Subscribe to RSS
DOI: 10.1055/a-2260-4789
Kochleaimplantat: systematischer Ansatz zur präoperativen radiologischen Evaluation

Kochleaimplantate werden zunehmend zur Hörrehabilitation eingesetzt. Ein Verständnis der Anatomie des Schläfenbeins und der Erkrankungen, die das Innenohr betreffen, ist von höchster Relevanz, um den Chirurgen auf Varianten und Bildgebungsbefunde aufmerksam zu machen, die die Operationstechnik sowie die Wahl des Kochleaimplantats und des Elektrodentyps beeinflussen und dazu beitragen können, unbeabsichtigte Komplikationen zu vermeiden.
-
Die vollständige Labyrinthaplasie kann einer Labyrinthitis ossificans mit Kochleaobliteration und kalkhaltigen oder verknöcherten Ablagerungen ähneln. In diesem Fall helfen ein flaches Promontorium der Kochlea und ein stenotischer oder atretischer innerer Gehörgang bei der Unterscheidung.
-
Bei einer Labyrinthitis ossificans mit isolierter Beteiligung der Scala tympani kann ein Kochleaimplantat in die Scala vestibuli eingesetzt werden. Eine Beteiligung der Basalwindung würde eine mittlere oder apikale Kochleostomie und eine zirkummodioläre Bohrung erfordern. Eine ausgedehnte Labyrinthitis ossificans ist eine Kontraindikation für eine Kochleaimplantatoperation.
-
Otospongiotischen Plaques, insbesondere in der Nische des runden Fensters, sollte besondere Aufmerksamkeit gewidmet werden, da sie mit chirurgischen Schwierigkeiten einhergehen können. Die Beteiligung der basalen Windung ist eine relative Kontraindikation für eine Kochleaimplantatoperation.
-
Eine verminderte Mastoidpneumatisierung und ein tiefliegendes Tegmen (Höhe geringer als 3,5 mm) sind mit einer technisch schwierigen kortikalen Mastoidektomie verbunden. Darüber hinaus besteht ein erhöhtes Risiko für eine Duraexposition, eine Meningoenzephalozele, Liquorlecks und eine Meningitis.
-
Das Mittelohr muss auf chronische Otomastoiditis, Cholesteatom und Tympanosklerose untersucht werden. Eine Tympanoplastik oder eine subtotale Petrosektomie kann bei einer chronischen Otomastoiditis mit oder ohne Cholesteatom durchgeführt werden. Eine optimale Entfernung der erkrankten Strukturen ist unerlässlich, um eine Labyrinthitis und eine Meningitis zu vermeiden, die möglicherweise eine Explantation des Kochleaimplantats erfordern könnten.
Schlüsselwörter
Kochleaimplantat - Bildgebung - sensorineuraler Hörverlust - Innenohrfehlbildungen - OperationstechnikenPublication History
Article published online:
01 July 2024
© 2023. The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2023; 43 (4): e220102. Online published in 10.1148/rg.220102, erratum published in 10.1148/rg.239006. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 World Health Organization. Deafness and hearing loss. Accessed March 10, 2024 at: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
- 2 National Institute on Deafness and Other Communication Disorders. Cochlear Implants. Accessed March 10, 2024 at: https://www.nidcd.nih.gov/health/cochlear-implants
- 3 Trimble K, Blaser S, James AL. et al. Computed tomography and/or magnetic resonance imaging before pediatric cochlear implantation? Developing an investigative strategy. Otol Neurotol 2007; 28: 317-324
- 4 Davidson HC. Imaging evaluation of sensorineural hearing loss. Semin Ultrasound CT MR 2001; 22: 229-249
- 5 Shekdar KV, Bilaniuk LT. Imaging of pediatric hearing loss. Neuroimaging Clin N Am 2019; 29: 103-115
- 6 Saeed SR, Selvadurai D, Beale T. et al. The use of cone-beam computed tomography to determine cochlear implant electrode position in human temporal bones. Otol Neurotol 2014; 35: 1338-1344
- 7 D’Arco F, Mertiri L, de Graaf P. et al. Guidelines for magnetic resonance imaging in pediatric head and neck pathologies: a multicentre international consensus paper. Neuroradiology 2022; 64 (6): 1081–1100; Korrektur in Neuroradiology 2022; 64: 1309
- 8 Benson JC, Carlson ML, Lane JI. MRI of the internal auditory canal, labyrinth, and middle ear: how we do it. Radiology 2020; 297: 252-265
- 9 Schmalbrock P. Comparison of three-dimensional fast spin echo and gradient echo sequences for high-resolution temporal bone imaging. J Magn Reson Imaging 2000; 12: 814-825
- 10 Byun JS, Kim HJ, Yim YJ. et al. MR imaging of the internal auditory canal and inner ear at 3 T: comparison between 3D driven equilibrium and 3D balanced fast field echo sequences. Korean J Radiol 2008; 9: 212-218
- 11 Joshi VM, Navlekar SK, Kishore GR. et al. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. RadioGraphics 2012; 32: 683-698
- 12 Huang BY, Roche JP, Buchman CA. et al. Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol 2010; 31: 1972-1979
- 13 Siddiqui A, D’Amico A, Colafati GS. et al. Hypothalamic malformations in patients with X-linked deafness and incomplete partition type 3. Neuroradiology 2019; 61: 949-952
- 14 Glastonbury CM. The vestibulocochlear nerve, with an emphasis on the normal and diseased internal auditory canal and cerebellopontine angle. In: Swartz J, Loevner L. Imaging of the temporal bone. 4th ed. New York, NY: Thieme Medical Publishers; 2009: 480-558
- 15 Glastonbury CM, Davidson HC, Harnsberger HR. et al. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol 2002; 23: 635-643
- 16 Verbist BM. Imaging of sensorineural hearing loss: a pattern-based approach to diseases of the inner ear and cerebellopontine angle. Insights Imaging 2012; 3: 139-153
- 17 Blaser S, Propst EJ, Martin D. et al. Inner ear dysplasia is common in children with Down syndrome (trisomy 21). Laryngoscope 2006; 116: 2113-2119
- 18 Teissier N, Van Den Abbeele T, Sebag G. et al. Computed tomography measurements of the normal and the pathologic cochlea in children. Pediatr Radiol 2010; 40: 275-283
- 19 Booth TN, Wick C, Clarke R. et al. Evaluation of the normal cochlear second interscalar ridge angle and depth on 3D T2-weighted images: a tool for the diagnosis of scala communis and incomplete partition type II. AJNR Am J Neuroradiol 2018; 39: 923-927
- 20 Reinshagen KL, Curtin HD, Quesnel AM. et al. Measurement for detection of incomplete partition type II anomalies on MR imaging. AJNR Am J Neuroradiol 2017; 38: 2003-2007
- 21 Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 2015; 36: 904-907
- 22 Verbist BM, Skinner MW, Cohen LT. et al. Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 2010; 31: 722-730
- 23 Colby CC, Todd NW, Harnsberger HR. et al. Standardization of CT depiction of cochlear implant insertion depth. AJNR Am J Neuroradiol 2015; 36: 368-371
- 24 Takahashi H, Sando I, Takagi A. Computer-aided three-dimensional reconstruction and measurement of the round window niche. Laryngoscope 1989; 99: 505-509
- 25 Su WY, Marion MS, Hinojosa R. et al. Anatomical measurements of the cochlear aqueduct, round window membrane, round window niche, and facial recess. Laryngoscope 1982; 92: 483-486
- 26 Swartz J, Mukherjee S. The inner ear and otodystrophies. In: Swartz J, Loevner L. Imaging of the temporal bone. 4th ed. New York, NY: Thieme Medical Publishers; 2009: 298-411
- 27 Vijayasekaran S, Halsted MJ, Boston M. et al. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. AJNR Am J Neuroradiol 2007; 28: 1133-1138
- 28 Witte RJ, Lane JI, Driscoll CLW. et al. Pediatric and adult cochlear implantation. RadioGraphics 2003; 23: 1185-1200
- 29 Lenarz T, Lesinski-Schiedat A, Weber BP. et al. The nucleus double array cochlear implant: a new concept for the obliterated cochlea. Otol Neurotol 2001; 22: 24-32
- 30 Cureoglu S, Baylan MY, Paparella MM. Cochlear otosclerosis. Curr Opin Otolaryngol Head Neck Surg 2010; 18: 357-362
- 31 Kang BJ, Kim AH. Comparison of cochlear implant performance after round window electrode insertion compared with traditional cochleostomy. Otolaryngol Head Neck Surg 2013; 148: 822-826
- 32 Kronenberg J, Migirov L, Dagan T. Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol 2001; 115: 283-285
- 33 Postelmans JTF, Tange RA, Stokroos RJ. et al. The suprameatal approach: a safe alternative surgical technique for cochlear implantation. Otol Neurotol 2010; 31: 196-203
- 34 May-Mederake B. Early intervention and assessment of speech and language development in young children with cochlear implants. Int J Pediatr Otorhinolaryngol 2012; 76: 939-946
- 35 Sharma A, Gilley PM, Dorman MF. et al. Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 2007; 46: 494-499
- 36 Sennaroğlu L, Bajin MD. Classification and current management of inner ear malformations. Balkan Med J 2017; 34: 397-411
- 37 Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 1987; 97: 2-14
- 38 Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope 2002; 112: 2230-2241
- 39 Sennaroglu L. Cochlear implantation in inner ear malformations: a review article. Cochlear Implants Int 2010; 11: 4-41
- 40 Brotto D, Sorrentino F, Cenedese R. et al. Genetics of inner ear malformations: a review. Audiology Res 2021; 11: 524-536
- 41 D’Arco F, Youssef A, Ioannidou E. et al. Temporal bone and intracranial abnormalities in syndromic causes of hearing loss: an updated guide. Eur J Radiol 2020; 123: 108803
- 42 Ginat DT. Imaging findings in syndromes with temporal bone abnormalities. Neuroimaging Clin N Am 2019; 29: 117-128
- 43 Ocak E, Duman D, Tekin M. Genetic causes of inner ear anomalies: a review from the Turkish Study Group for Inner Ear Anomalies. Balkan Med J 2019; 36: 206-211
- 44 Ozgen B, Oguz KK, Atas A. et al. Complete labyrinthine aplasia: clinical and radiologic findings with review of the literature. AJNR Am J Neuroradiol 2009; 30: 774-780
- 45 Sennaroglu L. Histopathology of inner ear malformations: Do we have enough evidence to explain pathophysiology?. Cochlear Implants Int 2016; 17: 3-20
- 46 Casselman JW, Offeciers EF, De Foer B. et al. CT and MR imaging of congential abnormalities of the inner ear and internal auditory canal. Eur J Radiol 2001; 40: 94-104
- 47 Cinar BC, Batuk MO, Tahir E. et al. Audiologic and radiologic findings in cochlear hypoplasia. Auris Nasus Larynx 2017; 44: 655-663
- 48 Sennaroglu L, Saatci I. Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation. Otol Neurotol 2004; 25: 520-529
- 49 Casselman JW, Offeciers FE, Govaerts PJ. et al. Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 1997; 202: 773-781
- 50 Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope 1978; 88: 723-728
- 51 Boston M, Halsted M, Meinzen-Derr J. et al. The large vestibular aqueduct: a new definition based on audiologic and computed tomography correlation. Otolaryngol Head Neck Surg 2007; 136: 972-977
- 52 El-Badry MM, Osman NM, Mohamed HM. et al. Evaluation of the radiological criteria to diagnose large vestibular aqueduct syndrome. Int J Pediatr Otorhinolaryngol 2016; 81: 84-91
- 53 Lemmerling MM, De Foer B, Verbist BM. et al. Imaging of inflammatory and infectious diseases in the temporal bone. Neuroimaging Clin N Am 2009; 19: 321-337
- 54 Isaacson B, Booth T, Kutz Jr JW. et al. Labyrinthitis ossificans: How accurate is MRI in predicting cochlear obstruction?. Otolaryngol Head Neck Surg 2009; 140: 692-696
- 55 Lee TC, Aviv RI, Chen JM. et al. CT grading of otosclerosis. AJNR Am J Neuroradiol 2009; 30: 1435-1439
- 56 Purohit B, Hermans R, Op de Beeck K. Imaging in otosclerosis: a pictorial review. Insights Imaging 2014; 5: 245-252
- 57 Babbage MJ, Feldman MB, O’Beirne GA. et al. Patterns of hearing loss following retrosigmoid excision of unilateral vestibular schwannoma. J Neurol Surg B Skull Base 2013; 74: 166-175
- 58 Weissman JL, Hirsch BE, Fukui MB. et al. The evolving MR appearance of structures in the internal auditory canal after removal of an acoustic neuroma. AJNR Am J Neuroradiol 1997; 18: 313-323
- 59 Erbele ID, Miller LS, Mankekar G. et al. Cochlear enhancement may precede cochlear obliteration after vestibular schwannoma excision. Otol Neurotol 2020; 41: 202-207
- 60 Feng Y, Lane JI, Lohse CM. et al. Pattern of cochlear obliteration after vestibular schwannoma resection according to surgical approach. Laryngoscope 2020; 130: 474-481
- 61 Hassepass F, Arndt S, Aschendorff A. et al. Cochlear implantation for hearing rehabilitation in single-sided deafness after translabyrinthine vestibular schwannoma surgery. Eur Arch Otorhinolaryngol 2016; 273: 2373-2383
- 62 O’Brien Sr WT, D’Arco F, Onofrj V. et al. Nonsyndromic congenital causes of sensorineural hearing loss in children: an illustrative review. AJR Am J Roentgenol 2021; 216: 1048-1055
- 63 Balkany T, Gantz BJ, Steenerson RL. et al. Systematic approach to electrode insertion in the ossified cochlea. Otolaryngol Head Neck Surg 1996; 114: 4-11
- 64 Rotteveel LJC, Proops DW, Ramsden RT. et al. Cochlear implantation in 53 patients with otosclerosis: demographics, computed tomographic scanning, surgery, and complications. Otol Neurotol 2004; 25: 943-952
- 65 Park E, Amoodi H, Kuthubutheen J. et al. Predictors of round window accessibility for adult cochlear implantation based on pre-operative CT scan: a prospective observational study. J Otolaryngol Head Neck Surg 2015; 44: 20
- 66 Vashishth A, Fulcheri A, Prasad SC. et al. Cochlear implantation in chronic otitis media with cholesteatoma and open cavities: long-term surgical outcomes. Otol Neurotol 2018; 39: 45-53
- 67 Vaid S, Vaid N. Imaging for cochlear implantation: structuring a clinically relevant report. Clin Radiol 2014; 69: e9-e24
- 68 Kashio A, Sakamoto T, Karino S. et al. Predicting round window niche visibility via the facial recess using high-resolution computed tomography. Otol Neurotol 2015; 36: e18-e23
- 69 Alkadhi H, Rissmann D, Kollias SS. Osteogenesis imperfecta of the temporal bone: CT and MR imaging in Van der Hoeve-de Kleyn syndrome. AJNR Am J Neuroradiol 2004; 25: 1106-1109
- 70 Vaid S, Vaid N, Manikoth M. et al. Role of HRCT and MRI of the temporal bone in predicting and grading the degree of difficulty of cochlear implant surgery. Indian J Otolaryngol Head Neck Surg 2015; 67: 150-158
- 71 Sullivan AM, Curtin HD, Moonis G. Arterial anomalies of the middle ear: a pictorial review with clinical-embryologic and imaging correlation. Neuroimaging Clin N Am 2019; 29: 93-102
- 72 Glastonbury CM, Harnsberger HR, Hudgins PA. et al. Lateralized petrous internal carotid artery: imaging features and distinction from the aberrant internal carotid artery. Neuroradiology 2012; 54: 1007-1013
- 73 Manjila S, Bazil T, Kay M. et al. Jugular bulb and skull base pathologies: proposal for a novel classification system for jugular bulb positions and microsurgical implications. Neurosurg Focus 2018; 45: E5
- 74 Mandour M, Tomoum M, El Zayat S. et al. Surgeon oriented preoperative radiologic evaluation in cochlear implantation: our experience with a proposed checklist. Int Arch Otorhinolaryngol 2019; 23: 137-141
- 75 Ying YLM, Lin JW, Oghalai JS. et al. Cochlear implant electrode misplacement: incidence, evaluation, and management. Laryngoscope 2013; 123: 757-766