Subscribe to RSS
DOI: 10.1055/a-2289-2423
Antibacterial Activities of the Algal Bromophenol Methylrhodomelol Against Pseudomonas aeruginosa

Abstract
Methylrhodomelol (1) is a bromophenol from the red alga Vertebrata lanosa that has been associated with antimicrobial properties. The aim of the current study was, therefore, to assess the antimicrobial potential of this compound in more detail against the gram-negative pathogen Pseudomonas aeruginosa. 1 exerted weak bacteriostatic activity against different strains when grown in minimal medium, whereas other phenolics were inactive. In addition, 1 (35 and 10 µg/mL) markedly enhanced the susceptibility of multidrug-resistant P. aeruginosa toward the aminoglycoside gentamicin, while it did not affect the viability of Vero kidney cells up to 100 µM. Finally, pyoverdine release was reduced in bacteria treated at sub-inhibitory concentration, but no effect on other virulence factors was observed. Transcriptome analysis of treated versus untreated P. aeruginosa indicated an interference of 1 with bacterial carbon and energy metabolism, which was corroborated by RT-qPCR and decreased ATP-levels in treated bacteria. In summary, the current study characterized the antibacterial properties of methylrhodomelol, revealed its potential as an adjuvant to standard antibiotics, and generated a hypothesis on its mode of action.
Keywords
Pseudomonas aeruginosa - methylrhodomelol - antimicrobial - bromophenol - Vertebrata lanosa - RhodomelaceaeSupporting Information
- Supporting Information
Supplementary Data include growth curves of P. aeruginosa ATCC27853 under different conditions and primer sequences used for RT-qPCR.
Publication History
Received: 08 December 2023
Accepted: 07 March 2024
Article published online:
05 April 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Driscoll JA, Brody SL, Marin KH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67: 351-368
- 2 Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An Update. Drugs 2021; 81: 2117-2131
- 3 Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 2019; 32
- 4 Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008; 197: 1079-1081
- 5 Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS Omega 2023; 8: 10757-10783
- 6 Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem Rev 2016; 116: 9162-9236
- 7 Gomes L, Monteiro P, Cotas J, Gonçalves AMM, Fernandes C, Gonçalves T, Pereira L. Seaweedsʼ pigments and phenolic compounds with antimicrobial potential. Biomol Concepts 2022; 13: 89-102
- 8 El-Sapagh S, El-Shenody R, Pereira L, Elshobary M. Unveiling the Potential of Algal Extracts as Promising Antibacterial and Antibiofilm Agents against Multidrug-Resistant Pseudomonas aeruginosa: In Vitro and In Silico Studies including Molecular Docking. Plants (Basel) 2023; 12;
- 9 Jacobtorweihen J, Spiegler V. Phylogenetic distribution of bromophenols in marine algae and the generation of a comprehensive bromophenol database. Phytochem Rev 2022;
- 10 Liu M, Hansen PE, Lin X. Bromophenols in marine algae and their bioactivities. Mar Drugs 2011; 9: 1273-1292
- 11 Popplewell WL, Northcote PT. Colensolide A: a new nitrogenous bromophenol from the New Zealand marine red alga Osmundaria colensoi . Tetrahedron Lett 2009; 50: 6814-6817
- 12 Lever J, Curtis G, Brkljača R, Urban S. Bromophenolics from the Red Alga Polysiphonia decipiens . Mar Drugs 2019; 17
- 13 Hofer S, Hartmann A, Orfanoudaki M, Ngoc HN, Nagl M, Karsten U, Heesch S, Ganzera M. Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa . Mar Drugs 2019; 17
- 14 Jacobtorweihen J, Schmitt M, Spiegler V. Amino acid-coupled bromophenols and a sulfated dimethylsulfonium lanosol from the red alga Vertebrata lanosa . Mar Drugs 2022; 20
- 15 Glombitza KW, Stoffelen H, Murawski U, Bielaczek J, Egge H. Antibiotica aus Algen. Planta Med 1974; 25: 105-114;
- 16 Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20: 657-670
- 17 Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31: 571-585
- 18 Shoeib NA, Bibby MC, Blunden G, Linley PA, Swaine DJ, Wheelhouse RT, Wright CW. In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers. J Nat Prod 2004; 67: 1445-1449
- 19 Minandri F, Imperi F, Frangipani E, Bonchi C, Visaggio D, Facchini M, Pasquali P, Bragonzi A, Visca P. Role of iron uptake systems in Pseudomonas aeruginosa virulence and airway infection. Infect Immun 2016; 84: 2324-2335
- 20 Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas Genome Database. Nucleic Acids Res 2016; 44: D646-653
- 21 Ferla MP, Patrick WM. Bacterial methionine biosynthesis. Microbiology (Reading) 2014; 160: 1571-1584
- 22 Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 2000; 182: 2869-2878
- 23 Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa . J Bacteriol 2007; 189: 6743-6750
- 24 Mastropasqua MC, DʼOrazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A, Ciavardelli D, Chirullo B, Pasquali P, Battistoni A. Growth of Pseudomonas aeruginosa in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol Microbiol 2017; 106: 543-561
- 25 Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G, Hajjar C, Liratni A, Wang S, Richaud P, Bleves S, Ball G, Borezée-Durant E, Lobinski R, Pignol D, Arnoux P, Voulhoux R. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci Rep 2017; 7: 17132
- 26 Gi M, Lee K-M, Kim SC, Yoon J-H, Yoon SS, Choi JY. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci Rep 2015; 5: 14644
- 27 Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML. GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 2002; 45: 1277-1287
- 28 Pederick VG, Eijkelkamp BA, Begg SL, Ween MP, McAllister LJ, Paton JC, McDevitt CA. ZnuA and zinc homeostasis in Pseudomonas aeruginosa . Sci Rep 2015; 5: 13139
- 29 Vermeij P, Kertesz MA. Pathways of assimilative sulfur metabolism in Pseudomonas putida . J Bacteriol 1999; 181: 5833-5837
- 30 Hondorp ER, Matthews RG. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli . PLoS Biol 2004; 2: e336
- 31 da Cruz Nizer WS, Inkovskiy V, Versey Z, Strempel N, Cassol E, Overhage J. Oxidative stress response in Pseudomonas aeruginosa . Pathogens 2021; 10: 1187
- 32 Flärdh K, Kjelleberg S. Glucose upshift of carbon-starved marine Vibrio sp. strain S14 causes amino acid starvation and induction of the stringent response. J Bacteriol 1994; 176: 5897-5903
- 33 Li Z, Pan Q, Xiao Y, Fang X, Shi R, Fu C, Danchin A, You C. Deciphering global gene expression and regulation strategy in Escherichia coli during carbon limitation. Microb Biotechnol 2019; 12: 360-376
- 34 Görisch H. The ethanol oxidation system and its regulation in Pseudomonas aeruginosa . Biochim Biophys Acta 2003; 1647: 98-102
- 35 Crocker AW, Harty CE, Hammond JH, Willger SD, Salazar P, Botelho NJ, Jacobs NJ, Hogan DA. Pseudomonas aeruginosa ethanol oxidation by AdhA in low-oxygen environments. J Bacteriol 2019; 201
- 36 Mern DS, Ha SW, Khodaverdi V, Gliese N, Görisch H. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology (Reading) 2010; 156: 1505-1516
- 37 Palmer GC, Palmer KL, Jorth PA, Whiteley M. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 2010; 192: 2722-2728
- 38 Steele MI, Lorenz D, Hatter K, Park A, Sokatch JR. Characterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate-semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase. J Biol Chem 1992; 267: 13585-13592
- 39 Aguilar JA, Zavala AN, Díaz-Pérez C, Cervantes C, Díaz-Pérez AL, Campos-García J. The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa . Appl Environ Microbiol 2006; 72: 2070-2079
- 40 Tamber S, Hancock REW. On the mechanism of solute uptake in Pseudomonas . Front Biosci 2003; 8: s472-483
- 41 Schweizer HP, Po C. Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa . J Bacteriol 1994; 176: 2184-2193
- 42 Kawakami T, Kuroki M, Ishii M, Igarashi Y, Arai H. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa . Environ Microbiol 2010; 12: 1399-1412
- 43 Dolan SK, Kohlstedt M, Trigg S, Ramirez PV, Kaminski CF, Wittmann C, Welch M. Contextual flexibility in Pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 2020; 11
- 44 Tong M, Brown ED. Food for thought: Opportunities to target carbon metabolism in antibacterial drug discovery. Ann N Y Acad Sci 2023; 1524: 51-64
- 45 Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 2010; 12: 1734-1747
- 46 Díaz-Pérez AL, Núñez C, Meza-Carmen V, Campos-García J. The expression of the genes involved in leucine catabolism of Pseudomonas aeruginosa is controlled by the transcriptional regulator LiuR and by the CbrAB/Crc system. Res Microbiol 2018; 169: 324-334
- 47 Jensen PR, Michelsen O. Carbon and energy metabolism of atp mutants of Escherichia coli . J Bacteriol 1992; 174: 7635-7641
- 48 Vestergaard M, Bald D, Ingmer H. Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis . J Glob Antimicrob Resist 2022; 29: 29-41
- 49 Chen T, Sheng J, Fu Y, Li M, Wang J, Jia AQ. 1H NMR-based global metabolic studies of Pseudomonas aeruginosa upon exposure of the quorum sensing inhibitor resveratrol. J Proteome Res 2017; 16: 824-830
- 50 Dadi PK, Ahmad M, Ahmad Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int J Biol Macromol 2009; 45: 72-79
- 51 Chinnam N, Dadi PK, Sabri SA, Ahmad M, Kabir MA, Ahmad Z. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Int J Biol Macromol 2010; 46: 478-486
- 52 Yarlagadda V, Medina R, Wright GD. Venturicidin A, A Membrane-active Natural Product Inhibitor of ATP synthase Potentiates Aminoglycoside Antibiotics. Sci Rep 2020; 10: 8134
- 53 Kesinger NG, Stevens JF. Covalent interaction of ascorbic acid with natural products. Phytochemistry 2009; 70: 1930-1939
- 54 Malkova IV, Bukhman VM, Vinogradova IV, Fomina TV, Korolev AM. Preobrazhenskaya. Prophylaxis of experimental bacterial infection in mice by 1′-methylascorbigen. J Antimicrob Chemother 1991; 28: 935-936
- 55 Ha DG, Kuchma SL, OʼToole GA. Plate-based assay for swarming motility in Pseudomonas aeruginosa . Methods Mol Biol 2014; 1149: 67-72
- 56 Ha DG, Kuchma SL, OʼToole GA. Plate-based assay for swimming motility in Pseudomonas aeruginosa . Methods Mol Biol 2014; 1149: 59-65
- 57 Kessler E, Safrin M. Elastinolytic and proteolytic enzymes. Methods Mol Biol 2014; 1149: 135-169
- 58 Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol 2014; 1149: 631-641
- 59 Andrews S. FastQC: A quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed June 14, 2023
- 60 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114-2120
- 61 Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12: 357-360
- 62 Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27: 2987-2993
- 63 Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022; 38: 2943-2945
- 64 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550
- 65 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3–new capabilities and interfaces. Nucleic Acids Res 2012; 40: e115
- 66 Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 2003; 52: 403-408