Klin Monbl Augenheilkd 2024; 241(10): 1119-1125
DOI: 10.1055/a-2340-1790
Übersicht

Epidemiologie der Myopie: Prävalenz, Risikofaktoren und Auswirkungen der Myopie

Article in several languages: deutsch | English
Susanne Hopf
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
,
Alexander Schuster
Augenklinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
› Author Affiliations

Zusammenfassung

Myopie ist die häufigste Ursache für eine Sehbeeinträchtigung bei Kindern und jungen Erwachsenen. Um die Folgen für die Gesellschaft abzuschätzen, ist es notwendig, zeitliche Veränderungen der Prävalenz, Inzidenz und assoziierte Faktoren im Kindes- und jungen Erwachsenenalter sowie die Geschwindigkeit der Myopieprogression anhand epidemiologischer Forschungsarbeiten zu kennen. In dieser Arbeit wird eine Literaturübersicht über Publikationen der Jahre 2020 bis einschließlich März 2024 präsentiert sowie um weitere relevante Publikationen ergänzt. Die Myopieprävalenz bei Kindern und Jugendlichen in Deutschland ist annähernd stabil und liegt deutlich unter der in Asien. Die Entstehung von Myopie wird durch Tageslichtexposition im Freien, elterliche Myopie, Genetik und Naharbeit beeinflusst, wobei zu wenig Zeit im Freien in der Kindheit ein wesentlicher und beeinflussbarer Risikofaktor ist, um späteren myopiebedingten Komplikationen, wie myoper Makulopathie, Glaukom und Netzhautablösung, vorzubeugen.



Publication History

Received: 16 May 2024

Accepted: 03 June 2024

Article published online:
09 October 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Holden BA, Fricke TR, Wilson DA. et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016; 123: 1036-1042
  • 2 Holden BA, Jong M, Davis S. et al. Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 – time to act now. Clin Exp Optom 2015; 98: 491-493
  • 3 Shan M, Dong Y, Chen J. et al. Global Tendency and Frontiers of Research on Myopia From 1900 to 2020: A Bibliometrics Analysis. Front Public Health 2022; 10: 846601
  • 4 Bullimore MA, Lee SS, Schmid KL. et al. IMI-Onset and Progression of Myopia in Young Adults. Invest Ophthalmol Vis Sci 2023; 64: 2
  • 5 Stingl JV, Ban SA, Nagler M. et al. Five-year change in refractive error and its risk factors: results from the Gutenberg Health Study. Br J Ophthalmol 2023; 107: 140-146
  • 6 Wabbels B. [Progression of Myopia – which Preventive Measures Can be Recommended?]. Klin Monbl Augenheilkd 2023; 240: 99-111
  • 7 Cao H, Cao X, Cao Z. et al. The prevalence and causes of pediatric uncorrected refractive error: Pooled data from population studies for Global Burden of Disease (GBD) sub-regions. PLoS One 2022; 17: e0268800
  • 8 Schuster AK, Krause L, Kuchenbäcker C. et al. Prevalence and Time Trends in Myopia Among Children and Adolescents. Dtsch Arztebl Int 2020; 117: 855-860
  • 9 Philipp D, Vogel M, Brandt M. et al. The relationship between myopia and near work, time outdoors and socioeconomic status in children and adolescents. BMC Public Health 2022; 22: 2058
  • 10 Truckenbrod C, Meigen C, Brandt M. et al. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthalmic Physiol Opt 2021; 41: 532-540
  • 11 Rauscher FG, Francke M, Hiemisch A. et al. Ocular biometry in children and adolescents from 4 to 17 years: a cross-sectional study in central Germany. Ophthalmic Physiol Opt 2021; 41: 496-511
  • 12 Jobke S, Kasten E, Vorwerk C. The prevalence rates of refractive errors among children, adolescents, and adults in Germany. Clin Ophthalmol 2008; 2: 601-607
  • 13 Yang L, Vass C, Smith L. et al. Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants. Br J Ophthalmol 2020; 104: 1338-1344
  • 14 Eppenberger LS, Jaggi GP, Todorova MG. et al. Following prevalence of myopia in a large Swiss military cohort over the last decade: where is the European “myopia boom”?. Graefes Arch Clin Exp Ophthalmol 2024;
  • 15 Grzybowski A, Kanclerz P, Tsubota K. et al. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol 2020; 20: 27
  • 16 Ovenseri-Ogbomo G, Osuagwu UL, Ekpenyong BN. et al. Systematic review and meta-analysis of myopia prevalence in African school children. PLoS One 2022; 17: e0263335
  • 17 Santiago HC, Rullán M, Ortiz K. et al. Prevalence of refractive errors in children of Puerto Rico. Int J Ophthalmol 2023; 16: 434-441
  • 18 Barba-Gallardo LF, Salas-Hernández LH, Villafán-Bernal JR. et al. Refractive status of patients attending eye clinics of the Public Health System from Aguascalientes, Mexico. J Optom 2021; 14: 328-334
  • 19 Lai LJ, Hsu WH, Tung TH. Prevalence and associated factors of myopia among rural school students in Chia-Yi, Taiwan. BMC Ophthalmol 2020; 20: 320
  • 20 Mu J, Zeng D, Fan J. et al. Epidemiological Characteristics and Influencing Factors of Myopia Among Primary School Students in Southern China: A Longitudinal Study. Int J Public Health 2023; 68: 1605424
  • 21 Alvarez-Peregrina C, Martinez-Perez C, Villa-Collar C. et al. The Prevalence of Myopia in Children in Spain: An Updated Study in 2020. Int J Environ Res Public Health 2021; 18: 12375
  • 22 Rudnicka AR, Kapetanakis VV, Wathern AK. et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol 2016; 100: 882-890
  • 23 Wesemann W. [Analysis of spectacle lens prescriptions shows no increase of myopia in Germany from 2000 to 2015]. Ophthalmologe 2018; 115: 409-417
  • 24 Wu JF, Bi HS, Wang SM. et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS One 2013; 8: e82763
  • 25 Zhu M, Lin T, Lin J. et al. Myopia among children and adolescents: an epidemiological study in Fuzhou City. Front Pediatr 2023; 11: 1161329
  • 26 Matsumura S, Dannoue K, Kawakami M. et al. Prevalence of Myopia and Its Associated Factors Among Japanese Preschool Children. Front Public Health 2022; 10: 901480
  • 27 Ducloux A, Marillet S, Ingrand P. et al. Progression of myopia in teenagers and adults: a nationwide longitudinal study of a prevalent cohort. Br J Ophthalmol 2023; 107: 644-649
  • 28 Mao C, Zhang X, Liao M. et al. Recalled age of myopia onset may predict risk of high adult myopia in Chinese adults. Ophthalmic Res 2024;
  • 29 Guan J, Zhu Y, Hu Q. et al. Prevalence Patterns and Onset Prediction of High Myopia for Children and Adolescents in Southern China via Real-World Screening Data: Retrospective School-Based Study. J Med Internet Res 2023; 25: e39507
  • 30 Lee SS, Lingham G, Sanfilippo PG. et al. Incidence and Progression of Myopia in Early Adulthood. JAMA Ophthalmol 2022; 140: 162-169
  • 31 Lee SS, Mackey DA. Prevalence and Risk Factors of Myopia in Young Adults: Review of Findings From the Raine Study. Front Public Health 2022; 10: 861044
  • 32 Wolfram C, Höhn R, Kottler U. et al. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS). Br J Ophthalmol 2014; 98: 857-861
  • 33 Karthikeyan SK, Ashwini DL, Priyanka M. et al. Physical activity, time spent outdoors, and near work in relation to myopia prevalence, incidence, and progression: An overview of systematic reviews and meta-analyses. Indian J Ophthalmol 2022; 70: 728-739
  • 34 Tideman JWL, Polling JR, Jaddoe VWV. et al. Environmental Risk Factors Can Reduce Axial Length Elongation and Myopia Incidence in 6- to 9-Year-Old Children. Ophthalmology 2019; 126: 127-136
  • 35 Foreman J, Crowston JG, Dirani M. Is physical activity protective against myopia?. Br J Ophthalmol 2020; 104: 1329-1330
  • 36 Li M, Lanca C, Tan CS. et al. Association of time outdoors and patterns of light exposure with myopia in children. Br J Ophthalmol 2023; 107: 133-139
  • 37 Tideman JWL, Polling JR, Voortman T. et al. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur J Epidemiol 2016; 31: 491-499
  • 38 Hartmann A, Grabitz SD, Wagner FM. et al. Bi-Gaussian analysis reveals distinct education-related alterations in spherical equivalent and axial length-results from the Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol 2024; 262: 1819-1828
  • 39 Mirshahi A, Ponto KA, Hoehn R. et al. Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology 2014; 121: 2047-2052
  • 40 Megreli J, Barak A, Bez M. et al. Association of Myopia with cognitive function among one million adolescents. BMC Public Health 2020; 20: 647
  • 41 Cumberland PM, Bountziouka V, Hammond CJ. et al. UK Biobank Eye and Vision Consortium. Temporal trends in frequency, type and severity of myopia and associations with key environmental risk factors in the UK: Findings from the UK Biobank Study. PLoS One 2022; 17: e0260993
  • 42 Clark R, Kneepkens SCM, Plotnikov D. et al. Time Spent Outdoors Partly Accounts for the Effect of Education on Myopia. Invest Ophthalmol Vis Sci 2023; 64: 38
  • 43 Luo Z, Guo C, Yang X. et al. Comparison of myopia progression among Chinese schoolchildren before and during COVID-19 pandemic: a meta-analysis. Int Ophthalmol 2023; 43: 3911-3921
  • 44 Kneepkens SCM, de Vlieger J, Tideman JWL. et al. Myopia risk behaviour related to the COVID-19 lockdown in Europe: The generation R study. Ophthalmic Physiol Opt 2023; 43: 402-409
  • 45 Rodriguez NM, Acevedo A, Torres VP. et al. Refractive Error Changes Due to COVID-19 Pandemic Confinement in Children from Puerto Rico: A Retrospective Study. Optom Vis Sci 2023; 100: 638-644
  • 46 Sanz Diez P, Ohlendorf A, Barraza-Bernal MJ. et al. Evaluating the impact of COVID-19 pandemic-related home confinement on the refractive error of school-aged children in Germany: a cross-sectional study based on data from 414 eye care professional centres. BMJ Open 2023; 13: e071833
  • 47 Martínez-Albert N, Bueno-Gimeno I, Gené-Sampedro A. Risk Factors for Myopia: A Review. J Clin Med 2023; 12: 6062
  • 48 Lagrèze W, Bertram B, Ehrt O. et al. Empfehlungen bei progredienter Myopie im Kindes- und Jugendalter. Stellungnahme von DOG, BVA und der Bielschowsky Gesellschaft für Schielforschung und Neuroophthalmologie. Ophthalmologie 2023; 120: 160-168
  • 49 Lin S, Gong Q, Wang J. et al. The association between sleep duration and risk of myopia in Chinese school-aged children: a cross-sectional study. Sleep Breath 2023; 27: 2041-2047
  • 50 Li R, Chen Y, Zhao A. et al. Relationships between Sleep Duration, Timing, Consistency, and Chronotype with Myopia among School-Aged Children. J Ophthalmol 2022; 2022: 7071801
  • 51 Foreman J, Salim AT, Praveen A. et al. Association between digital smart device use and myopia: a systematic review and meta-analysis. Lancet Digit Health 2021; 3: e806-e818
  • 52 Enthoven CA, Polling JR, Verzijden T. et al. Smartphone Use Associated with Refractive Error in Teenagers: The Myopia App Study. Ophthalmology 2021; 128: 1681-1688
  • 53 Mccrann S, Loughman J, Butler JS. et al. Smartphone use as a possible risk factor for myopia. Clin Exp Optom 2021; 104: 35-41
  • 54 Németh J, Tapasztó B, Aclimandos WA. et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol 2021; 31: 853-883
  • 55 Hopf S, Korb C, Nickels S. et al. Prevalence of myopic maculopathy in the German population: results from the Gutenberg health study. Br J Ophthalmol 2020; 104: 1254-1259
  • 56 Hopf S, Heidt F, Korb CA. et al. Five-Year Cumulative Incidence and Progression of Myopic Maculopathy in a German Population. Ophthalmology 2022; 129: 562-570
  • 57 Haarman AEG, Tedja MS, Brussee C. et al. Prevalence of Myopic Macular Features in Dutch Individuals of European Ancestry With High Myopia. JAMA Ophthalmol 2022; 140: 115-123
  • 58 Bullimore MA, Brennan NA. Myopia Control: Why Each Diopter Matters. Optom Vis Sci 2019; 96: 463-465
  • 59 Ha A, Kim CY, Shim SR. et al. Degree of Myopia and Glaucoma Risk: A Dose-Response Meta-analysis. Am J Ophthalmol 2022; 236: 107-119
  • 60 Wang YX, Yang H, Wei CC. et al. High myopia as risk factor for the 10-year incidence of open-angle glaucoma in the Beijing Eye Study. Br J Ophthalmol 2023; 107: 935-940
  • 61 Gerstenberger E, Stoffelns B, Nickels S. et al. Incidence of Retinal Detachment in Germany: Results from the Gutenberg Health Study. Ophthalmologica 2021; 244: 133-140
  • 62 Ludwig CA, Vail D, Al-Moujahed A. et al. Epidemiology of rhegmatogenous retinal detachment in commercially insured myopes in the United States. Sci Rep 2023; 13: 9430
  • 63 Huang J, Ma W, Li R. et al. Myopia prediction for children and adolescents via time-aware deep learning. Sci Rep 2023; 13: 5430
  • 64 Li J, Zeng S, Li Z. et al. Accurate prediction of myopic progression and high myopia by machine learning. Precis Clin Med 2024; 7: pbae005
  • 65 He HL, Liu YX, Song H. et al. Initiation of China Alliance of Research in High Myopia (CHARM): protocol for an AI-based multimodal high myopia research biobank. BMJ Open 2023; 13: e076418