Informationen aus Orthodontie & Kieferorthopädie 2025; 57(01): 23-27
DOI: 10.1055/a-2344-3533
Übersichtsartikel

3D-Druck in der Kieferorthopädie

3D-printing in orthodontics
Christoph J. Roser
1   Poliklinik für Kieferorthopädie, Universitätsklinikum Heidelberg
,
Juliana Marie-Kristine Mielke
1   Poliklinik für Kieferorthopädie, Universitätsklinikum Heidelberg
,
Cristiano Segnini
2   Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples Federico II, Naples, Italien
,
Christopher J. Lux
1   Poliklinik für Kieferorthopädie, Universitätsklinikum Heidelberg
› Author Affiliations

Zusammenfassung

Während die Herstellung von kieferorthopädischen Modellen im 3D-Druckverfahren bereits in vielen Praxen etabliert ist, entwickelt sich zunehmend auch die Fertigung kieferorthopädischer Apparaturen auf diesem Weg. Der 3D-Druck ermöglicht eine präzise, effiziente und flexible Produktion, reduziert den manuellen Arbeitsaufwand und optimiert digitale Workflows. Die Druckgeschwindigkeit nimmt dabei stetig zu, während die verwendeten Materialien immer belastbarer werden. Dadurch lassen sich Apparaturen zunehmend stabiler und langlebiger gestalten, was die klinische Anwendung weiter verbessert. Trotz technischer Herausforderungen und regulatorischer Anforderungen wächst das Potenzial der Technologie stetig. Die Kombination aus innovativen Druckverfahren, verbesserten Werkstoffen und digitalen Planungsmöglichkeiten eröffnet neue Perspektiven für eine personalisierte und automatisierte Behandlung. Mit der Weiterentwicklung biokompatibler Materialien und neuer Fertigungsmethoden könnte sich der 3D-Druck langfristig als fester Bestandteil der kieferorthopädischen Behandlung etablieren und zur Optimierung therapeutischer Abläufe beitragen.

Abstract

While the fabrication of orthodontic models using 3D printing has already been well established in many practices, the application of this technology for manufacturing orthodontic appliances is continuously evolving. 3D printing enables precise, efficient, and flexible production, reducing manual labor and optimizing digital workflows. Advancements in printing speed and the increasing mechanical strength of materials further enhance its clinical applicability. As a result, appliances are becoming more durable and reliable, broadening their potential in patient care. Despite technical challenges and regulatory requirements, the prospects of this technology continue to expand. The integration of innovative printing techniques, improved biomaterials, and digital treatment planning opens new avenues for personalized and automated orthodontic therapy. As biocompatible materials and manufacturing methods advance, 3D printing is poised to become an integral component of orthodontic treatment, significantly streamlining clinical workflows and enhancing therapeutic outcomes.



Publication History

Article published online:
27 March 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Roser C, Hilgenfeld T, Sen S. et al. Evaluation of magnetic resonance imaging artifacts caused by fixed orthodontic CAD/CAM retainers-an in vitro study. Clin Oral Investig 2021; 25: 1423-1431
  • 2 Roser CJ, Hilgenfeld T, Saleem MA. et al. In vivo assessment of artefacts in MRI images caused by conventional twistflex and various fixed orthodontic CAD/CAM retainers. J Orofac Orthop. 2023
  • 3 Graf S, Vasudavan S, Wilmes B. CAD/CAM Metallic Printing of a Skeletally Anchored Upper Molar Distalizer. Journal of clinical orthodontics: JCO 2020; 54: 140-150
  • 4 Wilhelmy L, Willmann JH, Tarraf NE. et al. Maxillary space closure using a digital manufactured Mesialslider in a single appointment workflow. Korean J Orthod 2022; 52: 236-245
  • 5 Ponna P, Tarraf NE, Dalci K. et al. Dentoskeletal effects of mini-screw assisted, non-surgical palatal expansion in adults using a modified force-controlled polycyclic protocol: a single-centre retrospective study. Eur J Orthod 2024; 46: cjad080
  • 6 Hodecker LD, Kühle R, Weichel F. et al Concept for the Treatment of Class III Anomalies with a Skeletally Anchored Appliance Fabricated in the CAD/CAM Process-The MIRA Appliance. Bioengineering (Basel) 2023; 10 616
  • 7 Bauer CAJ, Lux CJ, Hodecker LD. Orthodontic extrusion in the digital age: a technical note. Quintessence Int 2022; 53: 394-402
  • 8 Firlej M, Zaborowicz K, Zaborowicz M. et al. Mechanical Properties of 3D Printed Orthodontic Retainers. International Journal of Environmental Research and Public Health 2022; 19: 5775
  • 9 Hetzler S, Rues S, Zenthofer A. et al Finite Element Analysis of Fixed Orthodontic Retainers. Bioengineering (Basel) 2024; 11 394
  • 10 Roser C, Hodecker LD, Koebel C. et al. Mechanical properties of CAD/CAM-fabricated in comparison to conventionally fabricated functional regulator 3 appliances. Scientific reports 2021; 11: 14719
  • 11 Roser CJ, Rues S, Erber R. et al. Tooth mobility restriction by multistranded and CAD/CAM retainers – an in vitro study. European Journal of Orthodontics 2024; 46: cjad076
  • 12 Hodecker LD, Scheurer M, Scharf S. et al. Influence of Individual Bracket Base Design on the Shear Bond Strength of In-Office 3D Printed Brackets-An In Vitro Study. J Funct Biomater 2023; 14: 289
  • 13 Sabbagh H, Khazaei Y, Baumert U. et al. Bracket Transfer Accuracy with the Indirect Bonding Technique-A Systematic Review and Meta-Analysis. J Clin Med 2022; 11: 2568
  • 14 Roser CJH L, Mielke J, Bauer C. et al. 3-D-Druck in der Kieferorthopädie. ZM online (Zahnärztliche Mitteilungen). 2024 12. 46–51
  • 15 Roser C, Lux C. Herausnehmbare kieferorthopädische Apparaturen im CAD/CAM-Verfahren mit Fokus auf CAD-FR3. Kieferorthopädie 2023; 37: 261-271
  • 16 Roser CJ, D'Anto V, Lux CJ. et al. A digital CAD/CAM configurator for the production of orthodontic appliances – Going new ways. Seminars in Orthodontics 2025; 31: 104–109
  • 17 Segnini C, D'Antò V, Antonio N. et al. 3D printed removable functional appliances for early orthodontic treatment – Possibilities and limitations. Seminars in Orthodontics 2023; 29: 237-242
  • 18 Segnini C, D'Anto V, Valetta R. et al. CAD-based functional therapy during aligner treatment – the “En-Nova”-protocol (technical report). Seminars in Orthodontics. 2024 31.
  • 19 Jungbauer R, Sabbagh H, Janjic Rankovic M. et al. 3D Printed Orthodontic Aligners – A Scoping Review. Applied Sciences 2024; 14: 10084
  • 20 Knode V, Ludwig B, Retrouvey J-M. et al. Directly printed aligner therapy: A 12-month evaluation of application and effectiveness. Am J Orthod Dentofac 2025; 167: 73-79
  • 21 Willi A, Patcas R, Zervou SK. et al. Leaching from a 3D-printed aligner resin. Eur J Orthod 2023; 45: 244-249
  • 22 Pratsinis H, Papageorgiou SN, Panayi N. et al. Cytotoxicity and estrogenicity of a novel 3-dimensional printed orthodontic aligner. Am J Orthod Dentofac 2022; 162: e116-e22
  • 23 George BM, Arya S, Bharadwaj GSS. K, N SV Robotic Archwire Bending in Orthodontics: A Review of the Literature. Cureus 2024; 16: e56611
  • 24 Roser CJ, Bauer C, Hodecker L. et al. Comparison of six different CAD/CAM retainers vs. the stainless steel twistflex retainer: an in vitro investigation of survival rate and stability. J Orofac Orthop. 2025 86. 119–128
  • 25 Park JS, Song IT, Bae JH. et al. Comparison of slot sizes and parallelism of metal brackets manufactured through metal injection molding and computerized numerical control. Korean J Orthod 2020; 50: 401-406