Synlett, Table of Contents Synlett 2024; 35(13): 1551-1556DOI: 10.1055/a-2216-4594 letter PhI(OAc)2-Promoted Regioselective Cycloaddition of N-Aminopyridinium Ylides with Electron-Deficient Alkenes Junlei Wang‡ a Guizhou Minzu University, Guiyang 550025, P. R. of China , Guiling Chen‡ a Guizhou Minzu University, Guiyang 550025, P. R. of China , Chengcheng Shi‡ b State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. of China , Qinglin Xie a Guizhou Minzu University, Guiyang 550025, P. R. of China , Guocheng Gao a Guizhou Minzu University, Guiyang 550025, P. R. of China , Yanan Li C College of Education for the Future & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. of China , Haijun Du a Guizhou Minzu University, Guiyang 550025, P. R. of China , Xiaohua Cai a Guizhou Minzu University, Guiyang 550025, P. R. of China , Hongqing Li∗ a Guizhou Minzu University, Guiyang 550025, P. R. of China , Binbin Huang∗ C College of Education for the Future & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. of China › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Herein, we report a regioselective cycloaddition strategy of N-aminopyridinium ylides with electron-deficient alkenes, in the presence of a hypervalent iodine reagent, PhI(OAc)2. A variety of multifunctionalized pyrazolo[1,5-a]pyridine architectures were smoothly afforded by the reactions of pyridine-, quinoline-, and isoquinoline-based N-ylides with diverse alkenes with or without a halogen atom adjacent to the electron-withdrawing group (EWG) under facile conditions. Key words Key wordsregioselective - cycloaddition - N-aminopyridinium - alkenes Full Text References References and Notes. 1 Yoshimura A, Zhdankin VV. A. Chem. Rev. 2016; 116: 3328 2 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650 3 Hari DP, Caramenti P, Waser J. Acc. Chem. Res. 2018; 51: 3212 4 Lee H.-J, Huang X, Sakaki S, Maruoka K. Green Chem. 2021; 23: 848 5 Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299 6 Ballaschka F, Kirsch SF. Green Chem. 2019; 21: 5896 7 Cots E, Flores A, Romero MR, Muñiz K, Muñiz A. ChemSusChem 2019; 12: 3028 8 Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478 9 Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita YA. Angew. Chem. Int. Ed. 2008; 47: 3787 10 Li G.-X, Hu X, He G, Chen G. Chem. Sci. 2019; 10: 688 11 Wu S, Li J, He R, Jia K, Chen Y. Org. Lett. 2021; 23: 9204 12 Wang J, Xie Q, Gao G, Li H, Lu W, Cai X, Chen X, Huang B. Org. Chem. Front. 2023; 10: 4394 13 Payne JL, Deng Z, Flach AL, Johnston JN. Chem. Sci. 2022; 13: 7318 14 Parra A. Chem. Rev. 2019; 119: 12033 15 Huang B, Chen G, Zhang H, Tang X, Yuan J, Lu C, Wang J. Org. Chem. Front. 2023; 10: 3515 16 Zhang L, Wang Y, Yang Y, Zhang P, Wang C. Org. Chem. Front. 2020; 7: 3234 17 Abdolalian P, Tizhoush SK, Farshadfar K, Ariafard A. Chem. Sci. 2021; 12: 7185 18 Wang N, Gu Q.-S, Li Z.-L, Li Z, Guo Y.-L, Guo Z, Liu X.-Y. Angew. Chem. Int. Ed. 2018; 57: 14225 19 Tang N, Wu X, Zhu C. Chem. Sci. 2019; 10: 6915 20 Wu X, Zhang H, Tang N, Wu Z, Wang D, Ji M, Xu Y, Wang M, Zhu C. Nat. Commun. 2018; 9: 3343 21 Hoashi Y, Takai T, Kosugi Y, Nakashima M, Nakayama M, Hirai K, Uchikawa O, Koike T. J. Med. Chem. 2021; 64: 3059 22 Lee JW, Park J, Kim J, Choi C, Min KH. Eur. J. Med. Chem. 2021; 216: 113298 23 O´Malley DP, Ahuja V, Fink B, Cao C, Wang C, Swanson J, Wee S, Gavai AV, Tokarski J, Critton D, Paiva AA, Johnson BM, Szapiel N, Xie D. ACS Med. Chem. Lett. 2019; 10: 1486 24 Devi Priya D, Nandhakumar M, Mohana Roopan S. Synth. Commun. 2020; 50: 3535 25 Kendall JD. Curr. Org. Chem. 2011; 15: 2481 26 Balkenhohl M, Salgues B, Hirai T, Karaghiosoff K, Knochel P. Org. Lett. 2018; 20: 3114 27 Motornov VA, Tabolin AA, Nelyubina YV, Nenajdenko VG, Ioffe SL. Org. Biomol. Chem. 2020; 18: 1436 28 Ravi C, Samanta S, Mohan DC, Reddy NN. K, Adimurthy S. Synthesis 2017; 49: 2513 29 Ravi C, Mohan DC, Reddy NN. K, Adimurthy S. RSC Adv. 2015; 5: 42961 30 Eary CT, Spencer S, Crane Z, Chando K, Asselin S, Liu W, Welch M, Cook A, Kolakowski GR, Metcalf AT, Moreno DA, Tang TP. US10745419B2, 2020 31 Mousseau JJ, Fortier A, Charette AB. Org. Lett. 2010; 12: 516 32 Tang J, Wang B, Wu T, Wan J, Tu Z, Njire M, Wan B, Franzblauc SG, Zhang T, Lu X, Ding K. ACS Med. Chem. Lett. 2015; 6: 814 33 Liao Q, Zhang L, Li S, Xi C. Org. Lett. 2011; 13: 228 34 Tang H.-T, Zeng J.-H, Chen J. -J, Zhou Y.-B, Lia R.-H, Zhan Z.-P. Org. Chem. Front. 2017; 4: 1513 35 Wen L.-R, Jin X.-J, Niu X.-D, Li M. J. Org. Chem. 2015; 80: 90 36 Huang P, Yang Q, Chen Z, Ding Q, Xu J, Peng Y. J. Org. Chem. 2012; 77: 8092 37 Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591 38 Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506 39 Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res. 2020; 53: 1066 40 Duan Z, Zhang L, Zhang W, Lu L, Zeng L, Shi R, Lei A. ACS Catal. 2020; 10: 3828 41 Lv Z, Wang H, Quan Z, Gao Y, Lei A. Chem. Commun. 2019; 55: 12332 42 Hou Z.-W, Mao Z.-Y, Xu H.-C. Org. Biomol. Chem. 2021; 19: 8789 43 Hou Z.-W, Xu H.-C. ChemElectroChem 2021; 8: 1571 44 Hou Z.-W, Mao Z.-Y, Melcamu YY, Lu X, Xu H.-C. Angew. Chem. Int. Ed. 2018; 57: 1636 45 Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C.-W, Lei A. Angew. Chem. Int. Ed. 2020; 59: 7193 46 Huang Q, He D, Han J, Chen J, He W, Deng H, Shao M, Zhang H, Cao W. Synthesis 2018; 50: 3731 47 Ding S, Yan Y, Jiao N. Chem. Commun. 2013; 49: 4250 48 Wang Z, Li X, Qiu J, Li W, Li H, Weng Z, Li H. Org. Lett. 2022; 24: 6292 49 Xiong L, Chen F, Wu Y, Hu X, Ruan Z, Jiang H, Zeng W. Org. Lett. 2022; 24: 7856 50 Wang A, Liu Y.-Z, Shen Z, Qiao Z, Ma X. Org. Lett. 2022; 24: 1454 51 Jung S, Lee H, Moon Y, Jung H.-Y, Hong S. ACS Catal. 2019; 9: 9891 52 Moon Y, Lee W, Hong S. J. Am. Chem. Soc. 2020; 142: 12420 53 Kim N, Lee C, Kim T, Hong S. Org. Lett. 2019; 21: 9719 54 Im H, Choi W, Hong S. Angew. Chem. Int. Ed. 2020; 59: 17511 55 Mendiola J, Rincon JA, Mateos C. Org. Process Res. Dev. 2009; 13: 263 56 Bradlow HL, Vanderwerf CA. J. Org. Chem. 1961; 16: 73 57 Tamura Y, Sumida Y, Miki Y, Ikeda M. J. Chem. Soc., Perkin Trans. 1 1975; 406 58 Yang X.-L, Peng X.-X, Chen F, Han B. Org. Lett. 2016; 18: 2070 59 Liu Z, Wu S, Chen Y. ACS Catal. 2021; 11: 10565 60 Preparation of Starting Materials: General Procedure A Mesitylene-2-sulfonyl chloride (1.0 equiv.), tert-butyl N-hydroxycarbamate (1.0 equiv.) dissolved in methyl tert-butyl ether (0.2 M), degassed oxygen with N2 for three times and cooled to 0 °C. The reaction mixture was continuously stirred, triethylamine (1.5 equiv.) was added dropwise, and the reaction was stirred for 2 h. The obtained reaction mixture was filtered and washed with methyl tert-butyl ether (MTBE). Then, the filtrate was concentrated, n-hexane was added to the concentrate solution at room temperature, and after stirring for 5 min, a white solid appeared, washed with 10 mL of n-hexane to give the desired compound as a white solid.55 Preparation of O-Mesitylsulfonylhydroxylamine (MSH) TFA (0.15 M) was cooled to 0 °C, and tert-butyl N-mesitylsulfonyloxycarbamate (MSC, 1.0 equiv.) was added. The reaction mixture was stirred at the same temperature for 1.5 h, then poured into crushed ice. The resulting white-colored precipitate was filtered off, then washed with water (1.5 M), and dried under vacuum, affording the title compound as a white solid and used to the next step without further purification.59 Preparation of N-Aminopyridines Salts Pyridine (1.0 equiv.) was added to the O-mesitylsulfonylhydroxylamine (MSH, 1.0 equiv.) solution (around 0.13 M in CH2Cl2) at 0 °C and stirred for 10 min. The resulted mixture was then allowed to be heated to reflux using an oil bath, monitored by TLC. Upon completion, the solvent was removed by rotary evaporation, and the residue was rinsed with n-hexane. The solid was collected through filtration and dried over vacuum to afford the desired product which was used for the next step without further purification.59 61 General Procedure for Cycloaddition Reactions To a stirring suspension of N-aminopyridines (1.0 equiv.) in CH3CN (0.05 M) was added 2-chloroacrylonitrile (1.2 equiv.). Then PhI(OAc)2 (1.5 equiv.) was added. After being cooled to 0 °C, Et3N (2.0 equiv.) was added dropwise. The resulting mixture was then stirred under nitrogen at room temperature and monitored by TLC. After N-aminopyridine was completely consumed, the product was purified by column chromatography with petroleum ether and ethyl acetate. 62 Selected Typical Cycloaddition Product: 7-Chloro-6-fluoro-4-methylpyrazolo[1,5-a]pyridine-3-carbonitrile (3v) Purified with silica gel chromatography (petroleum ether/ethyl acetate = 20:1), 147–150 °C, 4 h, 28.8 mg, 55% isolated yield. 1H NMR (400 MHz, CDCl3): δ = 8.34 (s, 1 H), 7.22 (d, J = 8.4 Hz, 1 H), 2.78 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 150.1 (d, J = 243.3 Hz), 146.6 (d, J = 2.4 Hz), 140.6, 127.7 (d, J = 7.9 Hz), 119.5 (d, J = 24.1 Hz), 114.1, 84.8, 18.0. 19F NMR (376 MHz, CDCl3): δ = –133.15 (d, J = 8.5 Hz). HRMS (ESI): m/z calcd for C9H6ClFN3 + [M + H]+: 210.0229; found: 210.0221. Supplementary Material Supplementary Material Supporting Information