Pneumologie 2024; 78(08): 566-577
DOI: 10.1055/a-2274-1025
Übersicht

Pulmonale Hypertonie bei Erwachsenen mit angeborenen Herzfehlern im Lichte der 2022-ESC-PAH-Leitlinien

Part II: Supportive Therapie, Sondersituationen (Schwangerschaft, Kontrazeption, nicht-kardiale Operationen), zielgerichtete Pharmakotherapie, Organtransplantation, spezielles Management (Shuntvitien, Linksherzerkrankungen, univentrikuläre Herzen), Interventionen, Intensivmedizin, Nachsorge, ZukunftsperspektivePulmonary hypertension in adults with congenital heart disease in light of the 2022-ESC-PAH guidelinesPart II: Supportive therapy, special situations (pregnancy, contraception, non-cardiac surgery), targeted pharmacotherapy, organ transplantation, special management (shunt lesions, left ventricular disorders, univentricular hearts), interventions, intensive care, follow-up, future perspectives
Harald Kaemmerer
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Gerhard Paul Diller
 2   Klinik für Kardiologie III: angeborene Herzfehler (EMAH) und Klappenerkrankungen, Universitätsklinikum Münster, Münster, Deutschland
,
Stephan Achenbach
 3   Universitätsklinik Erlangen, Medizinische Klinik 2 – Kardiologie und Angiologie, Erlangen, Deutschland
,
Ingo Dähnert
 4   Universitätsklinik für Kinderkardiologie, Herzzentrum Leipzig, Leipzig, Deutschland
,
Christina A. Eichstaedt
 5   Zentrum für Pulmonale Hypertonie, Thoraxklinik Heidelberg am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Institut für Humangenetik, Universität Heidelberg, INF 366, TLRC am DZL Heidelberg, Deutschland
,
Andreas Eicken
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Annika Freiberger
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Sebastian Freilinger
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Ralf Geiger
 6   Univ.-Klinik für Pädiatrie III, Kardiologie, Pneumologie, Allergologie, Cystische Fibrose, Innsbruck, Österreich
,
Matthias Gorenflo
 7   Klinik für Kinderkardiologie und angeborene Herzfehler, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
,
Ekkehard Grünig
 5   Zentrum für Pulmonale Hypertonie, Thoraxklinik Heidelberg am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Institut für Humangenetik, Universität Heidelberg, INF 366, TLRC am DZL Heidelberg, Deutschland
,
Alfred Hager
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Michael Huntgeburth
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Ann-Sophie Kaemmerer-Suleiman
 8   Herzchirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Rainer Kozlik-Feldmann
 9   Klinik und Poliklinik für Kinderkardiologie, Universitäres Herz- und Gefäßzentrum Hamburg, Klinik und Poliklinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Hamburg, Deutschland
,
Astrid E. Lammers
10   Klinik für Pädiatrische Kardiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Münster, Deutschland
,
Nicole Nagdyman
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Sebastian Michel
11   LMU Klinikum, Herzchirurgische Klinik und Poliklinik, Sektion für Chirurgie angeborener Herzfehler und Kinderherzchirurgie, Campus Großhadern, München, Deutschland
,
Kai Helge Schmidt
12   Universitätsmedizin Mainz, Zentrum für Kardiologie – Kardiologie I, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
,
Anselm Uebing
13   Universitätsklinikum Schleswig-Holstein, Klinik für angeborene Herzfehler und Kinderkardiologie, Kiel, Deutschland
,
Fabian von Scheidt
 1   Internationales Zentrum für Erwachsene mit angeborenen Herzfehlern (EMAH), Klinik für angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, Deutschland
,
Christian Apitz
14   Sektion Pädiatrische Kardiologie, Universitätsklinik für Kinder- und Jugendmedizin Ulm, Ulm, Deutschland
› Author Affiliations

Zusammenfassung

Die Zahl der Erwachsenen mit angeborenen Herzfehlern (AHF) steigt ständig und liegt in Deutschland bei etwa 360 000. AHF sind häufig mit einer pulmonalen Hypertonie (PH) assoziiert, die sich bei unbehandelten AHF teils schon frühzeitig entwickeln. Trotz einer zeitgerechten Behandlung des AHF persistiert eine PH häufig oder entwickelt sich im höheren Lebensalter neu und ist mit erheblicher Morbidität und Letalität behaftet.

Die überarbeiteten Leitlinien (LL) der European Society of Cardiology/European Respiratory Society 2022 für die Diagnostik und Behandlung der PH stellen einen wesentlichen Beitrag zur optimierten Versorgung der Betroffenen dar. Der Themenbereich „Erwachsene mit angeborenen Herzfehlern“ wird in diesem Zusammenhang allerdings nur relativ oberflächlich behandelt. In dem vorliegenden Artikel wird diese Thematik daher detailliert aus Sicht der kongenitalen Kardiologie kommentiert.

Abstract

The number of adults with congenital heart defects (CHD) is steadily rising and amounts to approximately 360,000 in Germany. CHD is often associated with pulmonary hypertension (PH), which may develop early in untreated CHD. Despite timely treatment of CHD, PH not infrequently persists or recurs in older age and is associated with significant morbidity and mortality.

The revised European Society of Cardiology/European Respiratory Society 2022 guidelines for the diagnosis and treatment of PH represent a significant contribution to the optimized care of those affected. However, the topic of “adults with congenital heart disease” is addressed only relatively superficial in these guidelines. Therefore, in the present article, this topic is commented in detail from the perspective of congenital cardiology.



Publication History

Article published online:
24 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Baumgartner H, De Backer J, Babu-Narayan SV. et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J 2021; 42: 563-645
  • 2 Kovacs G, Berghold A, Scheidl S. et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34: 888-894
  • 3 Akagi T. Current concept of transcatheter closure of atrial septal defect in adults. J Cardiol 2015; 65: 17-25
  • 4 Fritz C, Engelhardt A, Grohmann J. et al. A multi-center trial on efficacy and safety of the LifeTech CeraFlex(TM) ASD occluder for transcatheter closure in patients with secundum atrial septal defects. Cardiovasc Diagn Ther 2022; 12: 475-484
  • 5 Kenny D, Eicken A, Dähnert I. et al. A randomized, controlled, multi-center trial of the efficacy and safety of the Occlutech Figulla Flex-II Occluder compared to the Amplatzer Septal Occluder for transcatheter closure of secundum atrial septal defects. Catheter Cardiovasc Interv 2019; 93: 316-321
  • 6 Hansen JH, Duong P, Jivanji SGM. et al. Transcatheter Correction of Superior Sinus Venosus Atrial Septal Defects as an Alternative to Surgical Treatment. J Am Coll Cardiol 2020; 75: 1266-1278
  • 7 Brancato F, Stephenson N, Rosenthal E. et al. Transcatheter versus surgical treatment for isolated superior sinus venosus atrial septal defect. Catheter Cardiovasc Interv 2023; 101: 1098-1107
  • 8 Miranda WR, Hagler DJ, Reeder GS. et al. Temporary balloon occlusion of atrial septal defects in suspected or documented left ventricular diastolic dysfunction: Hemodynamic and clinical findings. Catheter Cardiovasc Interv 2019; 93: 1069-1075
  • 9 Schubert S, Peters B, Abdul-Khaliq H. et al. Left ventricular conditioning in the elderly patient to prevent congestive heart failure after transcatheter closure of atrial septal defect. Catheter Cardiovasc Interv 2005; 64: 333-337
  • 10 Abdelkarim A, Levi DS, Tran B. et al. Fenestrated Transcatheter ASD Closure in Adults with Diastolic Dysfunction and/or Pulmonary Hypertension: Case Series and Review of the Literature. Congenit Heart Dis 2016; 11: 663-671
  • 11 Paitazoglou C, Özdemir R, Pfister R. et al. The AFR-PRELIEVE trial: a prospective, non-randomised, pilot study to assess the Atrial Flow Regulator (AFR) in heart failure patients with either preserved or reduced ejection fraction. EuroIntervention 2019; 15: 403-410
  • 12 Bergmann M, Germann CP, Nordmeyer J. et al. Short- and Long-term Outcome After Interventional VSD Closure: A Single-Center Experience in Pediatric and Adult Patients. Pediatr Cardiol 2021; 42: 78-88
  • 13 Carminati M, Butera G, Chessa M. et al. Transcatheter closure of congenital ventricular septal defects: results of the European Registry. Eur Heart J 2007; 28: 2361-2368
  • 14 Sadiq M, Qureshi AU, Younas M. et al. Percutaneous closure of ventricular septal defect using LifeTech(TM) Konar-MF VSD Occluder: initial and short-term multi-institutional results. Cardiol Young 2022; 32: 755-761
  • 15 Kozlik-Feldmann R, Lorber A, Sievert H. et al. Long-term outcome of perimembranous VSD closure using the Nit-Occlud® Lê VSD coil system. Clin Res Cardiol 2021; 110: 382-390
  • 16 El Said HG, Bratincsak A, Gordon BM. et al. Closure of perimembranous ventricular septal defects with aneurysmal tissue using the Amplazter Duct Occluder I: lessons learned and medium term follow up. Catheter Cardiovasc Interv 2012; 80: 895-903
  • 17 Eicken A, Balling G, Gildein HP. et al. Transcatheter closure of a non-restrictive patent ductus arteriosus with an Amplatzer muscular ventricular septal defect occluder. Int J Cardiol 2007; 117: e40-e42
  • 18 Bauer A, Khalil M, Schmidt D. et al. Creation of a restrictive atrial communication in pulmonary arterial hypertension (PAH): effective palliation of syncope and end-stage heart failure. Pulm Circ 2018; 8: 2045894018776518
  • 19 Boudjemline Y, Sizarov A, Malekzadeh-Milani S. et al. Safety and Feasibility of the Transcatheter Approach to Create a Reverse Potts Shunt in Children With Idiopathic Pulmonary Arterial Hypertension. Can J Cardiol 2017; 33: 1188-1196
  • 20 Goldar G, Chaisson N, Ghobrial J. Transcatheter Valve Implantation in Reversed Potts Shunt in Pulmonary Arterial Hypertension: Keeping the Shunt Reversed. JACC Case reports 2022; 4: 101678
  • 21 Brown ML, DiNardo JA, Nasr VG. Anesthesia in Pediatric Patients With Congenital Heart Disease Undergoing Noncardiac Surgery: Defining the Risk. J Cardiothorac Vasc Anesth 2020; 34: 470-478
  • 22 Carmosino MJ, Friesen RH, Doran A. et al. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg 2007; 104: 521-527
  • 23 Perloff J, Child J, Aboulhosn JA. Congenital Heart Disease in Adults. Philadelphia: Saunders; 2008
  • 24 Meyer S, McLaughlin VV, Seyfarth HJ. et al. Outcomes of noncardiac, nonobstetric surgery in patients with PAH: an international prospective survey. Eur Respir J 2013; 41: 1302-1307
  • 25 Cannesson M, Earing MG, Collange V. et al. Anesthesia for noncardiac surgery in adults with congenital heart disease. Anesthesiology 2009; 111: 432-440
  • 26 Halvorsen S, Mehilli J, Cassese S. et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur Heart J 2022; 43: 3826-3924
  • 27 Hötzel A, Loop T. Pulmonale Hypertonie: anästhesiologisches Management. Anästhesiol Intensivmed Notfallmed Schmerzther 2019; 54: 334-346
  • 28 Kaemmerer H, Apitz C, Brockmeier K. et al. Pulmonary hypertension in adults with congenital heart disease: Updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272: 79-88
  • 29 Becker-Grünig T, Klose H, Ehlken N. et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol 2013; 168: 375-381
  • 30 Buys R, Avila A, Cornelissen VA. Exercise training improves physical fitness in patients with pulmonary arterial hypertension: a systematic review and meta-analysis of controlled trials. BMC Pulm Med 2015; 15: 40
  • 31 Ehlken N, Lichtblau M, Klose H. et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J 2016; 37: 35-44
  • 32 Grünig E, Maier F, Ehlken N. et al. Exercise training in pulmonary arterial hypertension associated with connective tissue diseases. Arthritis Res Ther 2012; 14: R148
  • 33 Pandey A, Garg S, Khunger M. et al. Efficacy and Safety of Exercise Training in Chronic Pulmonary Hypertension: Systematic Review and Meta-Analysis. Circ Heart Fail 2015; 8: 1032-1043
  • 34 Weinstein AA, Chin LM, Keyser RE. et al. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir Med 2013; 107: 778-784
  • 35 Kaemmerer H, Niwa K, Oechslin E, Ewert P. Pulmonary Arterial Hypertension in Congenital Heart Disease: Eisenmenger’s Syndrome – A Global Perspective. Bremen: Uni-Med-Verlag; 2013
  • 36 Bédard E, Dimopoulos K, Gatzoulis MA. Has there been any progress made on pregnancy outcomes among women with pulmonary arterial hypertension?. Eur Heart J 2009; 30: 256-265
  • 37 Kamp JC, Kaisenberg C von, Greve S. et al. Pregnancy in pulmonary arterial hypertension: Midterm outcomes of mothers and offspring. J Heart Lung Transplant 2021; 40: 229-233
  • 38 Dunn L, Greer R, Flenady V. et al. Sildenafil in Pregnancy: A Systematic Review of Maternal Tolerance and Obstetric and Perinatal Outcomes. Fetal Diagn Ther 2017; 41: 81-88
  • 39 Hemnes AR, Kiely DG, Cockrill BA. et al. Statement on pregnancy in pulmonary hypertension from the Pulmonary Vascular Research Institute. Pulm Circ 2015; 5: 435-465
  • 40 Parati G, Agostoni P, Basnyat B. et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J 2018; 39: 1546-1554
  • 41 Humbert M, Kovacs G, Hoeper MM. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43: 3618-3731
  • 42 Herberg U, Knies R, Müller N. et al. Altitude exposure in pediatric pulmonary hypertension – are we ready for (flight) recommendations?. Cardiovasc Diagn Ther 2021; 11: 1122-1136
  • 43 Sandoval J, Aguirre JS, Pulido T. et al. Nocturnal oxygen therapy in patients with the Eisenmenger syndrome. Am J Respir Crit Care Med 2001; 164: 1682-1687
  • 44 Braun S, Eicken A, Kaemmerer H. Iron deficiency in a patient with extreme erythrocytosis due to cyanotic congenital heart disease. Int J Cardiol 2006; 117: e74-e75
  • 45 Kaemmerer H, Niwa K, Hess J. Das Eisenmenger-Syndrom – vom Symptom zur Diagnose, 1. Aufl. Bremen: Uni-Med-Verlag; 2011
  • 46 Kaemmerer H, Niwa K, Oechslin E, Ewert P, Webb GD, Hess J. Pulmonary Arterial Hypertension in Congenital Heart Disease: Eisenmengerʼs Syndrome – A Global Perspective. Bremen: Uni-Med-Verlag; 2013
  • 47 Kaemmerer H, Mebus S, Apitz C. et al. Klinische Aspekte und Therapieoptionen bei Angeborenen Herzfehlern mit pulmonal-arterieller Hypertonie. Med Welt 2013; 64: 292-299
  • 48 Kaemmerer H, Mebus S, Schulze-Neick I. et al. The adult patient with eisenmenger syndrome: a medical update after dana point part I: epidemiology, clinical aspects and diagnostic options. Curr Cardiol Rev 2010; 6: 343-355
  • 49 Lill MC, Perloff JK, Child JS. Pathogenesis of thrombocytopenia in cyanotic congenital heart disease. Am J Cardiol 2006; 98: 254-258
  • 50 Oechslin E, Mebus S, Schulze-Neick I. et al. The Adult Patient with Eisenmenger Syndrome: A Medical Update after Dana Point Part III: Specific Management and Surgical Aspects. Curr Cardiol Rev 2010; 6: 363-372
  • 51 Perloff JK, Rosove MH, Child JS. et al. Adults with cyanotic congenital heart disease: hematologic management. Annals of internal medicine 1988; 109: 406-413
  • 52 Waldman JD, Czapek EE, Paul MH. et al. Shortened platelet survival in cyanotic heart disease. The Journal of pediatrics 1975; 87: 77-79
  • 53 Dimopoulos K, Diller G-P. Pulmonary Hypertension in Adult Congenital Heart Disease. Cham: Springer International Publishing; 2017. DOI: 10.1007/978-3-319-46028-4
  • 54 Rosenkranz S, Lang IM, Blindt R. et al. Pulmonary hypertension associated with left heart disease: Updated Recommendations of the Cologne Consensus Conference 2018. International Journal of Cardiology 2018; 272: 53-62
  • 55 Galiè N, Beghetti M, Gatzoulis MA. et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation 2006; 114: 48-54
  • 56 Gatzoulis MA, Landzberg M, Beghetti M. et al. Evaluation of Macitentan in Patients With Eisenmenger Syndrome. Circulation 2019; 139: 51-63
  • 57 Nashat H, Kempny A, Harries C. et al. A single-centre, placebo-controlled, double-blind randomised cross-over study of nebulised iloprost in patients with Eisenmenger syndrome: A pilot study. Int J Cardiol 2020; 299: 131-135
  • 58 Iversen K, Jensen AS, Jensen TV. et al. Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: a randomized, placebo-controlled, double-blinded trial. Eur Heart J 2010; 31: 1124-1131
  • 59 D'Alto M, Romeo E, Argiento P. et al. Bosentan-sildenafil association in patients with congenital heart disease-related pulmonary arterial hypertension and Eisenmenger physiology. Int J Cardiol 2012; 155: 378-382
  • 60 Humbert M, McLaughlin V, Gibbs JSR. et al. Sotatercept for the treatment of pulmonary arterial hypertension: PULSAR open-label extension. Eur Respir J 2023; 61: 2201347
  • 61 Hoeper MM, Badesch DB, Ghofrani HA. et al. Phase 3 Trial of Sotatercept for Treatment of Pulmonary Arterial Hypertension. N Engl J Med 2023; 388: 1478-1490
  • 62 A Study of Sotatercept in Participants with PAH WHO FC III or FC IV at High Risk of Mortality (MK-7962-006/ZENITH) [Internet]. 2023 https://clinicaltrials.gov/study/NCT04896008?cond=Pulmonary%20Hypertension&intr=Sotatercept%20&rank=6#more-information
  • 63 Pulido T, Adzerikho I, Channick RN. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med 2013; 369: 809-818
  • 64 Sitbon O, Channick R, Chin KM. et al. Selexipag for the Treatment of Pulmonary Arterial Hypertension. N Engl J Med 2015; 373: 2522-2533
  • 65 Miranda WR, Borlaug BA, Jain CC. et al. Exercise-induced changes in pulmonary artery wedge pressure in adults post-Fontan versus heart failure with preserved ejection fraction and non-cardiac dyspnoea. Eur J Heart Fail 2023; 25: 17-25
  • 66 Hayes Jr D, Cherikh WS, Chambers DC. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-second pediatric lung and heart-lung transplantation report-2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant 2019; 38: 1015-1027
  • 67 Dimopoulos K, Muthiah K, Alonso-Gonzalez R. et al. Heart or heart-lung transplantation for patients with congenital heart disease in England. Heart (British Cardiac Society) 2019; 105: 596-602
  • 68 Mendel B, Christianto C, Angellia P. et al. Reversed Potts Shunt Outcome in Suprasystemic Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis. Curr Cardiol Rev 2022; 18: e090522204486
  • 69 Chiel LE, Winthrop ZA, Fynn-Thompson F. et al. Extracorporeal membrane oxygenation and paracorporeal lung assist devices as a bridge to pediatric lung transplantation. Pediatr Transplant 2022; 26: e14289
  • 70 Hoeper MM, Pausch C, Olsson KM. et al. COMPERA 2.0: a refined four-stratum risk assessment model for pulmonary arterial hypertension. Eur Respir J 2022; 60: 2102311
  • 71 Kempny A, Diller GP, Dimopoulos K. et al. Determinants of outpatient clinic attendance amongst adults with congenital heart disease and outcome. Int J Cardiol 2016; 203: 245-250