Subscribe to RSS
DOI: 10.1055/a-2236-1122
Rationalizing the Regioselectivity of Azolation of Benzylic C–H Bonds under Photoredox Catalysis
We thank the financial support for the project ‘PID2021-126075NB–I00’ financed by the Spanish Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033 FEDER, UE.) I .F.-A thanks the Ministerio de Ciencia e Innovación for the Juan de la Cierva-Incorporation scholarship (IJC2020-045125-I). Nil Sanosa thanks the Universidad de La Rioja for the Becas Santander/Contratos Predoctorales 2023.
Abstract
A density functional theory (DFT) study was performed to evaluate the reaction mechanism of the C–N bond formation under an integrated hydrogen atom transfer/radical-polar crossover photoredox catalytic cycle. The regioselective activation of a model substrate, including three reactive positions (3° benzylic C–H bond, 2° benzylic C–H bond, and primary C–Cl bond) was addressed to distinguish among the radical C–H activation mechanism and the standard SN2 reaction. We demonstrated that activation of tertiary benzylic C–H bond is the most favored and forms exclusively the experimentally observed product. In addition, the whole photoredox catalytic cycle, including the outer-sphere electron-transfer steps, was characterized computationally.
Key words
photoredox catalysis - C–N bond formation - density functional theory - regioselectivity - reaction mechanismSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2236-1122.
- Supporting Information
Publication History
Received: 29 November 2023
Accepted after revision: 28 December 2023
Accepted Manuscript online:
28 December 2023
Article published online:
31 January 2024
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bellotti P, Huang H.-M, Faber T, Glorius F. Chem. Rev. 2023; 123: 4237
- 1b Sarkar S, Cheung KP. S, Gevorgyan V. Chem. Sci. 2020; 11: 12974
- 1c Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 2a Wang B, Ascenzi Pettenuzzo C, Singh J, McCabe GE, Clark L, Young R, Pu J, Deng Y. ACS Catal. 2022; 12: 10441
- 2b Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
- 3 Leibler IN.-M, Tekle-Smith MA, Doyle AG. Nat. Commun. 2021; 12: 6950
- 4a Guo W, Wang Q, Zhu J. Chem. Soc. Rev. 2021; 50: 7359
- 4b Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
- 4c Meger FS, Murphy JA. Molecules 2023; 28: 6127
- 5a Dai C, Meschini F, Narayanam JM, Stephenson CR. J. Org. Chem. 2012; 77: 4425
- 5b Pandey G, Laha R. Angew. Chem. Int. Ed. 2015; 54: 14875
- 6 Song C, Dong X, Yi H, Chiang C.-W, Lei A. ACS Catal. 2018; 8: 2195
- 7 Wan T, Capaldo L, Laudadio G, Nyuchev AV, Rincón JA, García-Losada P, Mateos C, Frederick MO, Nuño M, Noël T. Angew. Chem. Int. Ed. 2021; 60: 17893
- 8 Chen S.-J, Golden DL, Krska SW, Stahl SS. J. Am. Chem. Soc. 2021; 143: 14438
- 9 Das M, Zamani L, Bratcher C, Musacchio PZ. J. Am. Chem. Soc. 2023; 145: 3861
- 10a Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. J. Am. Chem. Soc. 2021; 143: 18952
- 10b Sanosa N, Ambrosi D, Ruiz-Campos P, Sampedro D, Funes-Ardoiz I. Chem. Eur. J. 2023; 29: e202301406
- 11 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford: 2016
- 12 Chai J.-D, Head-Gordon M. Chem. Phys. 2008; 10: 6615
- 13 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 14 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 15 Luchini G, Alegre-Requena JV, Funes-Ardoiz I, Paton RS. F1000Research 2020; 9: 291
- 16 de Aguirre A, Funes-Ardoiz I, Maseras F. Angew. Chem. Int. Ed. 2019; 58: 3898