Synthesis
DOI: 10.1055/a-2293-1007
short review
Dual Catalysis

Photoactive Ni-Complexes in Metallaphotoredox Catalysis: A Successful Match in C–C Cross-Coupling Reactions

Luzhen Dang
,
Chuan Zhu
,
Chao Feng
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (22271151) and the Distinguished Youth Foundation of Jiangsu Province.


Abstract

Nickel catalysis is a well-established and powerful tool for C–C cross-coupling reactions, and its versatility has expanded significantly over past decades by its combination with visible-light photocatalysis in metallaphotoredox chemistry. Photocatalysis enables the activation of traditionally inert substrates and turnover of the Ni catalyst through a single-electron transfer processes. In recent years, dual catalysis has been further empowered by photoactive Ni intermediates, which exhibit distinct reactivity profiles from their ground states and complement existing protocols. This short review focuses on the emergent subclass of metallaphotoredox catalysis in which the synergy of a photoactive Ni catalyst and a typical photocatalyst (e.g., a polypyridyl Ir complex) provide solutions to challenging C–C bond formation.

1 Introduction

2 Photoactive Nickel Complexes

3 HAT-Mediated C–C Cross-Coupling

4 Halofunctionalization of π-Systems

5 Photoelimination of an Aryl Radical

6 Conclusion



Publication History

Received: 31 January 2024

Accepted after revision: 22 March 2024

Accepted Manuscript online:
22 March 2024

Article published online:
08 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 1d Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 1e Twilton J, Le CC, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 2 Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
  • 3 Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
  • 4 Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 5a Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 5b Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
    • 5c Corcé V, Ollivier C, Fensterbank L. Chem. Soc. Rev. 2022; 51: 1470
    • 6a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 6b Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
  • 7 Zhang J, Rueping M. Chem. Soc. Rev. 2023; 52: 4099
  • 8 Maity B, Dutta S, Cavallo L. Chem. Soc. Rev. 2023; 52: 5373
    • 9a Zhang P, Le CC, MacMillan DW. J. Am. Chem. Soc. 2016; 138: 8084
    • 9b Smith RT, Zhang X, Rincon JA, Agejas J, Mateos C, Barberis M, Garcia-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
    • 9c Chen TQ, MacMillan DW. C. Angew. Chem. Int. Ed. 2019; 58: 14584
    • 9d Sakai HA, Liu W, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 11691
    • 10a Ohkubo K, Fujimoto A, Fukuzumi S. Chem. Commun. 2011; 47: 8515
    • 10b Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
    • 10c Deng HP, Zhou Q, Wu J. Angew. Chem. Int. Ed. 2018; 57: 12661
    • 10d Huang C.-Y, Li J, Li C.-J. Nat. Commun. 2021; 12: 4010
    • 10e Li P, Deetz AM, Hu J, Meyer GJ, Hu K. J. Am. Chem. Soc. 2022; 144: 17604
  • 11 Kariofillis SK, Doyle AG. Acc. Chem. Res. 2021; 54: 988
  • 12 Lee GS, Hong SH. Acc. Chem. Res. 2023; 56: 2170
    • 13a Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366
    • 13b Kawasaki T, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 18267
    • 13c Shu X, Huan L, Huang Q, Huo H. J. Am. Chem. Soc. 2020; 142: 19058
    • 13d Xu J, Li Z, Xu Y, Shu X, Huo H. ACS Catal. 2021; 11: 13567
    • 13e Rand AW, Chen M, Montgomery J. Chem. Sci. 2022; 13: 10566
    • 13f Kariofillis SK, Jiang S, Żurański AM, Gandhi AS, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2022; 144: 1045
    • 14a Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
    • 14b Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Organometallics 2015; 34: 4766
    • 15a Wenger OS. J. Am. Chem. Soc. 2018; 140: 13522
    • 15b Wenger OS. Chem. Eur. J. 2021; 27: 2270
  • 16 Na H, Watson MB, Tang F, Rath NP, Mirica LM. Chem. Commun. 2021; 57: 7264
  • 17 Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 18 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 19 Wang Q.-L, Sun Z, Huang H, Mao G, Deng G.-J. Green Chem. 2022; 24: 3293
  • 20 Maity B, Scott TR, Stroscio GD, Gagliardi L, Cavallo L. ACS Catal. 2022; 12: 13215
  • 21 Wang S, Ma P, Shaik S, Chen H. J. Am. Chem. Soc. 2022; 144: 14607
  • 22 Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
  • 23 Deng H.-P, Fan X.-Z, Chen Z.-H, Xu Q.-H, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
  • 24 Go SY, Lee GS, Hong SH. Org. Lett. 2018; 20: 4691
  • 25 Ackerman LK. G, Alvarado JI. M, Doyle AG. J. Am. Chem. Soc. 2018; 140: 14059
  • 26 Sun Z, Kumagai N, Shibasaki M. Org. Lett. 2017; 19: 3727
  • 27 Zhang J, Niu Y, Kong F, Yan M. J. Catal. 2022; 416: 58
  • 28 Lee GS, Won J, Choi S, Baik M.-H, Hong SH. Angew. Chem. Int. Ed. 2020; 59: 16933
  • 29 Lee GS, Park B, Hong SH. Nat. Commun. 2022; 13: 5200
  • 30 Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
  • 31 Huang L, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 10333
  • 32 Rand AW, Yin H, Xu L, Giacoboni J, Martin-Montero R, Romano C, Montgomery J, Martin R. ACS Catal. 2020; 10: 4671
  • 33 Thullen SM, Treacy SM, Rovis T. J. Am. Chem. Soc. 2019; 141: 14062
  • 34 Kancherla R, Muralirajan K, Maity B, Karuthedath S, Kumar GS, Laquai F, Cavallo L, Rueping M. Nat. Commun. 2022; 13: 2737
  • 35 Cheng X, Lu H, Lu Z. Nat. Commun. 2019; 10: 3549
  • 36 Cheng X, Li T, Liu Y, Lu Z. ACS Catal. 2021; 11: 11059
  • 37 Shu X, Zhong D, Lin Y, Qin X, Huo H. J. Am. Chem. Soc. 2022; 144: 8797
  • 38 Shu X, De Zhong D, Huang Q, Leitao Huan L, Huo H. Nat. Commun. 2023; 14: 125
  • 39 Maiti S, Roy S, Ghosh P, Kasera A, Maiti D. Angew. Chem. Int. Ed. 2022; 61: e202207472
  • 40 Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
  • 41 Xu L, Zhu S, Huo L, Chen F, Yu W, Chu L. Org. Chem. Front. 2021; 8: 2924
  • 42 Huo L, Li X, Zhao Y, Li L, Chu L. J. Am. Chem. Soc. 2023; 145: 9876
  • 43 Kim J, Müller S, Ritter T. Angew. Chem. Int. Ed. 2023; 62: e202309498
  • 44 Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
  • 45 Zhang X, Shen Y, Rovis T. J. Am. Chem. Soc. 2023; 145: 3294
  • 46 He X.-C, Li K.-R, Gao J, Guan J.-P, Chen H.-B, Xiang H.-Y, Chen K, Yang H. Org. Lett. 2023; 25: 4056
    • 47a Troian-Gautier L, Turlington MD, Wehlin SA. M, Maurer AB, Brady MD, Swords WB, Meyer GJ. Chem. Rev. 2019; 119: 4628
    • 47b Kreijger SD, Elias B, Troian-Gautier L. Inorg. Chem. 2023; 62: 16196
  • 48 Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2022; 144: 1464
  • 49 Xu B, Troian-Gautier L, Dykstra R, Martin RT, Gutierrez O, Tambar UK. J. Am. Chem. Soc. 2020; 142: 6206