Osteologie 2024; 33(03): 158-164
DOI: 10.1055/a-2336-1598
Übersicht

Nährstoffsupplementierung bei Osteoporose: Herausforderungen und Chancen der aktuellen Evidenzlage

Nutrient Supplementation in Osteoporosis: Challenges and Opportunities in the Current Evidence
1   Osteologie, Julius-Maximilians-Universität Würzburg Medizinische Fakultät, Würzburg, Germany
,
Alexander Genest
2   Materials Chemistry, TU Wien Institute of Materials Chemistry, Wien, Austria
,
Dominik Rak
3   Orthopädie, Julius-Maximilians-Universität Würzburg Medizinische Fakultät, Würzburg, Germany
,
Lothar Seefried
4   Osteology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
› Author Affiliations

Zusammenfassung

Die Untersuchung des Stellenwerts von Supplementen und Mangelvermeidung im Rahmen der Ernährung bei Osteoporose rückt zunehmend in den Interessenmittelpunkt. Gleichzeitig basiert die Wissenschaft zu diesem Thema überwiegend auf Observationsstudien während die genaue Erforschung von Kausalzusammenhängen und Dosis-Wirkungsbeziehungen eine Herausforderung bleibt. Insbesondere die Datenlage zur Wertigkeit einer Proteinsupplementation, sowie der gezielten Zufuhr von Folsäure, Vitamin B6 und B12, Kalium und grünem Tee für die Knochengesundheit ist heterogen. Während die Daten zur Proteinsupplementation grundsätzlich positive Effekte annehmen lassen, bleiben die optimale Menge und die Proteinzusammensetzung bzw. Quellen sowie auch potenzielle Nebenwirkungen Gegenstand der Diskussion. Die Rolle von Folsäure, Vitamin B6 und B12 ist gerade im Kontext des Homocystein-Stoffwechsel vielschichtig und legt einen umsichtigen Umgang mit dahingehenden Empfehlungen nahe. Die Untersuchungen zum Einfluss von Kalium auf den Knochenstoffwechsel sind vielversprechend, jedoch variieren Dosierungen und Formen in Studien erheblich. Auch zum grünem Tee zeigen einige Studien positive Auswirkungen auf den Knochenstoffwechsel, aber die genauen Mechanismen und optimalen Mengen bleiben auch hier unklar. Insgesamt zeigt die verfügbare Evidenz bei umsichtigem Einsatz der genannten Supplemente keine unmittelbaren Risiken. Im Hinblick auf einen konkreten Nutzen der letztlich eine gezielte Empfehlung rechtfertigen würde besteht für alle genannten Supplemente jedoch eine unzureichende Datenlage und weiterhin Forschungsbedarf um ausreichend präzise und standardisierte Empfehlungen zu deren Einsatz für die Knochengesundheit ableiten zu können.

Abstract

Summary: The relevance of supplements and dietary interventions in osteoporosis is increasingly recognized, yet the scientific inquiry remains predominantly based on observational studies, posing challenges in elucidating causal relationships and dose-response dynamics. The evidence regarding the efficacy of protein supplementation, targeted intake of folic acid, vitamin B6 and B12, potassium, and green tea for bone health is characterized by heterogeneity. While protein supplementation shows promising effects, optimal dosages, composition, and potential adverse effects necessitate further investigation. The multifaceted role of folic acid, vitamin B6, and B12, particularly in the context of homocysteine metabolism, underscores the need for judicious recommendations. Investigations into potassium's impact on bone health offer promise, yet divergent dosages and formulations across studies warrant scrutiny. Similarly, while select studies suggest beneficial effects of green tea on bone metabolism, elucidation of precise mechanisms and optimal dosages remains elusive. In sum, while current evidence suggests cautious use of these supplements entails no immediate risks, insufficient data preclude definitive recommendations, highlighting the imperative for rigorous research to establish standardized guidelines for their use in optimizing bone health.



Publication History

Received: 12 April 2024
Received: 12 April 2024

Accepted: 30 May 2024

Article published online:
21 June 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002; 359: 1761-1767
  • 2 Holt G, Smith R, Duncan K, Finlayson DF, Gregori A. Early mortality after surgical fixation of hip fractures in the elderly: an analysis of data from the scottish hip fracture audit. J Bone Joint Surg Br 2008; 90: 1357-1363
  • 3 Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MDC, López-Ruiz E. Current Status of the Diagnosis and Management of Osteoporosis. International journal of molecular sciences. 2022 23.
  • 4 Groenendijk I, den Boeft L, van Loon LJC, de Groot L. High Versus low Dietary Protein Intake and Bone Health in Older Adults: a Systematic Review and Meta-Analysis. Computational and structural biotechnology journal 2019; 17: 1101-1112
  • 5 Darling AL, Manders RJF, Sahni S, Zhu K, Hewitt CE, Prince RL. et al. Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int 2019; 30: 741-761
  • 6 Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA. Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 2005; 20: 921-929
  • 7 van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J. et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004; 350: 2033-2041
  • 8 Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Meyer HE, Tell GS. Plasma homocysteine, folate, and vitamin B 12 and the risk of hip fracture: the hordaland homocysteine study. J Bone Miner Res 2007; 22: 747-756
  • 9 Lambert H, Frassetto L, Moore JB, Torgerson D, Gannon R, Burckhardt P. et al. The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporos Int 2015; 26: 1311-1318
  • 10 Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS. et al. Osteoprotective Roles of Green Tea Catechins. Antioxidants (Basel, Switzerland). 2020 9.
  • 11 Shen CL, Chyu MC, Wang JS. Tea and bone health: steps forward in translational nutrition. Am J Clin Nutr 2013; 98: 1694s-1699ss
  • 12 Volkert D, Bauer J, Frühwald T, Gehrke I, Lechleitner M, Lenzen-Großimlinghaus R. et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGG 2013; 38: e1-e48
  • 13 Norman K, Haß U, Pirlich M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients. 2021 13.
  • 14 Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC. Nutrition, frailty, and sarcopenia. Aging clinical and experimental research 2017; 29: 43-48
  • 15 Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Barillaro C. et al. Association of anorexia with sarcopenia in a community-dwelling elderly population: results from the ilSIRENTE study. European journal of nutrition 2013; 52: 1261-1268
  • 16 Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N. et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017; 28: 1817-1833
  • 17 Coelho-Júnior HJ, Rodrigues B, Uchida M, Marzetti E. Low Protein Intake Is Associated with Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2018 10.
  • 18 Genest F, Rak D, Bätz E, Ott K, Seefried L. Sarcopenia and Malnutrition Screening in Female Osteoporosis Patients-A Cross-Sectional Study. Journal of clinical medicine. 2021 10.
  • 19 Hendrickson NR, Davison J, Glass NA, Wilson ES, Miller A, Leary S. et al. Conditionally Essential Amino Acid Supplementation Reduces Postoperative Complications and Muscle Wasting After Fracture Fixation: A Randomized Controlled Trial. J Bone Joint Surg Am 2022; 104: 759-66.
  • 20 Avenell A, Handoll HH. Nutritional supplementation for hip fracture aftercare in older people. The Cochrane database of systematic reviews. 2010: Cd001880
  • 21 Milne AC, Potter J, Vivanti A, Avenell A. Protein and energy supplementation in elderly people at risk from malnutrition. The Cochrane database of systematic reviews 2009; 2009: Cd003288
  • 22 Hoekstra JC, Goosen JH, de Wolf GS, Verheyen CC. Effectiveness of multidisciplinary nutritional care on nutritional intake, nutritional status and quality of life in patients with hip fractures: a controlled prospective cohort study. Clinical nutrition 2011; 30: 455-461
  • 23 Nuotio M, Tuominen P, Luukkaala T. Association of nutritional status as measured by the Mini-Nutritional Assessment Short Form with changes in mobility, institutionalization and death after hip fracture. Eur J Clin Nutr 2016; 70: 393-398
  • 24 Myint MW, Wu J, Wong E, Chan SP, To TS, Chau MW. et al. Clinical benefits of oral nutritional supplementation for elderly hip fracture patients: a single blind randomised controlled trial. Age Ageing 2013; 42: 39-45
  • 25 Iuliano S, Poon S, Robbins J, Bui M, Wang X, De Groot L. et al. Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care: cluster randomised controlled trial. Bmj. 2021; 375: n2364
  • 26 Fabiani R, Naldini G, Chiavarini M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Advances in nutrition (Bethesda. Md) 2019; 10: 219-236
  • 27 Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiological reviews 2019; 99: 555-604
  • 28 Finkelstein JD. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clinical chemistry and laboratory medicine 2007; 45: 1694-1699
  • 29 Feigerlova E, Demarquet L, Guéant JL. One carbon metabolism and bone homeostasis and remodeling: A review of experimental research and population studies. Biochimie. 2016; 126: 115-123
  • 30 Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. Journal of nutrigenetics and nutrigenomics 2011; 4: 293-305
  • 31 Teng YW, Mehedint MG, Garrow TA, Zeisel SH. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 2011; 286: 36258-36267
  • 32 Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR. et al. Methionine synthase reductase 66A->G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C->T variant. The Journal of nutrition 2004; 134: 2985-2990
  • 33 Dayal S, Chauhan AK, Jensen M, Leo L, Lynch CM, Faraci FM. et al. Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood. 2012; 119: 3176-3183
  • 34 Gupta S, Kühnisch J, Mustafa A, Lhotak S, Schlachterman A, Slifker MJ. et al. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2009; 23: 883-893
  • 35 Carmel R, Green R, Rosenblatt DS, Watkins D. Update on cobalamin, folate, and homocysteine. Hematology American Society of Hematology Education Program. 2003: 62-81
  • 36 Herrmann M, Umanskaya N, Wildemann B, Colaianni G, Schmidt J, Widmann T. et al. Accumulation of homocysteine by decreasing concentrations of folate, vitamin B12 and B6 does not influence the activity of human osteoblasts in vitro. Clinica chimica acta; international journal of clinical chemistry 2007; 384: 129-134
  • 37 Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clinical chemistry and laboratory medicine 2013; 51: 579-590
  • 38 Raposo B, Rodríguez C, Martínez-González J, Badimon L. High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis. 2004; 177: 1-8
  • 39 Leboff MS, Narweker R, LaCroix A, Wu L, Jackson R, Lee J. et al. Homocysteine levels and risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab 2009; 94: 1207-1213
  • 40 McLean RR, Jacques PF, Selhub J, Fredman L, Tucker KL, Samelson EJ. et al. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab 2008; 93: 2206-2212
  • 41 McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE. et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 2004; 350: 2042-2049
  • 42 Périer MA, Gineyts E, Munoz F, Sornay-Rendu E, Delmas PD. Homocysteine and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 2007; 18: 1329-1336
  • 43 Ravaglia G, Forti P, Maioli F, Servadei L, Martelli M, Brunetti N. et al. Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol A Biol Sci Med Sci 2005; 60: 1458-1462
  • 44 Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P, Mosekilde L. Dietary intake of folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcif Tissue Int 2008; 82: 1-11
  • 45 Singh W, Kushwaha P. Potassium: A Frontier in Osteoporosis. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2024
  • 46 Bushinsky DA, Krieger NS. Effects of acid on bone. Kidney international 2022; 101: 1160-70
  • 47 Bushinsky DA. The contribution of acidosis to renal osteodystrophy. Kidney international 1995; 47: 1816-1832
  • 48 Alpern RJ, Sakhaee K. The clinical spectrum of chronic metabolic acidosis: homeostatic mechanisms produce significant morbidity. Am J Kidney Dis 1997; 29: 291-302
  • 49 Dawson-Hughes B, Harris SS, Palermo NJ, Gilhooly CH, Shea MK, Fielding RA. et al. Potassium Bicarbonate Supplementation Lowers Bone Turnover and Calcium Excretion in Older Men and Women: A Randomized Dose-Finding Trial. J Bone Miner Res 2015; 30: 2103-2111
  • 50 Granchi D, Caudarella R, Ripamonti C, Spinnato P, Bazzocchi A, Massa A. et al. Potassium Citrate Supplementation Decreases the Biochemical Markers of Bone Loss in a Group of Osteopenic Women: The Results of a Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients. 2018 10.
  • 51 Moseley KF, Weaver CM, Appel L, Sebastian A, Sellmeyer DE. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J Bone Miner Res 2013; 28: 497-504
  • 52 Shen CL, Yeh JK, Cao JJ, Wang JS. Green tea and bone metabolism. Nutrition research (New York, NY) 2009; 29: 437-456
  • 53 Shen CL, Yeh JK, Cao JJ, Chyu MC, Wang JS. Green tea and bone health: Evidence from laboratory studies. Pharmacological research 2011; 64: 155-161
  • 54 Choi EM, Hwang JK. Effects of (+)-catechin on the function of osteoblastic cells. Biological & pharmaceutical bulletin 2003; 26: 523-526
  • 55 Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immunity & ageing: I & A. 2005; 2: 14
  • 56 Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T. et al. An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. The Journal of experimental medicine 2003; 197: 1303-1310
  • 57 Rawadi G. Wnt signaling and potential applications in bone diseases. Current drug targets 2008; 9: 581-590
  • 58 Xu H, Liu T, Li J, Xu J, Chen F, Hu L. et al. Oxidation derivative of (-)-epigallocatechin-3-gallate (EGCG) inhibits RANKL-induced osteoclastogenesis by suppressing RANK signaling pathways in RAW 264.7 cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019; 118: 109237
  • 59 Qian G, Xue K, Tang L, Wang F, Song X, Chyu MC. et al. Mitigation of oxidative damage by green tea polyphenols and Tai Chi exercise in postmenopausal women with osteopenia. PLoS One 2012; 7: e48090
  • 60 Samavat H, Dostal AM, Wang R, Bedell S, Emory TH, Ursin G. et al. The Minnesota Green Tea Trial (MGTT), a randomized controlled trial of the efficacy of green tea extract on biomarkers of breast cancer risk: study rationale, design, methods, and participant characteristics. Cancer causes & control : CCC 2015; 26: 1405-1419
  • 61 (DGE) DGfEeV. Referenzwerte https://wwwdgede/wissenschaft/referenzwerte Access 08.04.2024.