Informationen aus Orthodontie & Kieferorthopädie 2024; 56(03): 153-158
DOI: 10.1055/a-2331-3354
Übersichtsartikel

White-Spot-Läsionen, Zahnwurzelresorptionen und Medikamente im Rahmen einer kieferorthopädischen Therapie

White Spot Lesions, Dental Root Resorption and Medications during Orthodontic Therapy
Friederike Wiedemeyer
1   Poliklinik für Kieferorthopädie, Zentrum für Zahn-, Mund- und Kieferheilkunde, Universitätsklinikum Bonn, Deutschland
,
Christian Kirschneck
1   Poliklinik für Kieferorthopädie, Zentrum für Zahn-, Mund- und Kieferheilkunde, Universitätsklinikum Bonn, Deutschland
› Author Affiliations

Zusammenfassung

White-Spot-Läsionen (WSL) und Zahnwurzelresorptionen zählen zu den häufigsten Nebenwirkungen im Rahmen einer kieferorthopädischen Therapie und gefährden oft ein ansonsten gutes Therapieergebnis. Sind sie erst einmal aufgetreten, sind die Wahrscheinlichkeit einer Spontanremission gering und die therapeutischen Möglichkeiten begrenzt. Aus diesem Grund muss der Prävention von WSL und Zahnwurzelresorptionen im Rahmen einer kieferorthopädischen Behandlung ein großer Stellenwert eingeräumt werden. Immer mehr Patientinnen und Patienten mit Bedarf bzw. Wunsch nach einer kieferorthopädischen Therapie, v. a. in der Erwachsenenbehandlung, stehen unter dem Einfluss von Medikamenten und entsprechenden, oft chronischen systemischen Erkrankungen, zu deren Therapie diese regelmäßig eingenommen werden. Deren mögliche Auswirkungen auf die kieferorthopädische Zahnbewegung und Begleiterscheinungen wie Zahnwurzelresorptionen werden jedoch meist anamnestisch im klinischen Praxisalltag nur wenig berücksichtigt, obwohl sie einen wesentlichen Einfluss auf den Therapieverlauf nehmen können. Im vorliegenden Artikel werden neben einer epidemiologischen Einordnung die ätiologischen und pathogenetischen Hintergründe von WSL, deren klinisches Erscheinungsbild und diagnostische Möglichkeiten sowie präventive und therapeutische Optionen basierend auf der verfügbaren wissenschaftlichen Evidenz näher beleuchtet, um daraus klinische Empfehlungen zum Umgang mit diesen Entitäten ableiten zu können. Zudem werden bekannte Wirkungen von Medikamenten auf die kieferorthopädische Zahnbewegung dargelegt und klinische Empfehlungen für den Umgang mit diesen Patienten gegeben.

Abstract

White spot lesions (WSL) and dental root resorptions are among the most common side effects of orthodontic therapy and often endanger an otherwise good treatment result. Once they have occurred, the likelihood of spontaneous remission is low and therapeutic options are limited. For this reason, great importance must be given to the prevention of WSL and dental root resorptions as part of orthodontic treatment. More and more patients, who need or desire orthodontic therapy, especially in adult treatment, are under the influence of medications and corresponding often chronic systemic diseases, for which drugs are regularly taken as a therapeutic measure. However, their possible effects on orthodontic tooth movement and accompanying symptoms such as dental root resorption are usually given little consideration in everyday clinical practice, although they can have a significant impact on the course of therapy. In this article, in addition to an epidemiological overview, the etiological and pathogenetic background of WSL, their clinical characteristics and diagnostic possibilities as well as preventive and therapeutic options based on the available scientific evidence will be examined in more detail to be able to derive clinical recommendations for dealing with these entities. In addition, known effects of medications on orthodontic tooth movement are presented and clinical recommendations for the management of patients under medication are given.



Publication History

Article published online:
27 September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Heymann GC, Grauer D. A contemporary review of white spot lesions in orthodontics. J Esthet Restor Dent 2013; 25: 85-95
  • 2 Ogaard B. Prevalence of white spot lesions in 19-year-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofacial Orthop 1989; 96: 423-427
  • 3 Sangamesh B, Kallury A. Iatrogenic effects of orthodontic treatment – review on white spot lesions. Int J Sci Eng Res 2011; 2: 16
  • 4 Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. J Dent Res 2004; 83: 80-83
  • 5 Knösel M, Bojes M, Jung K. et al. Increased susceptibility for white spot lesions by surplus orthodontic etching exceeding bracket base area. Am J Orthod Dentofacial Orthop 2012; 141: 574-582
  • 6 van der Veen MH, Mattousch T, Boersma JG. Longitudinal development of caries lesions after orthodontic treatment evaluated by quantitative light-induced fluorescence. Am J Orthod Dentofacial Orthop 2007; 131: 223-228
  • 7 Migliorati M, Isaia L, Cassaro A. et al. Efficacy of professional hygiene and prophylaxis on preventing plaque increase in orthodontic patients with multibracket appliances: a systematic review. Eur J Orthod. 2015 37. 297-307
  • 8 Chadwick BL, Roy J, Knox J. et al. The effect of topical fluorides on decalcification in patients with fixed orthodontic appliances: a systematic review. Am J Orthod Dentofacial Orthop 2005; 128: 601-606
  • 9 Stecksén-Blicks C, Renfors G, Oscarson ND. et al. Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances. Caries Res 2007; 41: 455-459
  • 10 O'Reilly MT, De Jesús Viñas J, Hatch JP. Effectiveness of a sealant compared with no sealant in preventing enamel demineralization in patients with fixed orthodontic appliances: a prospective clinical trial. Am J Orthod Dentofacial Orthop 2013; 143: 837-844
  • 11 Paschos E, Geiger FJ, Malyk Y. et al. Efficacy of four preventive measures against enamel demineralization at the bracket periphery-comparison of microhardness and confocal laser microscopy analysis. Clin Oral Investig 2016; 20: 1355-1366
  • 12 Artun J, Thylstrup A. Clinical and scanning electron microscopic study of surface changes of incipient caries lesions after debonding. Scand J Dent Res 1986; 94: 193-201
  • 13 Featherstone JDB, Rodgers BE, Smith MW. Physiochemical requirements for rapid remineralisation of early carious lesions. Caries Res 1981; 15: 221-235
  • 14 Kim S, Katchooi M, Bayiri B. et al. Predicting improvement of postorthodontic white spot lesions. Am J Orthod Dentofac Orthop 2016; 149: 625-633
  • 15 Willmot DR. White lesions after orthodontic treatment: does low fluoride make a difference?. J Orthod 2004; 31: 235-242 discuss. 202
  • 16 Akin M, Basciftci FA. Can white spot lesions be treated effectively?. Angle Orthod 2012; 82: 770-775
  • 17 Sonesson M, Bergstrand F, Gizani S. et al. Management of post-orthodontic white spot lesions: an updated systematic review. Eur J Orthod 2017; 39: 116-121
  • 18 Elkhazindar MM, Welbury RR. Enamel Microabrasion. Dent Update 2000; 27: 194-196
  • 19 Croll TP. Enamel microabrasion for removal of superficial dysmineralization and decalcification defects. J Am Dent Assoc 1990; 120: 411-415
  • 20 Sundfeld RH, Sundfeld-Neto D, Machado LS. et al. Microabrasion in tooth enamel discoloration defects: three cases with long-term follow-ups. J Appl Oral Sci 2014; 22: 347-354
  • 21 Neuhaus KW, Graf M, Lussi A. et al. Late infiltration of post-orthodontic white spot lesions. J Orofac Orthop 2010; 71: 442-447
  • 22 Senestraro SV, Crowe JJ, Wang M. et al. Minimally invasive resin infiltration of arrested white-spot lesions: a randomized clinical trial. J Am Dent Assoc 2013; 144: 997-1005
  • 23 Kim S, Kim EY, Jeong TS. et al. The evaluation of resin infiltration for masking labial enamel white spot lesions. Int J Paediatr Dent 2011; 21: 241-248
  • 24 Borges AB, Caneppele TM, Masterson D. et al. Is resin infiltration an effective esthetic treatment for enamel development defects and white spot lesions? A systematic review. J Dent 2017; 56: 11-18
  • 25 Kim Y, Son HH, Yi K. et al. Bleaching Effects on Color, Chemical, and Mechanical Properties of White Spot Lesions. Oper Dent 2016; 41: 318-326
  • 26 Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod 2002; 72: 175-179
  • 27 Artun J, Van 't Hullenaar R, Doppel D. et al. Identification of orthodontic patients at risk of severe apical root resorption. Am J Orthod Dentofacial Orthop 2009; 135: 448-455
  • 28 Lopatiene K, Dumbravaite A. Risk factors of root resorption after orthodontic treatment. Stomatologija 2008; 10: 89-95
  • 29 Harris EF, Robinson QC, Woods MA. An analysis of causes of apical root resorption in patients not treated orthodontically. Quintessence Int 1993; 24: 417-428
  • 30 Lupi JE, Handelman CS, Sadowsky C. Prevalence and severity of apical root resorption and alveolar bone loss in orthodontically treated adults. Am J Orthod Dentofacial Orthop 1996; 109: 28-37
  • 31 Brudvik P, Rygh P. Transition and determinants of orthodontic root resorption-repair sequence. Eur J Orthod 1995; 17: 177-188
  • 32 Brudvik P, Rygh P. The repair of orthodontic root resorption: an ultrastructural study. Eur J Orthod 1995; 17: 189-198
  • 33 Brudvik P, Rygh P. The initial phase of orthodontic root resorption incident to local compression of the periodontal ligament. Eur J Orthod 1993; 15: 249-263
  • 34 Wesselink PR, Beertsen W. The influence of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) on dental root resorption in the mouse. Calcif Tissue Int 1989; 45: 104-110
  • 35 Sondeijker CFW, Lamberts AA, Beckmann SH. et al. Development of a clinical practice guideline for orthodontically induced external apical root resorption. Eur J Orthod 2020; 42: 115-124
  • 36 Dudic A, Giannopoulou C, Leuzinger M. et al. Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofac Orthop 2009; 135: 434-437
  • 37 Leach HA, Ireland AJ, Whaites EJ. Radiographic diagnosis of root resorption in relation to orthodontics. Br Dent J 2001; 190: 16-22
  • 38 Levander E, Malmgren O, Eliasson S. Evaluation of root resorption in relation to two orthodontic treatment regimes. A clinical experimental study. Eur J Orthod 1994; 16: 223-228
  • 39 Krishnan V. Critical issues concerning root resorption: a contemporary review. World J Orthod 2005; 6: 30-40
  • 40 Kjaer I. Morphological characteristics of dentitions developing excessive root resorption during orthodontic treatment. Eur J Orthod 1995; 17: 25-34
  • 41 Hartsfield JK. Pathways in external apical root resorption associated with orthodontia. Orthod Craniofac Res 2009; 12: 236-242
  • 42 Davidovitch Z, Krishnan V. Adverse effects of orthodontics: a report of 2 cases. World J Orthod 2008; 9: 18-31
  • 43 Abuabara A. Biomechanical aspects of external root resorption in orthodontic therapy. Med Oral Patol Oral Cir Bucal 2007; 12: E610-613
  • 44 Levander E, Bajka R, Malmgren O. Early radiographic diagnosis of apical root resorption during orthodontic treatment: a study of maxillary incisors. Eur J Orthod 1998; 20: 57-63
  • 45 Wehrbein H, Harhoff R, Diedrich P. Wurzelresorptionsrate bei orthodontisch bewegten, parodontal geschädigten und gesunden Zähnen [Rates of root resorption in orthodontically moved, periodontally affected and healthy teeth]. Dtsch Zahnarztl Z 1990; 45: 176-178
  • 46 Beck BW, Harris EF. Apical root resorption in orthodontically treated subjects: analysis of edgewise and light wire mechanics. Am J Orthod Dentofacial Orthop 1994; 105: 350-361
  • 47 Linge BO, Linge L. Apical root resorption in upper anterior teeth. Eur J Orthod 1983; 5: 173-183
  • 48 Schwartz JE. Ask us: Some drugs affect tooth movement. Am J Orthod Dentofacial Orthop 2005; 127: 644
  • 49 Turpin DL. Medications weigh-in on tooth movement. Am J Orthod Dentofacial Orthop 2009; 135: 139-140
  • 50 Hammad SM, El-Hawary YM, El-Hawary AK. The use of different analgesics in orthodontic tooth movements. Angle Orthod 2012; 82: 820-826
  • 51 Gonzales C, Hotokezaka H, Matsuo KI. et al. Effects of steroidal and nonsteroidal drugs on tooth movement and root resorption in the rat molar. Angle Orthod 2009; 79: 715-726
  • 52 Meh A, Sprogar S, Vaupotic T. et al. Effect of cetirizine, a histamine (H1) receptor antagonist, on bone modeling during orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2011; 139: e323-329
  • 53 Koehne T, Kahl-Nieke B, Amling M. et al. Inhibition of bone resorption by bisphosphonates interferes with orthodontically induced midpalatal suture expansion in mice. Clin Oral Investig 2018; 22: 2345-2351
  • 54 Krieger E, d'Hoedt B, Scheller H, Jacobs C, Walter C, Wehrbein H. Orthodontic treatment of patients medicated with bisphosphonates-a clinical case report. J Orofac Orthop 2013; 74: 28-39
  • 55 Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1988; 94: 278-284
  • 56 Kawakami M. Effects of local application of 1,25 (OH)2D3 on experimental tooth movement in rats. Osaka Daigaku Shigaku Zasshi 1990; 35: 128-146 Japanese
  • 57 Kale S, Kocadereli I, Atilla P. et al. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004; 125: 607-614
  • 58 Kirschneck C, Proff P, Maurer M. et al. Orthodontic forces add to nicotine-induced loss of periodontal bone: An in vivo and in vitro study. J Orofac Orthop 2015; 76: 195-212
  • 59 Kirschneck C, Maurer M, Wolf M. et al. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int J Oral Sci 2017; 9: 174-184
  • 60 Ino-Kondo A, Hotokezaka H, Kondo T. et al. Lithium chloride reduces orthodontically induced root resorption and affects tooth root movement in rats. Angle Orthod 2018; 88: 474-482
  • 61 da Silva Kagy V, Trevisan Bittencourt Muniz L, Michels AC. et al. Effect of the Chronic Use of Lithium Carbonate on Induced Tooth Movement in Wistar Rats. PLoS One 2016; 11: e0160400
  • 62 Aghili H, Yassaei S, Zahir ST. et al. Effect of Methylphenidate on Orthodontic Tooth Movement and Histological Features of Bone Tissue in Rats: An Experimental Study. J Clin Diagn Res 2017; 11: ZF01-ZF05
  • 63 Franzon Frigotto GC, Miranda de Araujo C, Guariza Filho O. et al. Effect of fluoxetine on induced tooth movement in rats. Am J Orthod Dentofacial Orthop 2015; 148: 450-456
  • 64 Shen WR, Kitaura H, Qi J. et al. Local administration of high-dose diabetes medicine exendin-4 inhibits orthodontic tooth movement in mice. Angle Orthod 2021; 91: 111-118
  • 65 Qi J, Kitaura H, Shen WR. et al. Effect of a DPP-4 Inhibitor on Orthodontic Tooth Movement and Associated Root Resorption. Biomed Res Int 2020; 2020: 7189084
  • 66 Sun J, Du J, Feng W. et al. Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats. J Mol Histol 2017; 48: 73-81
  • 67 Moura AP, Montalvany-Antonucci CC, Taddei SR. et al. Effects of angiotensin II type I receptor blocker losartan on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2016; 149: 358-365
  • 68 Sato T, Miyazawa K, Suzuki Y. et al. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement. J Dent Res 2014; 93: 807-812