Synthesis
DOI: 10.1055/a-2338-8479
paper

Iron-Mediated Bromocyclization of Olefinic Amides for the Synthesis of Bromobenzoxazines

Tong-Tong Zhao
,
Qiang Bian
,
Yu-Wei Zhao
,
Lin-Lin Xu
,
Da-Zhen Xu
,
Wei-Guang Zhao
This work was financially supported by National College Students Innovation and Entrepreneurship Training Program (No. 202310055078).


Abstract

An iron-mediated bromination/cyclization for the synthesis of bromobenzoxazines from olefinic amides has been successfully developed. In this protocol, the simple iron salt FeBr3 was employed as a bromination reagent, giving the bromobenzoxazine products in moderate to excellent yields. This methodology features good functional group tolerance, gram-scale synthesis, and green reaction conditions by the use of air as the terminal oxidant. Preliminary mechanistic studies suggest that a free radical pathway is involved.

Supporting Information



Publication History

Received: 07 April 2024

Accepted after revision: 05 June 2024

Accepted Manuscript online:
05 June 2024

Article published online:
25 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Krantz A, Spencer RW, Tam TF, Liak TJ, Copp LJ, Thomas EM, Rafferty SP. J. Med. Chem. 1990; 33: 464
    • 1b Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC. J. Med. Chem. 1998; 41: 1060
    • 1c Zhang P, Terefenko EA, Fensome A, Zhang Z, Zhu Y, Cohen J, Winneker R, Wrobel J, Yardley J. Bioorg. Med. Chem. Lett. 2002; 12: 787
    • 2a Sugiyama H, Hosoda K, Kumagai Y, Takeuchi M, Okada M. EP Patent 120480A1, 1986
    • 2b Kobzina JW. US Patent 4030906 A, 1977
    • 2c Guermouche M.-H, Djabrouhou N. J. Pharm. Biomed. Anal. 2014; 100: 11
    • 2d Fenton G, Newton CG, Wyman BM, Bagge P, Dron DI, Riddell D, Jones GD. J. Med. Chem. 1989; 32: 265
    • 2e Kopelman P, Bryson A, Hickling R, Rissanen A, Rossner S, Toubro S, Valensi P. Int. J. Obes. 2007; 31: 494
    • 3a Vanden Eynde JJ, Godin J, Mayence A, Maquestiau A, Anders E. Synthesis 1993; 867
    • 3b Spagnol G, Rajca A, Rajca S. J. Org. Chem. 2007; 72: 1867
    • 3c Maheswari CU, Kumar GS, Venkateshwar M, Kumar RA, Kantam ML, Reddy KR. Adv. Synth. Catal. 2010; 352: 341
    • 3d Han B, Yang X.-L, Wang C, Bai Y.-W, Pan T.-C, Chen X, Yu W. J. Org. Chem. 2012; 77: 1136
    • 4a Wu J, Zong Y, Zhao C, Yan Q, Sun L, Li Y, Zhao J, Ge Y, Li Z. Org. Biomol. Chem. 2019; 17: 794
    • 4b Jana S, Ashokan A, Kumar S, Verma A, Kumar S. Org. Biomol. Chem. 2015; 13: 8411
    • 4c Zhu M, Li R, You Q, Fu W, Guo W. Asian J. Org. Chem. 2019; 8: 2002
    • 4d Liu T, Zheng D, Li Z, Wu J. Adv. Synth. Catal. 2018; 360: 865
    • 4e Fu W, Han X, Zhu M, Xu C, Wang Z, Ji B, Hao X.-Q, Song M.-P. Chem. Commun. 2016; 52: 13413
    • 4f Lu F, Xu J, Li H, Wang K, Ouyang D, Sun L, Huang M, Jiang J, Hu J, Alhumade H, Lu L, Lei A. Green Chem. 2021; 23: 7982
    • 4g He T.-J, Zhong W.-Q, Huang J.-M. Chem. Commun. 2020; 56: 2735
    • 4h Natarajan P, Chuskit D. Priya, Manjeet, New J. Chem. 2022; 46: 322
    • 4i Verma A, Banjara LS, Meena R, Kumar S. Asian J. Org. Chem. 2020; 9: 105
    • 5a Wang J, Sang R, Chong X, Zhao Y, Fan W, Li Z, Zhao J. Chem. Commun. 2017; 53: 7961
    • 5b Xie Q, Long HJ, Zhang QY, Tang P, Deng J. J. Org. Chem. 2020; 85: 1882
    • 5c Okuma K, Yasuda T, Shioji K, Yokomori Y. Bull. Chem. Soc. Jpn. 2007; 80: 1824
    • 5d Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
    • 5e Zhao JF, Duan XH, Yang H, Guo LN. J. Org. Chem. 2015; 80: 11149
    • 5f Miller E, Kim S, Gibson J, Derrick S, Toste FD. J. Am. Chem. Soc. 2020; 142: 8946
    • 5g Chaitanya M, Anbarasan P. Org. Lett. 2018; 20: 1183
    • 5h Verma A, Jana S, Prasad CD, Yadav A, Kumar S. Chem. Commun. 2016; 52: 4179
  • 7 Cao T.-T, Zhang W.-K, Qin F.-H, Kang Q.-Q, Dong Y, Li Q, Kang C, Wei W.-T. ACS Sustainable Chem. Eng. 2020; 8: 16946
    • 8a Lv L.-Y, Li Z.-P. Top. Curr. Chem. 2016; 374: 38
    • 8b Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
    • 8c Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 8d Bolm C, Legros J, Paih JL, Zani L. Chem. Rev. 2004; 104: 6217
    • 8e Liu L.-X. Curr. Org. Chem. 2010; 14: 1099
    • 8f Guo X, Yu R, Li H, Li Z. J. Am. Chem. Soc. 2009; 131: 17387
    • 8g Pan S, Liu J, Li H, Wang Z, Guo X, Li Z. Org. Lett. 2010; 12: 1932
    • 8h Huo C, Chen F, Yuan Y, Xie H, Wang Y. Org. Lett. 2015; 17: 5028
    • 8i Liu Z.-Q, Zhang Y, Zhao L, Li Z, Wang J, Li H, Wu L.-M. Org. Lett. 2011; 13: 2208
  • 9 Liang Y.-F, Jiao N. Acc. Chem. Res. 2017; 50: 1640
    • 10a Hu R.-M, Han D.-Y, Li N, Huang J, Feng Y, Xu D.-Z. Angew. Chem. Int. Ed. 2020; 59: 3876
    • 10b Lai Y.-H, Wu R.-S, Huang J, Huang J.-Y, Xu D.-Z. Org. Lett. 2020; 22: 382
    • 10c Wang Z.-L, Zhang Y.-H, Huang J.-Y, Zhou J, Yu Y.-Q, Feng D, Xu D.-Z. Green Chem. 2023; 25: 4463
    • 10d Wu K.-X, Xu Y.-Z, Cheng L, Wu R.-S, Liu P.-Z, Xu D.-Z. Green Chem. 2021; 23: 8448
    • 10e Tan Z.-Y, Wu K.-X, Huang L.-S, Wu R.-S, Du Z.-Y, Xu D.-Z. Green Chem. 2020; 22: 332
    • 10f Huang L.-S, Han D.-Y, Xu D.-Z. Adv. Synth. Catal. 2019; 361: 4016