Subscribe to RSS
DOI: 10.1055/a-2343-0881
RhI-Catalyzed Cycloisomerization Reactions of 1,7-Enynes To Access Cage-Like Tricyclo[3.2.2.06,8]nonenes
We acknowledge the National Key Research and Development Program of China (2023YFC2606500 to X. Deng), the National Natural Science Foundation of China (22377151 to X. Deng), the Hunan Provincial Science Fund for Distinguished Young Scholars (2023JJ10083 to X. Deng), Start-up funds from Zhejiang A&F University (2019FR060 to L.-Y. Shi), and the Huxiang High-Level Talent Gathering Project from the Department of Science and Technology of Hunan Province (2022RC4029) for financial support.

Abstract
Cage-like polycycles represent a class of structurally unique and biologically promising molecules, however, efficient approaches for their synthesis are rare. Herein, we disclose RhI-catalyzed cycloisomerization reactions of 1,7-enynes containing a chelating group at the alkyne terminus, which afford unprecedented cage-like tricyclo[3.2.2.06,8]nonenes via a 7-endo-dig cyclization. This work not only provides a straightforward approach to these novel cage-like tricycles, but also unveils the under-explored π-acidic reactivity of the RhI catalyst aided by secondary chelation.
Key words
RhI catalyst - 7-endo-dig cyclization - 1,7-enynes - π-acidic reactivity - cage-like tricyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2343-0881.
- Supporting Information
Publication History
Received: 07 May 2024
Accepted after revision: 11 June 2024
Accepted Manuscript online:
11 June 2024
Article published online:
27 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kotha S, Cheekatla SR, Meshram M. ChemCatChem 2020; 12: 6131
- 2 Li Y, Zhang L, Wang W, Liu Y, Sun D, Li H, Chen L. Bioorg. Chem. 2022; 128: 106106
- 3 Fang Z, Song Y, Zhan P, Zhang Q, Liu X. Future Med. Chem. 2014; 6: 885
- 4 Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
- 5 Ojima I, Tzamarioudaki M, Li Z, Donovan RJ. Chem. Rev. 1996; 96: 635
- 6 Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
- 7 Fairlamb IJ. S. Angew. Chem. Int. Ed. 2004; 43: 1048
- 8 Liu Y, Zhang J, Zhang J, Pei H, Liu X, Jin H, Ryu DH, Zhang L. Adv. Synth. Catal. 2023; 365: 2
- 9 Wu N, Li R, Cui F, Pan Y. Adv. Synth. Catal. 2017; 359: 2442
- 10 Trost BM. Acc. Chem. Res. 1990; 23: 34
- 11 Chatani N, Morimoto T, Muto T, Murai S. J. Am. Chem. Soc. 1994; 116: 6049
- 12 Trost BM, Toste FD. J. Am. Chem. Soc. 2000; 122: 714
- 13 Kaminsky L, Clark DA. Org. Lett. 2014; 16: 5450
- 14 Zhang X, Wang K, Zhang T. Comput. Theor. Chem. 2016; 1083: 46
- 15 Hatano M, Mikami K. J. Am. Chem. Soc. 2003; 125: 4704
- 16 Harada K, Tonoi Y, Kato H, Fukuyama Y. Tetrahedron Lett. 2002; 43: 3829
- 17 Meiß R, Kumar K, Waldmann H. Chem. Eur. J. 2015; 21: 13526
- 18 Thummanapelli SK, Hosseyni S, Su Y, Akhmedov NG, Shi X. Chem. Commun. 2016; 52: 7687
- 19 Harris RJ, Widenhofer RA. Chem. Soc. Rev. 2016; 45: 4533
- 20 Zeng J, Fang W, Lin B, Chen G-Q, Zhang X. Org. Lett. 2022; 24: 869
- 21 Deng X, Shi L.-Y, Lan J, Guan Y.-Q, Zhang X, Lv H, Chung LW, Zhang X. Nat. Commun. 2019; 10: 949
- 22 Deng X, Ni S.-F, Han Z.-Y, Guan Y.-Q, Lv H, Dang L, Zhang X.-M. Angew. Chem. Int. Ed. 2016; 55: 6295
- 23 Comer E, Rohan E, Deng L, Porco JA. Org. Lett. 2007; 9: 2123
- 24 Wittstein K, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 9076
- 25 Boyer F.-D, Le Goff X, Hanna I. J. Org. Chem. 2008; 73: 5163
- 26 Liu S, Zhao J, Kaminsky L, Wilson RJ, Marino N, Clark DA. Org. Lett. 2014; 16: 4456
- 27 Nishimura T, Kawamoto T, Nagaosa M, Kumamoto H, Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 1638
- 28 Nishimura T, Maeda Y, Hayashi T. Org. Lett. 2011; 13: 3674
- 29 Nishimura T, Takiguchi Y, Maeda Y, Hayashi T. Adv. Synth. Catal. 2013; 355: 1374
- 30 Shu X.-Z, Shu D, Schienebeck CM, Tang W. Chem. Soc. Rev. 2012; 41: 7698