Subscribe to RSS
DOI: 10.1055/a-2323-0633
Remote-Carbonyl-Directed Consecutive Arylation of Terminal Alkenes for the Synthesis of Tetrasubstituted Olefins
This work was supported by the National Key Research and Development Program of China (2018YFA0704502), the National Natural Science Foundation of China (grant nos. 21871261, 21931011) and the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ105).
Abstract
The highly efficient synthesis of all-carbon tetrasubstituted olefins has been a challenge for decades, especially of multi-aryl-substituted olefins which are widely used in functional organic materials and pharmaceuticals. This work presents a carbonyl-directed palladium-catalyzed consecutive arylation of terminal alkenes with aryl iodides under mild conditions, in which a series of triarylated tetrasubstituted olefins were obtained in moderate yields. Because a weak chelation effect is generally difficult to support such a thorough trifold Heck arylation, and β-trans-selective alkenyl C–H activation cannot be achieved via a twisted endo-metallocyclic intermediate, the key to success is the compatibility between several mechanisms, including Heck reaction, C–H activation and E/Z-isomerization. Here, the judicious selection of a flexible-alkyl-chain-tethered carbonyl group seems to be critical, as it provides a proper chelation effect that not only assists distal alkenyl functionalization or isomerization, but also avoids byproducts caused by other possible β-H elimination or migration. The strategy developed herein greatly streamlines the preparation of the target molecules, and the protocol covers a range of readily available terminal alkenes bearing a native directing group (i.e., aldehyde, ketone and ester) and aryl iodides.
Key words
carbonyl-directed - consecutive arylation - E/Z-isomerization - all-carbon tetrasubstituted olefins - alkenyl C–H activation - Mizoroki–Heck reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2323-0633.
- Supporting Information
Publication History
Received: 15 April 2024
Accepted after revision: 10 May 2024
Accepted Manuscript online:
10 May 2024
Article published online:
23 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kwok RT. K, Leung CW. T, Lam JW. Y, Tang BZ. Chem. Soc. Rev. 2015; 44: 4228
- 1b Tandon N, Luxami V, Tandon R, Paul K. Asian J. Org. Chem. 2020; 9: 1432
- 2a Daik R, Feast WJ, Batsanov AS, Howard JA. K. New J. Chem. 1998; 22: 1047
- 2b Moonen NN. P, Boudon C, Gisselbrecht J.-P, Seiler P, Gross M, Diederich F. Angew. Chem. Int. Ed. 2002; 41: 3044
- 2c Cerda-García-Rojas CM, Coronel Adel C, de Lampasona ME. P, Catalán CA. N, Joseph-Nathan P. J. Nat. Prod. 2005; 68: 659
- 3 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
- 4a Liu W, Kong W. Org. Chem. Front. 2020; 7: 3941
- 4b Düfert A, Werz DB. Chem. Eur. J. 2016; 22: 16718
- 5a Dutta S, Shandilya S, Yang S, Gogoi MP, Gandon V, Sahoo AK. Nat. Commun. 2022; 13: 1360
- 5b Zhan Y.-Z, Xiao N, Shu W. Nat. Commun. 2021; 12: 928
- 5c Wisthoff MF, Pawley SB, Cinderella AP, Watson DA. J. Am. Chem. Soc. 2020; 142: 12051
- 5d Lv W, Liu S, Chen Y, Wen S, Lan Y, Cheng G. ACS Catal. 2020; 10: 10516
- 5e Reding A, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2018; 57: 10610
- 5f Yoon H, Rölz M, Landau F, Lautens M. Angew. Chem. Int. Ed. 2017; 56: 10920
- 5g Milde B, Reding A, Geffers FJ, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 14544
- 5h Itoh T, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2016; 138: 7528
- 5i Dai J, Wang M, Chai G, Fu C, Ma S. J. Am. Chem. Soc. 2016; 138: 2532
- 5j Evans PA, Negru DE, Shang D. Angew. Chem. Int. Ed. 2015; 54: 4768
- 6a Nakashima Y, Hirata G, Sheppard TD, Nishikata T. Asian J. Org. Chem. 2020; 9: 480
- 6b Oestreich M. Top. Organomet. Chem. 2007; 24: 169
- 6c Oestreich M. Eur. J. Org. Chem. 2005; 783
- 7a Zhao Y, Wang S, Shao H, Tan X, Chen R, Loh T.-P, Zhou JS, Wu X. Org. Lett. 2023; 25: 4258
- 7b Tsai S.-Y, Huang Y.-W, Chou C.-M. Adv. Synth. Catal. 2023; 365: 699
- 7c Jiang K, Wang H, Xie Y, Jiang H, Lei M, Yin B. ACS Catal. 2023; 13: 3520
- 7d Zhu B, Li Z, Chen F, Xiong W, Tan X, Lei M, Wu W, Jiang H. Chem. Commun. 2022; 58: 12688
- 7e Lin C, Chen S, Wang Y, Gao F, Shen L. Org. Chem. Front. 2022; 9: 608
- 7f Tsai J.-J, Huang Y.-H, Chou C.-M. Org. Lett. 2021; 23: 9468
- 7g Yang S, Liu L, Zhou Z, Huang Z, Zhao Y. Org. Lett. 2021; 23: 296
- 7h Landge VG, Maxwell JM, Chand-Thakuri P, Kapoor M, Diemler ET, Young MC. JACS Au 2021; 1: 13
- 7i de Oliveira VC, de Oliveira JM, Menezes da Silva VH, Khan IU, Correia CR. D. Adv. Synth. Catal. 2020; 362: 3395
- 7j Ke L, Chen Z. Commun. Chem. 2020; 3: 48
- 7k Romine AM, Yang KS, Karunananda MK, Chen JS, Engle KM. ACS Catal. 2019; 9: 7626
- 7l Huffman TR, Wu Y, Emmerich A, Shenvi RA. Angew. Chem. Int. Ed. 2019; 58: 2371
- 7m Tang J, Hackenberger D, Goossen LJ. Angew. Chem. Int. Ed. 2016; 55: 11296
- 8a Lee HS, Kim KH, Kim SH, Kim JN. Adv. Synth. Catal. 2012; 354: 2419
- 8b Itami K, Mineno M, Muraoka N, Yoshida J. J. Am. Chem. Soc. 2004; 126: 11778
- 8c Itami K, Nokami T, Ishimura Y, Mitsudo K, Kamei T, Yoshida J. J. Am. Chem. Soc. 2001; 123: 11577
- 8d Nilsson P, Larhed M, Hallberg A. J. Am. Chem. Soc. 2001; 123: 8217
- 9 Larhed M, Andersson C.-M, Hallberg A. Tetrahedron 1994; 50: 285
- 10a Wang Y, Zhu Y, Xu L, He R, Zhang J. Chin. J. Org. Chem. 2022; 42: 2000
- 10b Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Chem. Soc. Rev. 2021; 50: 3263
- 10c Wang K, Hu F, Zhang Y, Wang J. Sci. China: Chem. 2015; 58: 1252
- 11a Shen C, Zhu Y, Jin S, Xu K, Luo S, Xu L, Zhong G, Zhong L, Zhang J. Org. Chem. Front. 2022; 9: 989
- 11b Schreib BS, Son M, Aouane FA, Baik M.-H, Carreira EM. J. Am. Chem. Soc. 2021; 143: 21705
- 11c Schreib BS, Fadel M, Carreira EM. Angew. Chem. Int. Ed. 2020; 59: 7818
- 11d Xu S, Hirano K, Miura M. Org. Lett. 2020; 22: 9059
- 11e Han B, Li B, Qi L, Yang P, He G, Chen G. Org. Lett. 2020; 22: 6879
- 11f Schreib BS, Carreira EM. J. Am. Chem. Soc. 2019; 141: 8758
- 11g Meng K, Li T, Yu C, Shen C, Zhang J, Zhong G. Nat. Commun. 2019; 10: 5109
- 12a Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
- 12b Yang Q.-L, Xing Y.-K, Wang X.-Y, Ma H.-X, Weng X.-J, Yang X, Guo H.-M, Mei T.-S. J. Am. Chem. Soc. 2019; 141: 18970
- 12c Sun Y, Meng K, Zhang J, Jin M, Huang N, Zhong G. Org. Lett. 2019; 21: 4868
- 12d Xu L, Meng K, Zhang J, Sun Y, Lu X, Li T, Jiang Y, Zhong G. Chem. Commun. 2019; 55: 9757
- 12e Luo Y.-C, Yang C, Qiu S.-Q, Liang Q.-J, Xu Y.-H, Loh T.-P. ACS Catal. 2019; 9: 4271
- 12f Wu X, Ji H. J. Org. Chem. 2018; 83: 12094
- 12g Tan E, Quinonero O, Elena de Orbe M, Echavarren AM. ACS Catal. 2018; 8: 2166
- 12h Yu C, Zhang J, Zhong G. Chem. Commun. 2017; 53: 9902
- 12i Shankar M, Guntreddi T, Ramesh E, Sahoo AK. Org. Lett. 2017; 19: 5665
- 12j Zhu Y.-Q, Liu Y, Wang H, Liu W, Li C.-J. Org. Chem. Front. 2016; 3: 971
- 12k Jiang Q, Guo T, Wu K, Yu Z. Chem. Commun. 2016; 52: 2913
- 12l Casanova N, Del Rio KP, García-Fandiño R, Mascareñas JL, Gulías M. ACS Catal. 2016; 6: 3349
- 12m Zhou Z, Liu G, Lu X. Org. Lett. 2016; 18: 5668
- 12n Zell D, Warratz S, Gelman D, Garden SJ, Ackermann L. Chem. Eur. J. 2016; 22: 1248
- 12o Zhou B, Hu Y, Wang C. Angew. Chem. Int. Ed. 2015; 54: 13659
- 13 Wu Z, Fatuzzo N, Dong G. J. Am. Chem. Soc. 2020; 142: 2715
- 14a Jiang B, Zhao M, Li S.-S, Xu Y.-H, Loh T.-P. Angew. Chem. Int. Ed. 2018; 57: 555
- 14b Hu X.-H, Zhang J, Yang X.-F, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 3169
- 14c Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
- 14d Wang H, Beiring B, Yu D.-G, Collins KD, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12430
- 14e Hou W, Zhou B, Yang Y, Feng H, Li Y. Org. Lett. 2013; 15: 1814
- 14f Li Y, Zhang X.-S, Zhu Q.-L, Shi Z.-J. Org. Lett. 2012; 14: 4498
- 14g Kuninobu Y, Nishina Y, Matsuki T, Takai K. J. Am. Chem. Soc. 2008; 130: 14062
- 15 Luan R, Lin P, Li K, Du Y, Su W. Nat. Commun. 2024; 15: 1723
- 16 Matsuura R, Karunananda MK, Liu M, Nguyen N, Blackmond DG, Engle KM. ACS Catal. 2021; 11: 4239
- 17 Kudo E, Sasaki K, Kawamata S, Yamamoto K, Murahashi T. Nat. Commun. 2021; 12: 1473
- 18a Liu Z, Li X, Zeng T, Engle KM. ACS Catal. 2019; 9: 3260
- 18b Bai Z, Zheng S, Bai Z, Song F, Wang H, Peng Q, Chen G, He G. ACS Catal. 2019; 9: 6502
- 18c Wang H, Bai Z, Jiao T, Deng Z, Tong H, He G, Peng Q, Chen G. J. Am. Chem. Soc. 2018; 140: 3542
- 18d Liu M, Yang P, Karunananda MK, Wang Y, Liu P, Engle KM. J. Am. Chem. Soc. 2018; 140: 5805
- 19 Bhattacharya T, Ghosh A, Maiti D. Chem. Sci. 2021; 12: 3857
- 20 Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. ACS Med. Chem. Lett. 2023; 14: 1682
Some recent examples of all-carbon tetrasubstituted olefin synthesis via alkynyl or propadienyl carbometalation:
Some reviews on chelation-assisted Mizoroki–Heck reactions:
Some recent examples of chelation-assisted Mizoroki–Heck reactions:
Chelation-assisted all-carbon tetrasubstituted olefin synthesis via Heck arylation:
Some reviews on chelation-assisted alkenyl C–H functionalization:
Some recent examples of geminal group directed alkenyl C–H functionalization:
Some recent examples of vicinal group directed alkenyl C–H functionalization:
Some examples of the synthesis of all-carbon tetrasubstituted olefins via chelation-assisted alkenyl C–H activation: