Subscribe to RSS
DOI: 10.1055/a-2298-2106
Transition-Metal- and Photocatalyst-Free Photoinduced Formation of Carbon–Pnictogen (–N, –P) Bonds
R.B. and S.K.B. thank the Council of Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST) (INSPIRE), respectively, for fellowships. We also thank the Department of Atomic Energy, Government of India (DAE) for financial support (Grant no. RIN 4002).
Abstract
Pnictogens, classified within group 15 elements, play a pivotal role in the constitution of a diverse array of drug molecules, natural products, and functional materials. Recent research has increasingly prioritized the exploration of mild conditions for synthesizing C–Pnictogen (C–N and C–P) bonds, highlighting a growing emphasis on efficient and sustainable synthetic methodologies. This Short Review explores fundamental mechanisms, addresses constraints, and assesses diverse methodologies, underscoring the potential of photocatalyst- and transition-metal-free photochemical reactions in advancing sustainability. Divided into two segments, it encompasses recent advancements in reactions facilitating C–N and C–P bond formation.
1 Introduction
2 Carbon–Nitrogen (C–N) Bond Formation
3 Carbon–Phosphorus (C–P) Bond Formation
4 Summary and Outlook
Keywords
C–pnictogen bonds - catalyst-free - sustainable synthesis - transition-metal-free photochemical reactions - visible-light photocatalysisPublication History
Received: 26 February 2024
Accepted after revision: 02 April 2024
Accepted Manuscript online:
02 April 2024
Article published online:
15 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gadde K, De Vos D, Maes BU. W. Synthesis 2022; 55: 164
- 1b Russo C, Brunelli F, Tron GC, Giustiniano M. J. Org. Chem. 2023; 88: 6284
- 1c Singh PP, Singh PK, Srivastava V. Org. Chem. Front. 2023; 10: 216
- 1d De Vos D, Gadde K, Maes BU. W. Synthesis 2022; 55: 193
- 1e Bagdi AK, Rahman M, Bhattacherjee D, Zyryanov GV, Ghosh S, Chupakhin ON, Hajra A. Green Chem. 2020; 22: 6632
- 1f Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
- 1g Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
- 1h Schultz DM, Yoon TP. Science 2014; 343: 985
- 2a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 2b Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2d Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 2e Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
- 3a Fantozzi N, Volle J.-N, Porcheddu A, Virieux D, García F, Colacino E. Chem. Soc. Rev. 2023; 52: 6680
- 3b Basoccu F, Cuccu F, Porcheddu A. ChemSusChem 2023; e202301034
- 3c Mondal K, Ghosh P, Hajra A. Chem. Eur. J. 2023; e202303890
- 4a Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
- 4b Lang X, Chen X, Zhao J. Chem. Soc. Rev. 2014; 43: 473
- 4c Lang X, Zhao J. Chem. Asian J. 2018; 13: 599
- 4d Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Org. Lett. 2022; 24: 1918
- 4e Bhanja R, Bera SK, Mal P. Chem. Commun. 2023; 59: 4455
- 5 Vanderghinste J, Das S. Synthesis 2022; 54: 3383
- 6a Hoffmann N. Chem. Rev. 2008; 108: 1052
- 6b Patel RI, Sharma A, Sharma S, Sharma A. Org. Chem. Front. 2021; 8: 1694
- 6c Mondal S, Chatterjee N, Maity S. Chem. Eur. J. 2023; 29: e202301147
- 7 Li Q.-Y, He Y, Lin Y.-M, Gong L. Chem. Eur. J. 2023; 29: e202302542
- 8 Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
- 9 Tasnim T, Ayodele MJ, Pitre SP. J. Org. Chem. 2022; 87: 10555
- 10a Bhanja R, Bera SK, Mal P. Adv. Synth. Catal. 2024; 366: 168
- 10b Bera SK, Bhanja R, Sahu CC, Mal P. Synthesis 2024; 56: 585
- 10c Bhanja R, Bera SK, Mal P. Chem. Asian J. 2023; 18: e202300691
- 11 Liu C, Shin J, Son S, Choe Y, Farokhzad N, Tang Z, Xiao Y, Kong N, Xie T, Kim JS, Tao W. Chem. Soc. Rev. 2021; 50: 2260
- 12 Mermer A, Keles T, Sirin Y. Bioorg. Chem. 2021; 114: 105076
- 13a Wang J, Liu Y, Zong X, Lei A, Sun Z. Green Chem. 2023; 25: 5010
- 13b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 14 Kanchana U, Diana EJ, Mathew TV, Anilkumar G. ChemistrySelect 2021; 6: 1579
- 15a Dou Q, Wang T, Cheng B, Li C.-J, Zeng H. Org. Biomol. Chem. 2022; 20: 8818
- 15b Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Adv. Synth. Catal. 2021; 363: 937
- 16a Chen JY, Wu W, Li Q, Wei WT. Adv. Synth. Catal. 2020; 362: 2770
- 16b Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
- 17a Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. RSC Adv. 2020; 10: 14170
- 17b Tran TN, Henary M. Molecules 2022; 27: 2700
- 17c Bera SK, Bhanja R, Sahu CC, Mal P. Synthesis 2023; 56: 585
- 17d Bera SK, Mal P. J. Org. Chem. 2021; 86: 14144
- 18a Ji P, Atherton JH, Page MI. J. Org. Chem. 2012; 77: 7471
- 18b Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
- 19 Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
- 20 Chen JQ, Li JH, Dong ZB. Adv. Synth. Catal. 2020; 362: 3311
- 21a Bera SK, Alam MT, Mal P. J. Org. Chem. 2019; 84: 12009
- 21b Bera SK, Mal P. Org. Lett. 2022; 24: 3144
- 21c Yang YO, Wang X, Xiao J, Li Y, Sun F, Du Y. Curr. Org. Chem. 2021; 25: 68
- 22a Saha S, Bagdi AK. Org. Biomol. Chem. 2022; 20: 3249
- 22b Zhang Y, Schilling W, Das S. ChemSusChem 2019; 12: 2898
- 23 Gann AW, Amoroso JW, Einck VJ, Rice WP, Chambers JJ, Schnarr NA. Org. Lett. 2014; 16: 2003
- 24a Bal A, Maiti S, Mal P. Chem. Asian J. 2020; 15: 624
- 24b Maiti S, Mal P. J. Org. Chem. 2018; 83: 1340
- 24c Maiti S, Bose A, Mal P. J. Org. Chem. 2018; 83: 8127
- 24d Maiti S, Mal P. Org. Lett. 2017; 19: 2454
- 24e Maiti S, Achar TK, Mal P. Org. Lett. 2017; 19: 2006
- 25 Guerra WD, Rossi RA, Pierini AB, Barolo SM. J. Org. Chem. 2015; 80: 928
- 26 Tian T, Li Z, Li C.-J. Green Chem. 2021; 23: 6789
- 27 Zhao Y, Huang B, Yang C, Xia W. Org. Lett. 2016; 18: 3326
- 28 Chen X, Qiu S, Wang S, Wang H, Zhai H. Org. Biomol. Chem. 2017; 15: 6349
- 29a Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Angew. Chem. Int. Ed. 2021; 60: 6864
- 29b Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BU. W, Orru RV. A. Chem. Soc. Rev. 2022; 51: 5842
- 30 He Y, Huang Z, Wu K, Ma J, Zhou Y.-G, Yu Z. Chem. Soc. Rev. 2022; 51: 2759
- 31 Empel C, Patureau FW, Koenigs RM. J. Org. Chem. 2019; 84: 11316
- 32 Bartos P, Young VG, Kaszyński P. Org. Lett. 2020; 22: 3835
- 33 Othman Abdulla H, Scaringi S, Amin AA, Mella M, Protti S, Fagnoni M. Adv. Synth. Catal. 2020; 362: 2150
- 34 Terlizzi LD, Cola I, Raviola C, Fagnoni M, Protti S. ACS Org. Inorg. Au 2021; 1: 68
- 35 Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. J. Org. Chem. 2021; 86: 9587
- 36 Vana L, Jakubec M, Sykora J, Cisarova I, Storch J, Církva V. J. Org. Chem. 2021; 86: 13252
- 37 Murugesh V, Reddy PR, Singh SP. Chem. Commun. 2023; 59: 1034
- 38 Jha RK, Batabyal M, Kumar S. J. Org. Chem. 2023; 88: 7401
- 39 Kohara K, Trowbridge A, Smith MA, Gaunt MJ. J. Am. Chem. Soc. 2021; 143: 19268
- 40 George S, Govorov D, Gatlin DM, Merugu R, Wasson FJ, Shields DJ, Allen Y, Muthukrishnan S, Krause JA, Abe M, Gudmundsdottir AD. Org. Lett. 2023; 25: 4345
- 41 Mejri E, Higashida K, Kondo Y, Nawachi A, Morimoto H, Ohshima T, Sawamura M, Shimizu Y. Org. Lett. 2023; 25: 4581
- 42 Okamura H, Iida M, Kaneyama Y, Nagatsugi F. Org. Lett. 2023; 25: 466
- 43 Huang S, Jin L, Liu Y, Yang G, Wang A, Le Z, Jiang G, Xie Z. Org. Biomol. Chem. 2024; 22: 784
- 44 Dandia A, Saini P, Bansal S, Parewa V. ChemistrySelect 2019; 4: 9871
- 45 Sarkar S, Pal S, Mukherjee A, Santra S, Zyryanov GV, Majee A. J. Org. Chem. 2024; 89: 1473
- 46 Maiti S, Alam MT, Bal A, Mal P. Adv. Synth. Catal. 2019; 361: 4401
- 47 Demkowicz S, Rachon J, Daśko M, Kozak W. RSC Adv. 2016; 6: 7101
- 48 He HW. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 266
- 49 Gbubele JD, Olszewski TK. Org. Biomol. Chem. 2021; 19: 2823
- 50 Wendels S, Chavez T, Bonnet M, Salmeia KA, Gaan S. Materials 2017; 10: 784
- 51 Regulska E, Romero-Nieto C. Mater. Today Chem. 2021; 22: 100604
- 52 Megati S, Phadtare S, Zemlicka J. J. Org. Chem. 1992; 57: 2320
- 53 Yuan J, To WP, Zhang ZY, Yue CD, Meng S, Chen J, Liu Y, Yu GA, Che CM. Org. Lett. 2018; 20: 7816
- 54 Zeng H, Dou Q, Li CJ. Org. Lett. 2019; 21: 1301
- 55 Pan L, Deckert MM, Cooke MV, Bleeke AR, Laulhé S. Org. Lett. 2022; 24: 6466
- 56 Roy VJ, Raha Roy S. Org. Lett. 2023; 25: 923
- 57 Qiu D, Lian C, Mao J, Ding Y, Liu Z, Wei L, Fagnoni M, Protti S. Adv. Synth. Catal. 2019; 361: 5239
- 58 Lecroq W, Bazille P, Morlet-Savary F, Breugst M, Lalevee J, Gaumont AC, Lakhdar S. Org. Lett. 2018; 20: 4164
- 59a Twum K, Rissanen K, Beyeh NK. Chem. Rec. 2021; 21: 386
- 59b Rissanen K. Chem. Soc. Rev. 2017; 46: 2638
- 60 Quint V, Chouchène N, Askri M, Lalevée J, Gaumont A.-C, Lakhdar S. Org. Chem. Front. 2019; 6: 41
- 61 Liu B, Li J, Hu Y, Chen Q, Liu Y, Ji S, Maruoka K, Huo Y, Zhang HL. J. Org. Chem. 2022; 87: 11281
- 62 Soeta T, Matsuzaki S, Ukaji Y. Chem. Eur. J. 2014; 20: 5007
- 63 Yamamoto Y, Ogawa A. Chem. Asian J. 2023; e202201269