: the effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res Ther 2014; 16: 502
- 40 Hart JM, Pietrosimone B, Hertel J. et al. Quadriceps activation following knee injuries: a systematic review. J Athl Train 2010; 45: 87-97
- 41 Norte G, Rush J, Sherman D. Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. J Sport Rehabil 2022; 31: 717-735
- 42 Logerstedt DS, Scalzitti DA, Bennell KL. et al. Knee Pain and Mobility Impairments: Meniscal and Articular Cartilage Lesions Revision 2018. J Orthop Sports Phys Ther 2018; 48: A1-A50
- 43 Hasegawa S, Kobayashi M, Arai R. et al. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 2011; 21: 622-630
- 44 Spector P, Laufer Y, Elboim Gabyzon M. et al. Neuromuscular Electrical Stimulation Therapy to Restore Quadriceps Muscle Function in Patients After Orthopaedic Surgery: A Novel Structured Approach. J Bone Joint Surg Am 2016; 98: 2017-2024
- 45 Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther 2014; 44: 102-119
- 46 Edwards PK, Ackland TR, Ebert JR. Accelerated weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint: early clinical and radiological outcomes. Am J Sports Med 2013; 41: 2314-2324
- 47 Hirschmüller A, Baur H, Braun S. et al. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 2011; 39: 2686-2696
- 48 Skelley NW, Kurtenbach C, Kimber K. et al. Return-to-Sport Review for Current Cartilage Treatments. J Knee Surg 2021; 34: 39-46
- 49 Krych AJ, Pareek A, King AH. et al. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25: 3186-3196
- 50 Hurley ET, Davey MS, Jamal MS. et al. Return-to-Play and Rehabilitation Protocols following Cartilage Restoration Procedures of the Knee: A Systematic Review. Cartilage 2021; 13: 907S-914S
- 51 Campbell AB, Pineda M, Harris JD. et al. Return to Sport After Articular Cartilage Repair in Athletes’ Knees: A Systematic Review. Arthroscopy 2016; 32: 651-668.e1
- 52 Davies GJ, McCarty E, Provencher M. et al. ACL Return to Sport Guidelines and Criteria. Curr Rev Musculoskelet Med 2017; 10: 307-314
- 53 Trattnig S, Winalski CS, Marlovits S. et al. Magnetic Resonance Imaging of Cartilage Repair: A Review. Cartilage 2011; 2: 5-26
- 54 Mithoefer K, Hambly K, Logerstedt D. et al. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 2012; 42: 254-273
- 55 Protokollempfehlungen der AG Bildgebende Verfahren des Bewegungsapparates (AG BVB) der Deutschen Röntgengesellschaft (DRG) zu Messsequenzen für die Gelenk-MRT. Rofo [Anonym]. 2018; 190: 186-190