Subscribe to RSS
DOI: 10.1055/a-2288-7553
NHC-Mediated Photochemical/Electrochemical Synthesis of Carbonyl Compounds
We thank the National Natural Science Foundation of China (22161008, 22061003), Guangxi Science and Technology Base and Talent Special Project (High level Innovative Talents and Team Training) (Guike AD23026094), Natural Science Foundation of Guangxi Province (2021GXNSFFA220005) for financial support.
Abstract
Great progress has been made in the photochemical/electrochemical reactions of carbonyl compounds catalyzed by N-heterocyclic carbenes (NHCs), allowing for many incredible reactions. The form of active intermediates hugely varies in different reactions. Under light or electricity, different active intermediates can be generated during NHC-catalyzed reactions depending on their interaction with different substrates and the reaction conditions. Intermediates can be converted into α,β-unsaturated acylazoliums, Breslow intermediates, homoenolates, and acylazoliums and subsequently undergo single- or double-electron conversions. This study reviews the different active intermediates formed by NHC in photochemical/electrochemical catalysis.
1 Introduction
2 NHC-Mediated Photoreactions
3 NHC-Mediated Electrochemical Reactions
4 Conclusion and Prospects
Publication History
Received: 09 January 2024
Accepted after revision: 15 March 2024
Accepted Manuscript online:
15 March 2024
Article published online:
23 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
- 2 Knappke CE. I, Neudörfl JM, von Wangelin AJ. Org. Biomol. Chem. 2010; 8: 1695
- 3 Garrison JC, Youngs WJ. Chem. Rev. 2005; 105: 3978 ; and references cited there in
- 4 Vetica F, Bortolami M, Petrucci R, Rocco D, Feroci M. Chem. Rec. 2021; 21: 2130
- 5 Nakanishi I, Itoh S, Suenobu T, Inoue H, Fukuzumi S. Chem. Lett. 1997; 26: 707
- 6 Delfau L, Nichilo S, Molton F, Broggi J, Tomás-Mendivil E, Martin D. Angew. Chem. Int. Ed. 2021; 60: 26783
- 7a Zhang B, Yang G, Guo D, Wang J. Org. Chem. Front. 2022; 9: 5016
- 7b Xiong T.-K, Xia Q, Zhou X.-Q, Li S.-H, Cui F.-H, Tang H.-T, Pan Y.-M, Liang Y. Adv. Synth. Catal. 2023; 365: 2183
- 8 Verma R, Jindal P, Prasad J, Kothari SL, Lamba NP, Dandia A, Khangarot RK. Chauhan M. S. Top. Curr. Chem. 2022; 380: 48
- 9 Organic Electrochemistry, 5th ed. Hammerich O, Speiser B. CRC Press; Boca Raton: 2016
- 10a Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 10b Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397
- 11a Ren Q, Li M, Yuan L, Wang J. Org. Biomol. Chem. 2017; 15: 4731
- 11b Chiang P.-C, Bode JW. In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools . Díez-Gonsálzes S. RSC Catalysis Series No. 6; Royal Society of Chemistry; Cambridge: 2011: 399-435
- 11c Wang X, Wu S, Yang R, Song H, Wang Q. Chem. Sci. 2023; 14: 13367
- 12 Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H. J. Org. Chem. 2018; 83: 8962
- 13 Xia Z, Dai L, Gao Z, Ye S. Chem. Commun. 2020; 56: 1525
- 14a DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
- 14b Yang W, Hu W, Dong X, Li X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15783
- 14c Dai L, Xia Z.-H, Gao Y.-Y, Gao Z.-H, Ye S. Angew. Chem. Int. Ed. 2019; 58: 18124
- 14d Dai L, Ye S. Org. Lett. 2020; 22: 986
- 15a Rehbein J, Ruser S.-M, Phan J. Chem. Sci. 2015; 6: 6013
- 15b Regnier V, Romero EA, Molton F, Jazzar R, Bertrand G, Martin D. J. Am. Chem. Soc. 2019; 141: 1109
- 16a Liu M.-S, Shu W. ACS Catal. 2020; 10: 12960
- 16b Zhang B, Qi J.-Q, Liu Y, Li Z, Wang J. Org. Lett. 2022; 24: 279
- 17 Liu M.-S, Min L, Chen B.-H, Shu W. ACS Catal. 2021; 11: 9715
- 18 Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon T.-P, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
- 19 Zhao K, Enders D. Angew. Chem. Int. Ed. 2017; 56: 3754
- 20 Dai L, Xu Y.-Y, Xia Z.-H, Ye S. Org. Lett. 2020; 22: 8173
- 21 Xu Y.-Y, Dai L, Gao Z.-H, Ye S. J. Org. Chem. 2022; 87: 14970
- 22 Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
- 23 Enders D, Niemeier O, Henseler A. Chem. Rev. 2008; 107: 5606
- 24 Wang L, Sun J, Xia J, Li M, Zhang L, Ma R, Zheng G, Zhang Q. Sci. China Chem. 2022; 65: 1938
- 25 Sato Y, Goto Y, Nakamura K, Miyamoto Y, Sumida Y, Ohmiya H. ACS Catal. 2021; 11: 12886
- 26 Bay AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
- 27 Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
- 28 Wang L, Ma R, Sun J, Zheng G, Zhang Q. Chem. Sci. 2022; 13: 3169
- 29 Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; 59: 19956
- 30 Bay AV, Farnam EJ, Scheidt KA. J. Am. Chem. Soc. 2022; 144: 7030
- 31 Wang X, Zhu B, Liu Y, Wang Q. ACS Catal. 2022; 12: 2522
- 32 Huang H, Dai Q.-S, Leng H.-J, Li Q, Yang S.-L, Tao Y.-M, Zhang X, Qi T, Li J.-L. Chem. Sci. 2022; 13: 2584
- 33 Yu X, Maity A, Studer A. Angew. Chem. Int. Ed. 2023; 62: e202310288
- 34 Ou C.-H, Pan Y.-M, Tang H.-T. Sci. China Chem. 2022; 65: 1873
- 35 Zhou P, Li W, Lan J, Zhu T. Nat. Commun. 2022; 13: 3827
- 36 Green RA, Pletcher D, Leach SG, Brown RC. D. Org. Lett. 2015; 17: 3290
- 37 Green RA, Pletcher D, Leach SG, Brown RC. D. Org. Lett. 2016; 18: 1198
- 38 Ogawa KA, Boydston AJ. Org. Lett. 2014; 16: 1928