J Knee Surg 2024; 37(13): 894-901
DOI: 10.1055/a-2344-5195
Original Article

Mechanical Evaluation of Bone–Patellar Tendon–Bone Graft Fixation to the Tibia in ACL Reconstruction: Bone Plug Tensioning and Fixation System versus Interference Screw

Ryo Iuchi
1   Department of Orthopaedic Sports Medicine, Kansai Rosai Hospital, Amagasaki, Japan
,
Konsei Shino
2   Sports Orthopedic Center, Yukioka Hospital, Osaka, Japan
,
Tatsuo Mae
2   Sports Orthopedic Center, Yukioka Hospital, Osaka, Japan
,
Satoshi Yamakawa
3   Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
,
Ken Nakata
3   Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
› Author Affiliations

Abstract

This study aimed to evaluate the mechanical properties of bone plug fixation to the tibia with a novel device, the Bone plug Tensioning and Fixation (BTF) system.

Forty bone–tendon–bone grafts consisting of the whole patella–patellar tendon–tibial bone plug of 10-mm width and tibiae from the porcine were prepared. After creating a 10-mm tibial tunnel, the tibial bone plug was fixed to the tibia with the BTF system or the interference screw (IFS) to prepare a test specimen of the patella–patellar tendon–tibial bone plug fixed to the tibia. For the graft tension controllability study, a predetermined initial tension of 9.8 or 19.6 N was applied and maintained for 5 minutes. Then the bone plug was fixed to the tibia with the BTF system or IFS in 10 specimens, monitoring the residual tension for an additional 5 minutes. Then, a cyclic loading test and a tension-to-failure test were performed.

The mean difference between the residual tension and the predetermined tension was significantly smaller in BTF fixation (9.8 N → 10.6 ± 2.2 N; 19.6 N → 18.9 ± 2.1 N) than in IFS fixation (9.8 N → 23.4 ± 7.4 N; 19.6 N → 28.9 ± 11.5 N). The mean displacement of the bone plug after cyclic loading was significantly less in the BTF group (1.2 ± 0.6 mm) than in the IFS group (2.2 ± 1.0 mm; p < 0.01). Stiffness was significantly greater in the BTF group (504.6 ± 148.8 N/mm) than in the IFS group (294.7 ± 96.7 N/mm; p < 0.01), whereas the maximum failure loads in the two groups did not differ significantly (724.2 ± 180.3 N in the BTF and 634.8 ± 159.4 N in the IFS groups).

BTF system better performed in graft tension controllability than IFS did. BTF fixation was superior to IFS fixation in the displacement of the bone plug during the cyclic loading test and in stiffness in the tension-to-failure test.



Publication History

Received: 06 September 2023

Accepted: 11 June 2024

Accepted Manuscript online:
13 June 2024

Article published online:
27 June 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Yoshiya S, Andrish JT, Manley MT, Bauer TW. Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs. Am J Sports Med 1987; 15 (05) 464-470
  • 2 Fleming BC, Brady MF, Bradley MP, Banerjee R, Hulstyn MJ, Fadale PD. Tibiofemoral compression force differences using laxity- and force-based initial graft tensioning techniques in the anterior cruciate ligament-reconstructed cadaveric knee. Arthroscopy 2008; 24 (09) 1052-1060
  • 3 Shino K, Nakata K, Nakamura N, Toritsuka Y, Nakagawa S, Horibe S. Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 2005; 21 (11) 1402
  • 4 Shino K, Nakata K, Nakamura N. et al. Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 2008; 24 (10) 1178-1183
  • 5 Shino K, Mae T, Tachibana Y. Anatomic ACL reconstruction: rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting. J Orthop Sci 2015; 20 (03) 457-468
  • 6 Tachibana Y, Shino K, Mae T, Iuchi R, Take Y, Nakagawa S. Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft. Knee Surg Sports Traumatol Arthrosc 2019; 27 (08) 2680-2690
  • 7 Matsuo T, Kusano M, Uchida R, Tsuda T, Toritsuka Y. Anatomical rectangular tunnel anterior cruciate ligament reconstruction provides excellent clinical outcomes. Knee Surg Sports Traumatol Arthrosc 2022; 30 (04) 1396-1403
  • 8 Brand Jr J, Weiler A, Caborn DN, Brown Jr CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med 2000; 28 (05) 761-774
  • 9 Hapa O, Barber FA. ACL fixation devices. Sports Med Arthrosc Rev 2009; 17 (04) 217-223
  • 10 Shino K, Mae T, Maeda A, Miyama T, Shinjo H, Kawakami H. Graft fixation with predetermined tension using a new device, the double spike plate. Arthroscopy 2002; 18 (08) 908-911
  • 11 Brand Jr JC, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN. Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 2000; 28 (05) 705-710
  • 12 Kohn D, Rose C. Primary stability of interference screw fixation. Influence of screw diameter and insertion torque. Am J Sports Med 1994; 22 (03) 334-338
  • 13 Yoshihara Y, Yoshiya S, Kurosaka M, Yamamoto T, Kuroda R, Muratsu H. The load of an implanted graft during and after fixation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2005; 13 (02) 101-106
  • 14 Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?. Knee Surg Sports Traumatol Arthrosc 1998; 6 (04) 231-240
  • 15 Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant 2013; 48 (03) 452-458
  • 16 Mae T, Shino K, Matsumoto N. et al. Anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendons with minimally required initial tension. Arthroscopy 2010; 26 (10) 1289-1295
  • 17 Koga H, Muneta T, Yagishita K. et al. Effect of initial graft tension on knee stability and graft tension pattern in double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2015; 31 (09) 1756-1763
  • 18 Kondo E, Yasuda K, Kitamura N. et al. Effects of initial graft tension on clinical outcome after anatomic double-bundle anterior cruciate ligament reconstruction: comparison of two graft tension protocols. BMC Musculoskelet Disord 2016; 17: 65
  • 19 Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: effect of initial tension. Am J Sports Med 2008; 36 (06) 1087-1093
  • 20 Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 2001; 17 (05) 461-476
  • 21 Toutoungi DE, Lu TW, Leardini A, Catani F, O'Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech (Bristol, Avon) 2000; 15 (03) 176-187
  • 22 Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech 2004; 37 (06) 797-805
  • 23 Rupp S, Krauss PW, Fritsch EW. Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy 1997; 13 (01) 61-65
  • 24 Steiner ME, Hecker AT, Brown Jr CH, Hayes WC. Anterior cruciate ligament graft fixation. Comparison of hamstring and patellar tendon grafts. Am J Sports Med 1994; 22 (02) 240-246 , discussion 246–247
  • 25 Paschal SO, Seemann MD, Ashman RB, Allard RN, Montgomery JB. Interference fixation versus postfixation of bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction. A biomechanical comparative study in porcine knees. Clin Orthop Relat Res 1994; (300) 281-287
  • 26 Matthews LS, Lawrence SJ, Yahiro MA, Sinclair MR. Fixation strengths of patellar tendon-bone grafts. Arthroscopy 1993; 9 (01) 76-81
  • 27 Paschal SO, Seemann MD, Ashman RB, Allard RN. A biomechanical comparison of interference versus post fixation of bone–patellar tendon–bone grafts for anterior cruciate ligament reconstruction. Orthop Trans 1992; 16: 80
  • 28 Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S. Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 2004; 32 (01) 71-78
  • 29 Kousa P, Järvinen TL, Kannus P, Järvinen M. Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 2001; 29 (04) 420-425
  • 30 Markolf KL, Hame S, Hunter DM. et al. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res 2002; 20 (05) 1016-1024
  • 31 Mae T, Shino K, Miyama T. et al. Single- versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy 2001; 17 (07) 708-716
  • 32 Burks RT, Leland R. Determination of graft tension before fixation in anterior cruciate ligament reconstruction. Arthroscopy 1988; 4 (04) 260-266
  • 33 Suzuki T, Shino K, Otsubo H. et al. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy 2014; 30 (10) 1294-1302
  • 34 Mae T, Shino K, Iuchi R. et al. Biomechanical characteristics of the anatomic rectangular tunnel anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft. J Orthop Sci 2017; 22 (05) 886-891
  • 35 Matsuo T, Mae T, Shino K. et al. Tibiofemoral relationship following anatomic triple-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 2128-2135
  • 36 Tachibana Y, Mae T, Shino K. et al. Sequential analysis of three-dimensional tibiofemoral relationship through anatomic anterior cruciate ligament reconstruction with gravity-assisted radiographic technique in prone position. Asia Pac J Sports Med Arthrosc Rehabil Technol 2019; 18: 11-17
  • 37 Tachibana Y, Mae T, Nakata K, Matsuo T, Shino K. Tibiofemoral relationship 3 weeks after anatomic triple-bundle anterior cruciate ligament reconstruction with 10 N of initial tension is closer to normal knee versus that with 20 N of initial tension. Arthroscopy 2022; 38 (07) 2232-2241