Synlett, Inhaltsverzeichnis Synlett 2025; 36(02): 141-146DOI: 10.1055/a-2320-6127 letter One-Pot and Three-Component Coupling Synthesis of Novel p-[(Benzothiazolylamino)(aryl/heteroaryl)methyl]phenols and Its Corresponding O-Tosylates under Catalyst- and Solvent-Free Conditions Authors Institutsangaben Mohammed B. Hawsawi ∗ a Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia Mustafa S. Alluhaibi a Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia Narasimhulu Gandhamsetty∗ b Research & Development Center, Department of Chemistry, LNC Pharmarix, Sangareddy, Hyderabad, Telangana, India – 502307, India Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract A catalyst- and solvent-free procedure has been developed for the synthesis of p-[( benzothiazolylamino)(aryl/heteroaryl)methyl]-functionalized phenols and its O-tosylates via one-pot three-component coupling reaction of thymol or carvacrol, aryl/heteroaryl aldehydes, and 2-aminobenzothiazoles with high selectivity. The present amino methylation process is convenient to perform even on large scale with a broad scope. The products were likely formed through the initial para attack of thymol on aldehydes to generate p-quinone methide intermediate and subsequent 1,6-aza-Michael addition of 2-aminobenzothiazoles on in-situ generated p-quinone methide intermediate. Key words Key wordsthree-component coupling (3CC) reaction - catalyst- and solvent-free - thymol - carvacrol - aryl/heteroaryl aldehydes - 2-aminobenzothiazoles - p-quinone methide - 4-[(benzothiazolylamino)(aryl/heteroaryl)methyl]phenols Volltext Referenzen References and Notes 1a Duggan PJ, Lewis RJ, Lok YP, Lumsden NG, Tuck KL, Yang A. Bioorg. Med. Chem. Lett. 2009; 19: 2763 1b Pilania M, Velladurai A, Tantak MP, Kumar D. ChemistrySelect 2016; 1: 6368 1c Sairaman A, Cardoso FC, Bispat A, Lewis RJ, Duggan PJ, Tuck KL. Bioorg. Med. Chem. 2018; 26: 3046 1d García-Báez EV, Padilla-Martínez II, Tamay-Cach F, Cruz A. Molecules 2021; 26: 6518 1e Uremis N, Uremis MM, Tolun FI, Ceylan M, Doganer A, Kurt AH. Anticancer Res. 2017; 37: 6381 1f Kemisetti D, Amin R, Alam F, Gacem A, Emran TB, Alsufyani T, Alqahtani MS, Islam S, Matin MM, Jameel M. Evidence-Based Complementary Altern. Med. 2023, 5460563, DOI: 1g Singh M, Singh SK, Gangwar M, Nath G, Singh SK. RSC Adv. 2014; 4: 19013 2a Baell JB, Duggan PJ, Forsyth SA, Lewis RJ, Lok YP, Schroeder CI. Bioorg. Med. Chem. 2004; 12: 4025 2b Bondock S, Fadaly W, Metwally MA. J. Sulfur Chem. 2009; 30: 74 2c Zhilitskaya LV, Yarosh NO. Chem. Heterocycl. Compd. 2021; 57: 369 2d Tulshiram L, Dadmal TL, Katre SD, Mandewale MC, Kumbhare RM. New J. Chem. 2018; 42: 776 3a Beena Beena, Kumar D, Rawat DS. Bioorg. Med. Chem. Lett. 2013; 23: 641 ; and related references are here 3b Nagle PS, Pawar YA, Sonawane AE, Bhosale SM, More DH. Med. Chem. Res. 2012; 21: 1395 4a Sakarya HC, Gӧrgün K, Öǧretir C. Arab. J. Chem. 2016; 9: S1314 4b Yan D, Wu X, Xiao J, Zhu Z, Xu X, Bao X, Yao Y, Shen Q, Xue M. Org. Chem. Front. 2019; 6: 648 4c Kühler TC, Swanson M, Christenson B, Klintenberg AC, Lamm B, Fägerhag J, Gatti R, Ölwegård-Halvarsson M, Shcherbuchin V, Elebring T, Sjöström JE. J. Med. Chem. 2002; 45: 4282 5 Yangbo F, Philip L.-G, Thomas S, Yan Y. WO2010024903, 2010 6a Eshghi H, Bakavoli M, Abedini-Torghabeh J, Rahimizadeh M. Chin. Chem. Lett. 2012; 23: 1153 6b Anand N, Ramakrishna KK. G, Gupt MP, Chaturvedi V, Singh S, Srivastava KK, Sharma P, Rai N, Ramachandran R, Dwivedi AK, Gupta V, Kumar B, Pandey S, Shukla PK, Pandey SK, Lal J, Tripathi RP. ACS Med. Chem. Lett. 2013; 4: 958 6c Singh A, Gupta S, Khurana JM. Org. Prep. Proced. Int. 2020; 52: 110 6d Oda R, Nakata K. Eur. J. Org. Chem. 2021; 295 7a Betti M. Gazz. Chim. Ital. 1900; 30: 301 For reviews, see: 7b Olyaei A, Sadeghpour M. RSC Adv. 2019; 9: 18467 7c Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N. Mol. Diversity 2022; 27: 543 8a Karami B, Farahi M, Farmani N, Tanuraghaj HM. New J. Chem. 2016; 40: 1715 8b Khandarkar KM, Shanti MD, Ahmed M, Meshram JS. J. Chem. Sci. 2013; 125: 1573 8c Emmadi NR, Atmakur K, Chennapuram M, Nanubolu JB. RSC Adv. 2014; 4: 14501 9a Kantevari S, Yempala T, Vuppalapati SV. N. Synthesis 2010; 959 9b Kantevari S, Yempala T, Yogeeswari P, Sriram D, Sridhar B. Bioorg. Med. Chem. Lett. 2011; 21: 4316 10 Cherkadu V, Kalavagunta PK, Ningegowda M, Shivananju NS, Madegowda M, Priya BS. Synlett 2016; 27: 1116 11a Olyaei A, Zarnegar M, Sadeghpour M, Rezaei M. Lett. Org. Chem. 2012; 9: 451 11b Sahu PK, Praveen K, Sahuab PK, Dau D, Agarwal DD. RSC Adv. 2014; 4: 40414 11c Jonnala S, Nameta B, Chavali M, Bantu R, Choudante P, Misra S, Sridhar B, Dilip S, Reddy BV. S. Lett. Org. Chem. 2019; 16: 837 11d Taghrir H, Ghashang M, Biregan MN. Chin. Chem. Lett. 2016; 27: 119 11e Moosavi-Zare AR, Zolfigol MA, Daraei M. Synlett 2014; 25: 1173 12 Olyaei A, Rahmani N, Sadeghpour M, Mohamadi A. Lett. Org. Chem. 2022; 19: 333 13a Shaabani A, Rahmati A, Farhangi E. Tetrahedron Lett. 2007; 48: 7291 13b Serrao E, Debnath B, Otake H, Kuang Y, Christ F, Debyser Z, Neamati N. J. Med. Chem. 2013; 56: 2311 14a Jurd L. J. Heterocycl. Chem. 1997; 34: 601 14b Barroso S, Abreu AM, Araújo AC, Coelho AM, Maulide N, Martins AM. Synlett 2010; 2425 14c Jameel AA, Padusha MS. A. Asian J. Chem. 2010; 22: 3422 14d Mulla SA. R, Salama TA, Pathan MY, Inamdar SM, Chavan SS. Tetrahedron Lett. 2013; 54: 672 14e Salgado-Escobar O, Chavelas-Hernández L, Domínguez-Mendoza BE, Linzaga-Elizalde I, Ordoñez M. Molecules 2015; 20: 13794 14f Shushizadeh MR, Azizyan S. Jundishapur J. Nat. Pharm Prod. 2014; 9: e17808 14g Cherkadu V, Kalavagunta PK, Ravirala N, Shivananju NS, Priya BS. Synlett 2016; 27: 2795 15 Enache TA, Oliveira-Brett AM. J. Electroanal. Chem. 2011; 655: 9 ; and related references are here 16 Baier DM, Rensch T, Bergheim K, Pietryga V, Grätz S, Borchardt L. Chem. Eur. J. 2023; 29: e202203931 17a Faith HE. J. Am. Chem. Soc. 1950; 72: 837 17b Organic Chemistry, Vol. 29, Part 2 . Sandler SR, Karo W. Elsevier; Amsterdam: 1977: 43-74 18a Multicomponent Reactions . Zhu J, Bienaymé H. Wiley–VCH; Weinheim: 2005 18b Orru RV. A, Greef DM. Synthesis 2003; 1471 18c Ugi I, Heck S. Comb. Chem. High Throughput Screening 2001; 4: 1 18d Hagan DO. Nat. Prod. Rep. 2000; 17: 435 18e Claudio-Catalán MA, Pharande SG, Quezada-Soto A, Kishore KG, Rentería-Gómez A, Padilla-Vaca F, Gámez-Montaño R. ACS Omega 2018; 3: 5177 18f Santra S, Rahman M, Roy A, Majee A, Hajra A. Org. Chem. Int. 2014; 851924 18g Zhao JL, Liu L, Zhang HB, Wu YC, Wang D, Chen YJ. Synlett 2006; 96 18h Malviya BK, Singh K, Jaiswal PK, Shukla M, Verma VP, Vanangamudi M, Jassal AK, Punjabi PB, Sharma S. ACS Omega 2019; 4: 12146 18i Kumar KP, Satyanarayana S, Reddy PL, Narasimhulu G, Ravirala N, Reddy BV. S. Tetrahedron Lett. 2012; 53: 1738 19a Lima CG. S, Pauli FP, Costa DC. S, Souza AS. D, Forezi LS. M, Ferreira VF, Silva FD. C. Eur. J. Org. Chem. 2020; 2650 19b Wang JY, Hao WJ, Tu SJ, Jianga B. Org. Chem. Front. 2020; 7: 1743 19c Dash R, Hota SK, Murarka S. Synthesis 2024; 56: 677 20a Zhoua T, Szostak M. Catal. Sci. Technol. 2020; 10: 5702 20b Roy AH, Hartwig JF. Organometallics 2004; 23: 194 20c Dhonthulachitty C, Kothakapu SR, Neella CK. Tetrahedron Lett. 2016; 57: 4620 20d Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis, 4th ed. . John Wiley & Sons; Hoboken: 2007 21a Lasne MC, Ripoll JL, Denis JM. Tetrahedron 1981; 37: 503 21b Udayakumar S, Ajaikumar S, Pandurangan A. Catal. Commun. 2007; 8: 366 22 General Procedure 1: Synthesis of 4-[(Benzo[d]thiazol-2-ylamino)(phenyl)methyl]-2-isopropyl-5-methylphenol Derivatives (Table 2 and Scheme 3) To a 10 mL round-bottomed flask aldehyde (2.2 mmol), powdered thymol or carvacrol (2.0 mmol), and benzo[d]thiazol-2-amines (2.0 mmol) were added and mixed thoroughly at 20–30 °C under nitrogen atmosphere and the resulting reaction mass was introduced to the preheated oil bath at 150–160 °C for the appropriate time (Tables 2 and Scheme 3). After completion of the reaction as indicated by TLC (30% ethyl acetate in hexanes), the reaction mixture was allowed to cool. The solid mass was dissolved in ethyl acetate, concentrated, and purified by silica gel (Merck, 60–120 mesh) column chromatography with ethyl acetate/hexanes (3:7) to obtain the corresponding pure p-[( benzothiazolylamino)(aryl/heteroaryl)methyl]phenols 4a–j (Table 2 and Scheme 3). General Procedure 2: Gram-Scale Synthesis for Compounds 4d and 4g – Synthesis of 4-[(Benzo[d]thiazol-2-ylamino)(phenyl)methyl]-2-isopropyl-5-methylphenol Derivatives To a 50 mL round-bottomed flask aldehyde (5.5 mmol), powdered thymol (5.0 mmol), and benzo[d]thiazol-2-amines (5.0 mmol) were added and mixed thoroughly at 20–30 °C under nitrogen atmosphere, and the resulting reaction mass was introduced to the preheated oil bath at 150–160 °C for the appropriate time (Table 2). After completion of the reaction as indicated by TLC (30% ethyl acetate in hexanes), the reaction mixture was allowed to cool. The solid mass was dissolved in ethyl acetate, concentrated under reduced pressure, and crystalized with isopropyl alcohol (2 × 10 mL) to obtain the corresponding pure p-[(benzothiazolylamino)(aryl/heteroaryl)methyl]phenols 4b and 4e (Table 2). General Procedure 3 (Table 3, 5a-f) (i) To a 10 mL round-bottomed flask aldehyde (2.2 mmol), powdered thymol (2.0 mmol), and benzo[d]thiazol-2-amines (2.0 mmol) were added and mixed thoroughly at 20–30 °C under nitrogen atmosphere, and the resulting reaction mass was introduced to the preheated oil bath at 150–160 °C for the appropriate time (Table 3). After completion of the reaction as indicated by TLC (30% ethyl acetate in hexanes), the reaction mixture was allowed to cool. The solid mass was dissolved in ethyl acetate and concentrated under reduced pressure to dryness. The obtained residue was washed with ethyl acetate/hexanes (5:95) to obtain the crude products 5a′–f′ (Table 3). The resulting residue was subjected to O-sulfonylation. (ii) The above crude mixture was diluted with anhydrous dichloromethane (6 mL) and cooled down to 0–5 °C. Then, p-toluenesulfonyl chloride (3.0 mmol, 1.5 equiv) was slowly added portionwise into the above reaction mixture in the presence of excessive triethylamine (6.0 mmol, 3.0 equiv) and a catalytic amount of 4-dimethylaminopyridine (0.02 mmol, 1 mol%) at 0 °C. Then, the resulting reaction mixture was allowed to react at room temperature. After 4 h, the reaction mixture was quenched by adding water (15 mL), and the reaction mixture was extracted with dichloromethane (2 × 15 mL). The combined dichloromethane organic layers were dried over Na2SO4, concentrated under vacuum, and purified by column chromatography on silica gel (ethyl acetate/hexanes = 3/7) to give the corresponding O-tosylated p-[( benzothiazolylamino) (aryl) methyl]phenols 5a–f. Zusatzmaterial Zusatzmaterial Supporting Information (PDF)