Synthesis 2024; 56(16): 2462-2482
DOI: 10.1055/a-2270-0604
short review

Catalytic Asymmetric Synthesis of α-Mono and α,α-Disubstituted 5- and 6-Membered α-Aza-lactams

Claudio Palomo
,
Aitor Landa
,
We thank the Euskal Herriko Unibertsitatea (University of the Basque Country UPV/EHU), the Eusko Jaurlaritza (Basque Government) (Grant IT1583-22) and the Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) (Grant PID2022-137153NB-C21), Spain, for their continuous financial support.


Abstract

Five- and six-membered cyclic amide structures with an embedded endocyclic α-aza group (α-aza-lactams) not only represent masked or protected forms of α-amino acids, but also form the core of other medicinally relevant compound families such as (thio)hydantoins and di(tri)ketopiperazines. In recent years, catalytic methods have been discovered to synthesize these molecular scaffolds, particularly those bearing an α-stereogenic tri- or tetrasubstituted carbon center, enantioselectively. The wide variety of methods and catalytic activation strategies that have been successfully applied to this end in a short period of years is notable. This short review covers the most significant, highlighting their differences and complementarities. The methods are organized according to the disconnection approach to the target α-aza-lactam structure, which in most cases is deeply bound to the type of catalysis applied.

1 Introduction

2 Catalyst-Controlled Cα–H Functionalization (Approach a)

3 Decarboxylative α-AAA Reactions (Approach b)

4 Cα–X Substitution Reactions (Approach c)

5 De Novo Synthesis from Acyclic Precursors (Approach d)

6 Hydrogenation of (Addition to) α-Alkyliden-α-aza-lactams (Approach e)

7 Kinetic Resolution and Deracemization (Approach f)

8 Conclusions



Publication History

Received: 23 January 2024

Accepted after revision: 15 February 2024

Accepted Manuscript online:
15 February 2024

Article published online:
06 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • See, for instance:
    • 1a Amino Acids Peptides and Proteins in Organic Chemistry, Vols. 1 & 2. Hughes AB. Wiley-VCH; Weinheim 2009:
    • 1b Asymmetric Synthesis and Application of α-Amino Acids . Soloshonok VA, Izawa K. ACS Symposium Series 1009; American Chemical Society; Washington DC: 2009
    • 1c Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
    • 1d Cativiela C, Ordóñez M, Viveros-Ceballos JL. Tetrahedron 2020; 76: 130875
    • 1e Eder I, Haider V, Zebrowski P, Waser M. Eur. J. Org. Chem. 2021; 202

      For selected reviews, see:
    • 2a Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 2b Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1

      For examples, see:
    • 3a Cho SH, Kim SH, Shin D. Eur. J. Med. Chem. 2019; 164: 517
    • 3b Konnert L, Lamaty F, Martinez J, Colacino E. Chem. Rev. 2017; 117: 13757
    • 3c Borthwick AD. Chem. Rev. 2012; 112: 3641
    • 3d Wand Z. Amino Acids: Insights and Roles in Heterocyclic Chemistry: Volume 2: Hydantoins, Thiohydantoins, and 2,5-Diketopiperazines. Apple Academic Press/CRC Press; Palm Bay (FL, USA)/Boca Raton (FL: 2023
  • 4 Trost BM. J. Org. Chem. 2004; 69: 5813
    • 5a Trost BM. Angew. Chem. Int. Ed. 1997; 36: 2635
    • 5b Trost BM, Dogra K. J. Am. Chem. Soc. 2002; 124: 7256
  • 6 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
  • 7 Trost BM, Osipov M, Dong GA. Org. Lett. 2010; 12: 1276
    • 8a Keenan T, Jean A, Arseniyadis S. Chem. Rev. 2021; 121: 9196
    • 8b Kitamura M, Shirakawa S, Arimura Y, Wang X, Maruoka K. Chem. Asian J. 2008; 3: 1702
  • 9 Yang J.-S, Lu K, Li C.-X, Zhao Z.-H, Zhang X.-M, Zhang FM, Tu Y.-Q. Angew. Chem. Int. Ed. 2022; 61: e202114129
  • 10 Etxabe J, Izquierdo J, Landa A, Oiarbide M, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 6883
  • 11 Izquierdo J, Etxabe J, Duñabeitia E, Landa A, Oiarbide M, Palomo C. Chem. Eur. J. 2018; 24: 7217
  • 12 Izquierdo J, Demurget N, Landa A, Brinck T, Mercero JM, Diner P, Oiarbide M, Palomo C. Chem. Eur. J. 2019; 25: 12431
  • 13 Villaescusa L, Hernandez I, Azcune L, Rudi A, Mercero JM, Landa A, Oiarbide M, Palomo C. J. Org. Chem. 2023; 88: 972
  • 14 The pK a estimate was initially calculated using Grzybowski’s prediction tool . For details, see: Roszak R, Beker W, Molga K, Grzybowski BA. J. Am. Chem. Soc. 2019; 141: 17142 ; more refined values were calculated computationally, see Ref. 13 for details
  • 15 Cabanillas A, Davies CD, Male L, Simpkins NS. Chem. Sci. 2015; 6: 1350
  • 16 Deng’s stereomodel invoked by Simpkins, see: Wang B, Wu F, Wang Y, Liu X, Deng L. J. Am. Chem. Soc. 2007; 129: 768 ; and references therein
  • 17 Rees M, Simpkins NS, Male L. Org. Lett. 2017; 19: 1338
  • 18 Foster RW, Lenz EN, Simpkins NS, Stead D. Chem. Eur. J. 2017; 23: 8810
  • 19 Welch TR, Williams RM. Nat. Prod. Rep. 2014; 31: 1376
  • 20 Polaske NW, Dubey R, Nichol GS, Olenyuk B. Tetrahedron: Asymmetry 2009; 20: 2742
  • 21 Koning RN, Sundin AP, Strand S. J. Am. Chem. Soc. 2021; 143: 21218
  • 22 Duñabeitia E, Landa A, López R, Palomo C. Org. Lett. 2023; 25: 125
  • 23 Yoshiwara Y, Kotani S, Nakajima M. Chem. Eur. J. 2023; 29: e202203506
  • 24 Korch KM, Eidamshaus C, Behenna DC, Nam S, Horne D, Stoltz BM. Angew. Chem. Int. Ed. 2015; 54: 179
  • 25 Sun AW, Hess SN, Stoltz BM. Chem. Sci. 2019; 10: 788
  • 26 Sercel ZP, Sun AW, Stoltz BM. Org. Lett. 2021; 23: 6348
  • 27 Kondoh A, Ota Y, Komuro T, Egawa F, Kanomatab K, Terada M. Chem. Sci. 2016; 7: 1057
  • 28 Faltracco M, Cotogno S, Vande Velde CM. L, Ruijter E. J. Org. Chem. 2019; 84: 12058
  • 29 Zhao B, Du H, Shi Y. J. Am. Chem. Soc. 2008; 130: 7220
  • 30 Song J, Zhang Z.-J, Chen S.-S, Fan T, Gong L.-Z. J. Am. Chem. Soc. 2018; 140: 3177
  • 31 Zhang M.-C, Wang D.-C, Qu G.-R, Guo H.-M. Org. Chem. Front. 2022; 9: 4358
  • 32 He Y.-P, Quan R, Li X.-Z, Zhu J, Wu H. Angew. Chem. Int. Ed. 2023; 62: e202217954
  • 33 Tian D, Li Z.-C, Sun Z.-H, He Y.-P, Xu L.-P, Wu H. Angew. Chem. Int. Ed. 2023; 62: e202313797
  • 34 Aryal S, Hone CA, Polson MI. J, Foley DJ. Chem. Sci. 2023; 14: 7905
  • 35 Wang Y, Li J, Li Y, Pi C, Wu Y, Cui X. Org. Chem. Front. 2023; 10: 5631
  • 36 Takeuchi S, Ohgo Y. Bull. Chem. Soc. Jpn. 1987; 60: 1449
  • 37 Takeuchi S, Ohgo Y. Bull. Chem. Soc. Jpn. 1984; 57: 1920
  • 38 Ma B.-D, Du S.-H, Wang Y, Ou X.-M, Huang M.-Z, Wang L.-X, Wang X.-G. Tetrahedron: Asymmetry 2017; 28: 47
  • 39 Ge Y, Han Z, Wang Z, Ding K. J. Am. Chem. Soc. 2019; 141: 8981
  • 40 Xiao G, Xu S, Xie C, Zi G, Ye W, Zhou Z, Hou G, Zhang Z. Org. Lett. 2021; 23: 5734
  • 41 Nie Y, Li J, Yuan Q, Zhang W. Chin. J. Chem. 2022; 40: 819
  • 42 For an authoritative review on the matter, see: Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
  • 43 Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. J. Am. Chem. Soc. 2021; 143: 21241
  • 44 Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. J. Am. Chem. Soc. 2023; 145: 2354

    • For examples, see:
    • 45a Altenbuchner J, Siemann-Herzberg M, Syldatk C. Curr. Opin. Biotechnol. 2001; 12: 559
    • 45b Mizuguchi E, Achiwa K, Wakamatsu H, Terao Y. Tetrahedron: Asymmetry 1994; 5: 1407
  • 46 Fryszkowska A, Koszelewski D, Ostaszewski R. Tetrahedron: Asymmetry 2017; 28: 1127