Laryngorhinootologie 2024; 103(04): 252-260
DOI: 10.1055/a-2246-2494
Übersicht

Die N400-Komponente im EEG als Marker für Spracherwerb und Wortverarbeitung nach CI-Versorgung

The EEG N400 component as a marker of language acquisition and processing in cochlear implant users
Anja Hahne
1   Klinik und Poliklinik für Hals-, Nasen-, und Ohrenheilkunde, Kopf- und Halschirurgie, Sächsisches Cochlear Implant Centrum, Universitätsklinikum Dresden, Dresden, Deutschland (Ringgold ID: RIN9169)
,
Niki K. Vavatzanidis
1   Klinik und Poliklinik für Hals-, Nasen-, und Ohrenheilkunde, Kopf- und Halschirurgie, Sächsisches Cochlear Implant Centrum, Universitätsklinikum Dresden, Dresden, Deutschland (Ringgold ID: RIN9169)
,
Thomas Zahnert
1   Klinik und Poliklinik für Hals-, Nasen-, und Ohrenheilkunde, Kopf- und Halschirurgie, Sächsisches Cochlear Implant Centrum, Universitätsklinikum Dresden, Dresden, Deutschland (Ringgold ID: RIN9169)
› Author Affiliations

Zusammenfassung

Sprachliche Verarbeitungsprozesse können objektiv gemessen werden, z.B. mithilfe später Komponenten im evozierten Hirnpotenzial. Die etablierteste Komponente in diesem Forschungsbereich ist die N400-Komponente, eine Negativierung mit einem Peak bei frühestens 400ms nach Stimulusbeginn und einem zentro-parietalen Maximum. Sie spiegelt semantische Verarbeitungsprozesse wider. Ihr Vorhandensein sowie ihre zeitliche und quantitative Ausprägung lassen Rückschlüsse auf die Güte der Sprachverarbeitung zu. Somit ist sie geeignet, das Sprachverstehen von besonderen Populationsgruppen zu erfassen, z.B. um den Fortschritt im Sprachverstehen bei Nutzern von Cochlea-Implantaten (CI) zu messen. Im Folgenden wird ein Überblick über die Verwendung der N400-Komponente im Bereich der CI-Forschung gegeben. Es werden Studien mit erwachsenen CI-Nutzern vorgestellt, bei denen die N400 die Qualität des Sprachverstehens mit der elektrischen Stimulation abbildet. Darüber hinaus werden Studien mit CI-versorgten Kindern besprochen, bei denen das Auftreten der N400-Komponente den Erwerb des Wortschatzes reflektiert.

Abstract

Language processing can be measured objectively using late components in the evoked brain potential. The most established component in this area of research is the N400 component, a negativity that peaks at about 400 ms after stimulus onset with a centro-parietal maximum. It reflects semantic processing. Its presence, as well as its temporal and quantitative expression, allows to conclude about the quality of processing. It is therefore suitable for measuring speech comprehension in special populations, such as cochlear implant (CI) users. The following is an overview of the use of the N400 component as a tool for studying language processes in CI users. We present studies with adult CI users, where the N400 reflects the quality of speech comprehension with the new hearing device and we present studies with children where the emergence of the N400 component reflects the acquisition of their very first vocabulary.



Publication History

Received: 30 August 2023

Accepted after revision: 27 December 2023

Article published online:
02 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Tamati TN, Pisoni DB, Moberly AC. Speech and Language Outcomes in Adults and Children with Cochlear Implants. Annu Rev Linguist 2022; 8: 299-319
  • 2 Kutas M, Hillyard SA. Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity. Science 1980; 207: 203-205
  • 3 Kutas M, Hillyard SA. Reading between the lines: Event-related brain potentials during natural sentence processing. Brain Lang 1980; 11: 354-373
  • 4 Kutas M, Hillyard SA. Event-related brain potentials to semantically inappropriate and surprisingly large words. Biol Psychol 1980; 11: 99-116
  • 5 Kutas M, Federmeier KD. Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). Annu Rev Psychol 2011; 62: 621-647
  • 6 Federmeier KD. Connecting and considering: Electrophysiology provides insights into comprehension. Psychophysiology 2022; 59: e13940
  • 7 McCallum WC, Farmer SF, Pocock PV. The effects of physical and semantic incongruites on auditory event-related potentials. Electroencephalogr Clin Neurophysiol Potentials Sect 1984; 59: 477-488
  • 8 Kutas M, Hillyard SA. Brain potentials during reading reflect word expectancy and semantic association. Nature 1984; 307: 161-163
  • 9 Besson M, Kutas M, Petten CV. An Event-Related Potential (ERP) Analysis of Semantic Congruity and Repetition Effects in Sentences. J Cogn Neurosci 1992; 4: 132-149
  • 10 Nieuwland MS, Van Berkum JJA. When peanuts fall in love: N400 evidence for the power of discourse. J Cogn Neurosci 2006; 18: 1098-1111
  • 11 Hagoort P, Hald L, Bastiaansen M. et al. Integration of Word Meaning and World Knowledge in Language Comprehension. Science 2004; 304: 438-441
  • 12 Troyer M, Kutas M. Harry Potter and the Chamber of What?: the impact of what individuals know on word processing during reading. Lang Cogn Neurosci 2020; 35: 641-657
  • 13 Rugg MD. Event-related brain potentials dissociate repetition effects of high-and low-frequency words. Mem Cognit 1990; 18: 367-379
  • 14 Van Petten C, Kutas M. Influences of semantic and syntactic context on open- and closed-class words. Mem Cognit 1991; 19: 95-112
  • 15 Hahne A, Wolf A, Müller J. et al. Sentence comprehension in proficient adult cochlear implant users: On the vulnerability of syntax. Lang Cogn Process 2012; 27: 1192-1204
  • 16 Hagoort P, Wassenaar M, Brown C. Real-time semantic compensation in patients with agrammatic comprehension: Electrophysiological evidence for multiple-route plasticity. Proc Natl Acad Sci U S A 2003; 100: 4340-4345
  • 17 Klieve S, Eadie P, Graham L. et al. Complex Language Use in Children With Hearing Loss: A Scoping Review. J Speech Lang Hear Res 2023; 66: 688-719
  • 18 Weber-Fox CM, Neville HJ. Maturational Constraints on Functional Specializations for Language Processing: ERP and Behavioral Evidence in Bilingual Speakers. J Cogn Neurosci 1996; 8: 231-256
  • 19 Kessler M, Schierholz I, Mamach M. et al. Combined Brain-Perfusion SPECT and EEG Measurements Suggest Distinct Strategies for Speech Comprehension in CI Users With Higher and Lower Performance. Front Neurosci 2020; 14
  • 20 Shen W, Fiori-Duharcourt N, Isel F. Functional significance of the semantic P600: evidence from the event-related brain potential source localization. Neuroreport 2016; 27: 548-558
  • 21 Burkhardt P, Müller V, Meister H. et al. Age effects on cognitive functions and speech-in-noise processing: An event-related potential study with cochlear-implant users and normal-hearing listeners. Front Neurosci 2022; 16: 1005859
  • 22 Cocquyt E-M, Depuydt E, Santens P. et al. Effects of Healthy Aging and Gender on the Electrophysiological Correlates of Semantic Sentence Comprehension: The Development of Dutch Normative Data. J Speech Lang Hear Res 2023; 66: 1694-1717
  • 23 Federmeier KD, Kutas M. Aging in context: Age-related changes in context use during language comprehension. Psychophysiology 2005; 42: 133-141
  • 24 Gunter TC, Jackson JL, Mulder G. An Electrophysiological Study of Semantic Processing in Young and Middle-Aged Academics. Psychophysiology 1992; 29: 38-54
  • 25 Kutas M, Iragui V. The N400 in a semantic categorization task across 6 decades. Electroencephalogr Clin Neurophysiol Potentials Sect 1998; 108: 456-471
  • 26 Hahne A, Vavatzanidis NK, Mürbe D. et al. Elektrophysiologische Objektivierung sprachlicher Lernprozesse bei CI-Trägern. German Medical Science GMS Publishing House: Doc136. 2020
  • 27 Hahne A, Wegewitz C, Vavatzanidis N. et al. Objektive Messung des initialen Wortverstehens nach Cochlea-Implantation mittels evozierter Potentiale. Laryngo-Rhino-Otologie 2023; 102 (Suppl. 02) S95
  • 28 Bruns L, Mürbe D, Hahne A. Understanding music with cochlear implants. Sci Rep 2016; 6: 32026
  • 29 Koelsch S, Kasper E, Sammler D. et al. Music, language and meaning: brain signatures of semantic processing. Nat Neurosci 2004; 7: 302-307
  • 30 Bell N, Angwin AJ, Arnott WL. et al. Semantic processing in children with cochlear implants: Evidence from event-related potentials. J Clin Exp Neuropsychol 2019; 41: 576-590
  • 31 Kallioinen P, Olofsson J, Nakeva von Mentzer C. et al. Semantic Processing in Deaf and Hard-of-Hearing Children: Large N400 Mismatch Effects in Brain Responses, Despite Poor Semantic Ability. Front Psychol 2016; 7
  • 32 Pierotti E, Coffey-Corina S, Schaefer T. et al. Semantic word integration in children with cochlear implants: electrophysiological evidence. Lang Cogn Neurosci 2022; 37: 224-240
  • 33 Vavatzanidis NK, Mürbe D, Friederici AD. et al. Establishing a mental lexicon with cochlear implants: an ERP study with young children. Sci Rep 2018; 8: 910
  • 34 Friedrich M, Friederici AD. Phonotactic Knowledge and Lexical-Semantic Processing in One-year-olds: Brain Responses to Words and Nonsense Words in Picture Contexts. J Cogn Neurosci 2005; 17: 1785-1802
  • 35 Grimm H, Aktas M, Frevert S. Sprachentwicklungstest für zweijährige Kinder (SETK-2): Diagnose rezeptiver und produktiver Sprachverarbeitungsfähigkeiten. 2000