Klinische Neurophysiologie 2024; 55(04): 218-225
DOI: 10.1055/a-2306-0086
Übersicht

Elektrophysiologische Aspekte in der Diagnostik und Pathophysiologie der Critical Illness Polyneuromyopathie (CIPNM)

Electrophysiological Aspects In The Diagnosis And Pathophysiology Of Critical Illness Polyneuromyopathy (CIPNM)
Madona Sekhniashvili
1   Klinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany
2   S.Khechinashvili University Hospital of Neurology, Tbilisi, Georgia
,
Klaus Viktor Toyka
3   Neurologische Klinik, Universitätsklinikum Würzburg, Wurzburg, Germany
,
Petra Baum
1   Klinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany
› Author Affiliations

Zusammenfassung

Critical Illness Neuromyopathie (CIPNM) ist eine Sepsis-Komplikation mit noch immer ungeklärter Pathophysiologie. Die motorische und sensible Elektroneurographie zeigen eine Minderung der Amplituden von Muskel- und Nervensummenaktionspotentialen (MSAP/NSAP). Veränderungen im EMG finden sich in der Frühphase der Erkrankung nicht. Mit einer aufwändigen elektrophysiologischen Technik wurden Veränderungen der Nerven- und Muskelfaser-Erregbarkeit beschrieben, die als Zeichen einer Fehlfunktion von Na-Kanälen interpretiert wurden. Eine neue, auf jedem EMG-Gerät durchführbare 0,2–0,5 Hz Serienreizung der motorischen Nerven oder direkt des Muskels führt bei CIPNM zu einer starken Fazilitierung der MSAP und eignet sich als diagnostisches Kriterium. Die hochgradige Variabilität der Fazilitierung spricht für eine fluktuierende, dysfunktionelle Neuromyopathie. Sensible Nerven zeigten nur selten eine geringe Fazilitierung. Als pathogene Faktoren wurden fokale Ischämie mit Hypoxie und toxische Entzündungs-Botenstoffe vermutet, die ein Energiedefizit erzeugen und neben anderem Na-Kanäle funktionell beeinträchtigen könnten.

Abstract

Critical Illness Neuromyopathy (CIPNM) is a complication of sepsis. The relative contribution of nerve and muscle to CIPNM is poorly defined. Published standard nerve conduction studies have shown reduced amplitudes of compound muscle and nerve action potentials (CMAP and SNAP). An innovative high-end technique revealed abnormal fiber excitability with altered strength duration time constants and velocity-recovery cycles of nerve and muscle suggestive of sodium channel dysfunction. A recently published procedure detected a profound facilitation of CMAPs induced by 0.2–0.5 Hz serial electrical stimulation of motor nerves and of muscle directly. The striking variability of facilitation suggests a fluctuating neuromyopathy. Sensory nerves showed only mild if any facilitation of SNAPs. This procedure may become a diagnostic test since it only requires standard EMG equipment. Pathogenic candidates in sepsis-CIPNM include proinflammatory factors and multifocal ischemia with hypoxia. The latter may reduce energy supply potentially causing malfunction of sodium channels.



Publication History

Article published online:
02 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bolton CF. Neuromuscular manifestations of critical illness. Muscle Nerve 2005; 32: 140-163
  • 2 Stevens RD, Marshall SA, Cornblath DR. et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 2009; 37: S299-S308
  • 3 Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol 2011; 10: 931-941
  • 4 Shepherd S, Batra A, Lerner DP. Review of Critical Illness Myopathy and Neuropathy. Neurohospitalist 2017; 7: 41-48
  • 5 Bolton CF, Gilbert JJ, Hahn AF. et al. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry 1984; 47: 1223-1231
  • 6 Allen DC, Arunachalam R, Mills KR. Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy. Muscle Nerve 2008; 37: 14-22
  • 7 Bierbrauer J, Koch S, Olbricht C. et al. Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Crit Care Med 2012; 40: 647-650
  • 8 Grimm A, Teschner U, Porzelius C. et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care 2013; 17: R227
  • 9 Crone C. Tetraparetic critically ill patients show electrophysiological signs of myopathy. Muscle Nerve 2017; 56: 433-440
  • 10 Bednarik J, Lukas Z, Vondracek P. Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med 2003; 29: 1505-1514
  • 11 De Jonghe B, Sharshar T, Lefaucheur J-P. et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 2002; 288: 2859-2867
  • 12 Lacomis D. Electrophysiology of neuromuscular disorders in critical illness. Muscle Nerve 2013; 47: 452-463
  • 13 Sekhniashvili M, Bodechtel U, Toyka KV. et al. Temporary reversal of nerve and muscle dysfunction by serial electrical stimulation in critical illness neuromyopathy. Clin Neurophysiol 2022; 142: 244-253
  • 14 Sekhniashvili M, Baum P, Toyka KV. Temporary and highly variable recovery of neuromuscular dysfunction by electrical stimulation in the follow-up of acute critical illness neuromyopathy: a pilot study. Neurol Res Pract 2023; 5: 66
  • 15 Tankisi H, de Carvalho M, Z'Graggen WJ. Critical Illness Neuropathy. J Clin Neurophysiol 2020; 37: 205-207
  • 16 Intiso D, Centra AM, Bartolo M. et al. Recovery and long term functional outcome in people with critical illness polyneuropathy and myopathy: a scoping review. BMC Neurol 2022; 22: 50
  • 17 Baum P, Bercker S, Villmann T. et al Critical-illness-Myopathie und -Neuropathie (CRIMYN) Elektroneurographische Klassifikation. Nervenarzt 4 2011; 468-473 4
  • 18 Moss M, Yang M, Macht M. et al. Screening for critical illness polyneuromyopathy with single nerve conduction studies. Intensive Care Med 2014; 40: 683-690
  • 19 Wieske L, Verhamme C, Witteveen E. et al. Feasibility and diagnostic accuracy of early electrophysiological recordings for ICU-acquired weakness: an observational cohort study. Neurocrit Care 2015; 22: 385-394
  • 20 Baum P, Bercker S, Günther P. et al. Elektromyo-und -neurographische Untersuchungen bei Sepsis-/SIRS- Patientenzur Verlaufsbeurteilung einer Critical Illness Myopathie und Neuropathie (CRIMYN). Akt Neurol 2009; 36: 111-116
  • 21 Fisse AL, May C, Motte J. et al. New Approaches to Critical Illness Polyneuromyopathy: High-Resolution Neuromuscular Ultrasound Characteristics and Cytokine Profiling. Neurocrit Care 2021; 35: 139-152
  • 22 Z'Graggen WJ, Brander L, Tuchscherer D. et al. Muscle membrane dysfunction in critical illness myopathy assessed by velocity recovery cycles. Clin Neurophysiol 2011; 122: 834-841
  • 23 Baum P, Classen J. Long-term recovery in critical illness myopathy is complete, contrary to polyneuropathy. Muscle Nerve 2015; 51: 624-625
  • 24 Kiernan MC, Bostock H. Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain 2000; 123 Pt 12: 2542-2551
  • 25 Z'Graggen WJ, Lin CSY, Howard RS. et al. Nerve excitability changes in critical illness polyneuropathy. Brain 2006; 129: 2461-2470
  • 26 Koch S, Bierbrauer J, Haas K. et al. Critical illness polyneuropathy in ICU patients is related to reduced motor nerve excitability caused by reduced sodium permeability. Intensive Care Med Exp 2016; 4: 10
  • 27 Kiernan MC, Bostock H, Park SB. et al. Measurement of axonal excitability: Consensus guidelines. Clin Neurophysiol 2020; 131: 308-323
  • 28 Rich MM, Pinter MJ. Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 2003; 547: 555-566
  • 29 Rich MM, Pinter MJ, Kraner SD. et al. Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 1998; 43: 171-179
  • 30 Novak KR, Nardelli P, Cope TC. et al. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest 2009; 119: 1150-1158
  • 31 Bird SJ, Rich MM. Critical illness myopathy and polyneuropathy. Curr Neurol Neurosci Rep 2002; 2: 527-533
  • 32 Haeseler G, Foadi N, Wiegand E. et al. Endotoxin reduces availability of voltage-gated human skeletal muscle sodium channels at depolarized membrane potentials. Crit Care Med 2008; 36(4): 1239-47