Radiologie up2date 2024; 24(04): 315-322
DOI: 10.1055/a-2339-8462
How I do it

How I do it - Diffusions-Wichtung bei Mamma-MRT

Darius Gabriel Schafigh
,
Kathrin Barbara Krug
,
Pascal A. T. Baltzer

Die internationale Arbeitsgruppe für die DWI der Mamma (der Europäischen Gesellschaft für Brustradiologie) hat erste Konsensempfehlungen herausgegeben. Um Läsionen objektiv zu beschreiben, wurden dabei Stufen der Diffusionseinschränkung in der Brust definiert. Wo und wie die DWI der Mammae eingesetzt werden sollte, ist Thema dieses Beitrags.



Publication History

Article published online:
06 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Woodhams R, Matsunaga K, Iwabuchi K. et al. Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 2005; 29: 644-649
  • 2 Woodhams R, Matsunaga K, Kan S. et al. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42
  • 3 Rubesova E, Grell AS, De Maertelaer V. et al. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24: 319-324
  • 4 Wenkel E, Geppert C, Schulz-Wendtland R. et al. Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 2007; 14: 1077-1083
  • 5 Baltzer PAT, Renz DM, Herrmann K-H. et al. Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol 2009; 19: 1612-1620
  • 6 Partridge SC, DeMartini WB, Kurland BF. et al. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 2009; 193: 1716-1722
  • 7 Iima M, Yano K, Kataoka M. et al. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Invest Radiol 2015; 50: 205-211
  • 8 Iima M, Le Bihan D, Okumura R. et al. Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 2011; 260: 364-372
  • 9 Ding J-R, Wang D-N, Pan J-L. Apparent diffusion coefficient value of diffusion-weighted imaging for differential diagnosis of ductal carcinoma in situ and infiltrating ductal carcinoma. J Cancer Res Ther 2016; 12: 744-750
  • 10 Galbán CJ, Ma B, Malyarenko D. et al. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 2015; 10: e0122151
  • 11 Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol 2015; 59: 268-277
  • 12 Newitt DC, Zhang Z, Gibbs JE. et al. Test-retest repeatability and reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn Reson Imaging 2019; 49: 1617-1628
  • 13 D’Orsi CJ, Sickles EA, Mendelson EB. et al. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology; 2013
  • 14 Bickel H, Pinker K, Polanec S. et al. Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. Eur Radiol 2017; 27: 1883-1892
  • 15 O’Flynn EAM, Morgan VA, Giles SL. et al. Diffusion weighted imaging of the normal breast: reproducibility of apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status. Eur Radiol 2012; 22: 1512-1518
  • 16 Aliu SO, Jones EF, Azziz A. et al. Repeatability of quantitative MRI measurements in normal breast tissue. Transl Oncol 2014; 7: 130-137
  • 17 Spick C, Bickel H, Pinker K. et al. Diffusion-weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy. NMR Biomed 2016; 29: 1445-1453
  • 18 Zhang L, Tang M, Min Z. et al. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol 2016; 57: 651-660
  • 19 Pötsch N, Sodano C, Baltzer PAT. Performance of Diffusion-weighted Imaging-based Noncontrast MRI Protocols for Diagnosis of Breast Cancer: A Systematic Review and Meta-Analysis. Radiology 2024; 311: e232508
  • 20 Benndorf M, Schelhorn J, Dietzel M. et al. Diffusion weighted imaging of liver lesions suspect for metastases: Apparent diffusion coefficient (ADC) values and lesion contrast are independent from Gd-EOB-DTPA administration. Eur J Radiol 2012; 81: e849-e853
  • 21 Iima M, Nobashi T, Imai H. et al. Effects of diffusion time on non-Gaussian diffusion and intravoxel incoherent motion (IVIM) MRI parameters in breast cancer and hepatocellular carcinoma xenograft models. Acta Radiol Open 2018; 7: 2058460117751565
  • 22 Baltzer PA, Dietzel M, Vag T. et al. Diffusion weighted imaging-useful in all kinds of lesions? A systematic review. Eur Radiol 2009; 19 (Suppl. 4) S765-S974
  • 23 Woodhams R, Kakita S, Hata H. et al. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 2009; 193: 260-266
  • 24 Baxter GC, Graves MJ, Gilbert FJ. et al. A meta-analysis of the diagnostic performance of diffusion MRI for breast lesion characterization. Radiology 2019; 291: 632-641
  • 25 Baltzer PAT, Schäfer A, Dietzel M. et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol 2011; 21: 1-10
  • 26 Eyal E, Shapiro-Feinberg M, Furman-Haran E. et al. Parametric diffusion tensor imaging of the breast. Invest Radiol 2012; 47: 284-291
  • 27 Cakir O, Arslan A, Inan N. et al. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur J Radiol 2013; 82: e801-e806
  • 28 Furman-Haran E, Nissan N, Ricart-Selma V. et al. Quantitative evaluation of breast cancer response to neoadjuvant chemotherapy by diffusion tensor imaging: initial results. J Magn Reson Imaging 2018; 47: 1080-1090
  • 29 Bokacheva L, Kaplan JB, Giri DD. et al. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 2014; 40: 813-823
  • 30 Sigmund EE, Cho GY, Kim S. et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 2011; 65: 1437-1447
  • 31 Suo S, Cheng F, Cao M. et al. Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors. J Magn Reson 2017; 46: 740-750
  • 32 Baltzer P, Mann RM, Iima M. et al. ; EUSOBI international Breast Diffusion-Weighted Imaging working group. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol 2020; 30: 1436-1450
  • 33 Clauser P, Krug B, Bickel H. et al. Diffusion-weighted imaging allows for downgrading MR BI-RADS 4 lesions in contrast-enhanced MRI of the breast to avoid unnecessary biopsy. Clin Cancer Res 2021; 27: 1941-1948
  • 34 Dietzel M, Krug B, Clauser P. et al. A Multicentric Comparison of Apparent Diffusion Coefficient Mapping and the Kaiser Score in the Assessment of Breast Lesions. Invest Radiol 2021; 56: 274-282