Subscribe to RSS
DOI: 10.1055/a-2368-8443
Chemical Methods for the Construction of Spirocyclic β-Lactams and Their Biological Importance
P.Y. is grateful for financial support from the University Grants Commission (UGC), New Delhi (58/(OBC) CSIR-UGC NET 2016). S.B. gratefully acknowledges financial support from the University Grants Commission-Basic Science Research (UGC-BSR), Start-Up-Grant (F.30-581/2021), Ministry of Education, Govt. of India and the Central University of Himachal Pradesh. A.B. is grateful for financial support from the Department of Science and Technology (DST), New Delhi, Government of India, (Project No. SR/FT/CS-037/2010 and FIST-II/PURSE-II), the University Grants Commission-Career Advancement Scheme (UGC-CAS) and the SAIF (CIL) at Panjab University, Chandigarh.
Abstract
Spirocyclic β-lactams are a family of natural and synthetic chemicals with different biological activities, including antibacterial properties, and interact with critical physiological targets such as T-type calcium channels and acetyl-CoA cholesterol acyltransferase. Their unique chemical structure, combining a spiro ring system with a β-lactam group, offers promising opportunities for the targeted discovery of medications in medicinal chemistry. Spirocyclic β-lactams have the potential to be adaptable frameworks for developing novel therapeutic medicines with particular three-dimensional pharmacophoric characteristics and increased biological efficacy. Numerous methods are employed for the synthesis of spirocyclic β-lactams, such as cyclization, functional group modifications, asymmetric synthesis utilizing chiral catalysts and biomimetic approaches. In this short review, two distinct approaches describing recent syntheses of spirocyclic β-lactams (from 2021 to 2024) are discussed. The first is based on constructing the β-lactam ring, while the other entails transforming monocyclic β-lactams into spirocyclic structures. These methods include detailed reaction processes and descriptions of the biological functions of the target spirocycles. The applications of spirocyclic β-lactams in medicinal chemistry highlight their role in the synthesis of structurally diverse compounds with significant therapeutic potential, demonstrating creative chemical methods for building complex molecular structures.
1 Introduction
2 β-Lactam Ring Synthesis
3 Non-β-Lactam Ring Synthesis
4 Miscellaneous Examples
5 Conclusion and Outlook
Key words
spirocyclic β-lactams - cycloaddition - cyclization - Cu catalysis - ketene formation - NHC-catalyzed annulationPublication History
Received: 30 May 2024
Accepted after revision: 17 July 2024
Accepted Manuscript online:
18 July 2024
Article published online:
27 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rice LB. Mayo Clin. Proc. 2012; 87: 198
- 1b Assefa GM, Roberts JA, Mohammed SA, Sime FB. J. Antimicrob. Chemother. 2024; 79: 946
- 1c Le Terrier C, Nordmann P, Freret C, Seigneur M, Poirel L. Antimicrob. Agents Chemother. 2023; 67: e00339-23
- 1d Bush K, Bradford PA. Cold Spring Harbor Perspect. Med. 2016; 6: a025247
- 1e Chupakhin E, Babich O, Prosekov A, Asyakina L, Krasavin M. Molecules 2019; 24: 4165
- 1f Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 2a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 2b Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011
- 2c Jarrahpour A, Ebrahimi E, De Clercq E, Sinou V, Latour C, Bouktab LD, Brunel JM. Tetrahedron 2011; 67: 8699
- 3a Chen LY, Zaks A, Chackalamannil S, Dugar S. J. Org. Chem. 1996; 61: 8341
- 3b Repa JJ, Dietschy JM, Turley SD. J. Lipid Res. 2002; 43: 1864
- 3c Houck DR, Sindelar L, Sanabria CR, Stanworth SH, Krueger M, Suh M, Madsen TM. Clin. Transl. Sci. 2019; 12: 164
- 3d Alves AJ. S, Alves NG, Caratão CC, Esteves MI. M, Fontinha D, Bártolo I, Soares MI. L, Lopes SM. M, Prudêncio M, Taveira N, Pinho e Melo TM. V. D. Curr. Top. Med. Chem. 2020; 20: 140
- 3e Wanga QM, Chen SH. Curr. Protein Pept. Sci. 2007; 8: 19
- 3f Scott JS, Goldberg FW, Turnbull AV. J. Med. Chem. 2014; 57: 4466
- 4 Bittermann H, Gmeiner P. J. Org. Chem. 2006; 71: 97
- 5a Hosseyni S, Jarrahpour A. Org. Biomol. Chem. 2018; 16: 6840
- 5b Leite TH. O, Saraiva MF, Pinheiro AC, de Souza MV. N. Mini Rev. Med. Chem. 2020; 20: 1653
- 5c Alves NG, Alves AJ. S, Soares MI. L, Pinho e Melo TM. V. D. Adv. Synth. Catal. 2021; 363: 2464
- 5d Deketelaere S, Nguyen TV, Stevens CV, D’hooghe M. ChemistryOpen 2017; 6: 301
- 5e Dutta S, Chatterjee S, Al-Thabaiti SA, Bawaked S, Mokhtar M, Maiti D. Chem Catal. 2022; 2: 1046
- 5f Saura-Sanmartin A, Andreu-Ardil L. Org. Biomol. Chem. 2023; 21: 3296
- 5g Wang P, Yang D, Liu H. Chin. J. Org. Chem. 2021; 41: 3448
- 5h Zhang X, Jia Y. Curr. Top. Med. Chem. 2020; 20: 1468
- 5i Lima LM, da Silva BN. M, Barbosa G, Barreiro EJ. Eur. J. Med. Chem. 2020; 208: 112829
- 5j Sahoo BM, Banik BK. Therapeutics Potentials of β-Lactam: A Scaffold for New Drug Development. In Synthetic Approaches to Nonaromatic Nitrogen Heterocycles. Philips AM. M. M. F. John Wiley & Sons; Hoboken: 2020: 59
- 5k Fu DJ, Zhang YF, Chang AQ, Li J. Eur. J. Med. Chem. 2020; 201: 112510
- 5l Olney KB, Thomas JK, Johnson WM. Pharmacotherapy 2023; 43: 713
- 5m Russo C, Humphries R. Antibiotics 2023; 12: 1700
- 5n Jacobs LM. C, Consol P, Chen Y. Antibiotics 2024; 13: 59
- 6a Wu X, Yang K, Zhao Y, Sun H, Li G, Ge H. Nat. Commun. 2015; 6: 6462
- 6b Hwang Y, Park Y, Kim YB, Kim D, Chang S. Angew. Chem. Int. Ed. 2018; 57: 13565
- 6c Winkler M, Maynadier M, Wein S, Lespinasse M.-A, Boumis G, Miele AE, Vial H, Wong Y.-S. Org. Biomol. Chem. 2015; 13: 2064
- 6d Wallbaum L, Weismann D, Löber D, Bruhn C, Prochnow P, Bandow JE, Siemeling U. Chem. Eur. J. 2019; 25: 1488
- 6e Fang Y, Liao G, Guo H, Yu B, Liu H.-M. Steroids 2020; 159: 108635
- 6f Gomes LF. R, Veiros LF, Maulide N, Afonso CA. M. Chem. Eur. J. 2015; 21: 1449
- 6g Palomo C, Aizpurua JM, Ganboa I, Oiarbide M. Eur. J. Org. Chem. 1999; 3223
- 6h Pitts CR, Lectka T. Chem. Rev. 2014; 114: 7930
- 6i Karlsson S, Bergman R, Löfberg C, Moore PR, Pontén F, Tholander J, Sörensen H. Org. Process Res. Dev. 2015; 19: 2067
- 6j Chen L, Zhao G, Ding Y. Tetrahedron Lett. 2003; 44: 2611
- 6k Xu M.-H, Su L. Synthesis 2016; 48: 2595
- 7a Thi HD, Danneels B, Desmet T, Hecke KV, Nguyen TV, D’hooghe M. Asian J. Org. Chem. 2016; 5: 1480
- 7b Kumar Y, Bedi PM. S, Singh P, Adeniyi AA, Singh-Pillay A, Singh P, Bhargava G. ChemistrySelect 2018; 3: 9484
- 7c Li S, Cao W.-J, Ma J.-A. Synlett 2016; 28: 673
- 7d Luo S.-Q, Liu W, Ruan B.-F, Fan S.-L, Zhu HX, Tao W, Xiao H. Org. Biomol. Chem. 2020; 18: 4599
- 7e Ren X.-F, Turos E, Lake CH, Churchill MR. J. Org. Chem. 1995; 60: 6468
- 7f Bhalla A, Bari SS, Bhalla J, Khullar S, Mandal S. Tetrahedron Lett. 2016; 57: 2822
- 7g Reshma, Arora R, Hundal G, Bhalla A, Bari SS. J. Chem. Sci. 2015; 127: 1957
- 8a Lenci E, Innocenti R, Menchi G, Trabocchi A. Front. Chem. 2018; 6: 522
- 8b Heiran R, Sepehri S, Jarrahpour A, Digiorgio C, Douafer H, Brunel JM, Gholami A, Riazimontazer E, Turos E. Bioorg. Chem. 2020; 102: 104091
- 8c Filatov V, Kukushkin M, Kuznetsova J, Skvortsov D, Tafeenko V, Zyk N, Majouga A, Beloglazkina E. RSC Adv. 2020; 10: 14122
- 8d Jarrahpour A, Rezaei S, Sinou V, Latour C, Brunel JM. Iran. J. Sci. Technol., Trans. A Sci. 2016; 41: 337
- 9a Shu T, Zhao L, Li S, Chen XY, von Essen C, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2018; 57: 10985
- 9b Chigrinova M, MacKenzie DA, Sherratt AR, Cheung LL. W, Pezacki JP. Molecules 2015; 20, 6959
- 9c Zhang HM, Gao ZH, Ye S. Org Lett. 2014; 16: 3079
- 9d Li MM, Chen X, Deng Y, Lu J. RSC Adv. 2021; 11: 38060
- 10a van der Steen FH, van Koten G. Tetrahedron 1991; 47: 7503
- 10b Gordon K, Bogler M, Khan N, Balasubramanian S. Tetrahedron Lett. 2000; 41: 8621
- 10c Janssen GV, van den Heuvel JA. C, Megens RP, Benningshof JC. J, Ovaa H. Bioorg. Med. Chem. 2018; 26: 41
- 10d Sole D, Perez-Janer F, Bennasar ML, Fernandez I. Eur. J. Org. Chem. 2018; 4446
- 10e Jin JH, Zhao JH, Yang WL, Deng WP. Adv. Synth. Catal. 2019; 361: 1592
- 11a Shintani R, Fu GC. Angew. Chem. Int. Ed. 2003; 42: 4082
- 11b Chen JH, Liao SH, Sun XL, Shen Q, Tang Y. Tetrahedron 2012; 68: 5042
- 11c Zhang X, Hsung RP, Li H, Zhang Y, Johnson WL, Figueroa R. Org. Lett. 2008; 10: 3477
- 11d Michalak M, Stodulski M, Stecko S, Mames A, Panfil I, Soluch M, Furman B, Chmielewski M. J. Org. Chem. 2011; 76: 6931
- 11e Saito T, Kikuchi T, Tanabe H, Yahiro J, Otani T. Tetrahedron Lett. 2009; 50: 4969
- 12a Tlidjane H, Chafai N, Chafaa S, Bensouici C, Benbouguerra K. J. Mol. Struct. 2022; 1250: 131853
- 12b Kumarasamy E, Ayitou AJ.-L, Vallavoju N, Raghunathan R, Iyer A, Clay A, Kandappa SK, Sivaguru J. Acc. Chem. Res. 2016; 49: 2713
- 12c Nakane Y, Nakazaki A, Nishikawa T. J. Org. Chem. 2020; 85: 7534
- 13a Jarrahpour A, Zarei M. Tetrahedron Lett. 2007; 48: 8712
- 13b Zarei M. J. Chem. Res. 2013; 25: 47
- 13c Govande VV, Arun M, Deshmukh AR. A. S, Bhawal BM. Synth. Commun. 2000; 30: 4177
- 13d Berry S, Bari SS, Yadav P, Garg A, Khullar S, Mandal SK, Bhalla A. Synth. Commun. 2020; 50: 2969
- 13e Bhalla A, Modi G, Yadav P, Kumar P, Bari SS, Hundal G. Tetrahedron Lett. 2020; 61: 152098
- 13f Krishnaswamy D, Bhawal BM, Deshmukh AR. A. S. Tetrahedron Lett. 2000; 41: 417
- 13g Bhalla A, Madan S, Venugopalan P, Bari SS. Tetrahedron 2006; 62: 5054
- 13h Al-Rawi MS, Hussei DF, Al-Taie AF, Al-Halbosiy MM, Hameed BA. J. Phys. Conf. Ser. 2018; 1003: 012012
- 13i Saini P, Bari SS, Yadav P, Khullar S, Mandal SK, Bhalla A. ChemistrySelect 2022; 7: e202202172
- 14a Gilman H, Speeter M. J. Am. Chem. Soc. 1943; 65: 2255
- 14b Maestro A, de Marigorta EM, Palacios F, Vicario J. Org. Lett. 2019; 21: 9473
- 14c Borey N, Gloanec P, Nanteuil GD, Jubault P, Quirion JC. Eur. J. Org. Chem. 2008; 4277
- 15a Golubev AA, Smetanin IA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Starova GL, Novikov MS. Org. Biomol. Chem. 2019; 17: 6821
- 15b Mei G.-J, Shi F. Chem. Commun. 2018; 54: 6607
- 15c Ding A, Meazza M, Guo H, Yang JW, Rios R. Chem. Soc. Rev. 2018; 47: 5946
- 15d Xu J, Yuan S, Peng J, Miao M, Chen Z, Ren H. Chem. Commun. 2017; 53: 3430
- 15e Leng H.-J, Li Q.-Z, Xiang P, Qi T, Dai Q.-S, Jia Z.-Q, Gou C, Zhang X, Li J.-L. Org. Lett. 2021; 23: 1451
- 15f Xiong Y, Großkopf J, Jandl C, Bach T. Angew. Chem. Int. Ed. 2022; 61: e202200555
- 15g Zhong X, Huang M, Xiong H, Liang Y, Zhou W, Cai Q. Angew. Chem. Int. Ed. 2022; 61: e202208323
- 16 Li J, Ma H, Zhong X, Li S, Zhang J, Ao Y, Zhou W, Cai Q. Org. Chem. Front. 2023; 10: 5383
- 17 Torelli A, Choi ES, Dupeux A, Perner MN, Lautens M. Org. Lett. 2023; 25: 8520
- 18a Bellettini JR, Miller MJ. J. Org. Chem. 1996; 61: 7959
- 18b Durham TB, Miller MJ. J. Org. Chem. 2003; 68: 27
- 18c Walz AJ, Miller MJ. Tetrahedron Lett. 2007; 48: 5103
- 18d Trevino AR, Pandiri S, Loch-Temzelides P, Kirkland J, Davenport M, Aguinaga U, Yousufuddin M, Ess D, Kurti L. ChemRxiv 2023; preprint
- 19a Staudinger H. Justus Liebigs Ann. Chem. 1907; 356: 51
- 19b Xu J. ARKIVOC 2009; (ix): 21
- 19c Jiao L, Liang Y, Xu JX. J. Am. Chem. Soc. 2006; 128: 6060
- 19d Fu N, Tidwell TT. Tetrahedron 2008; 64: 10465
- 20a Ozaki T, Nakagawara A. Cancers 2011; 3: 994
- 20b Shaikh MF, Morano WF, Lee J, Gleeson E, Babcock BD, Michl J, Sarafraz-Yazdi E, Pincus MR, Bowne WB. Ann. Clin. Lab. Sci. 2016; 46: 627
- 20c Wade M, Wahl GM. Mol. Cancer Res. 2009; 7: 1
- 20d Ivanenkov YA, Vasilevski SV, Beloglazkina EK, Kukushkin ME, Machulkin AE, Veselov MS, Chufarova NV, Chernyaginab ES, Vanzcool AS, Zyk NV, Skvortsov DA, Khutornenko AA, Rusanov AL, Tonevitsky AG, Dontsova OA, Majouga AG. Bioorg. Med. Chem. Lett. 2015; 25: 404
- 21a Gollner A, Rudolph D, Arnhof H, Bauer M, Blake SM, Boehmelt G, Cockroft XL, Dahmann G, Ettmayer P, Gerstberger T, Karolyi-Oezguer J, Kessler D, Kofink C, Ramharter J, Rinnenthal J, Savchenko A, Schnitzer R, Weinstabl H, Weyer-Czernilofsky U, Wunberg T, McConnell DB. J. Med. Chem. 2016; 59: 10147
- 21b Aguilar A, Lu J, Liu L, Du D, Bernard D, McEachern D, Przybranowski S, Li X, Luo R, Wen B, Sun D, Wang H, Wen J, Wang G, Zhai Y, Guo M, Yang D, Wang S. J. Med. Chem. 2017; 60: 2819
- 22 Filatov VE, Kuznetsova J, Petrovskaya L, Yuzabchuk D, Tafeenko VA, Zyk NV, Beloglazkina EK. ACS Omega 2021; 6: 22740
- 23a Borazjani N, Behzadi M, Aseman MD, Jaarahpour A, Rad JA, Kianpour S, Iraji A, Nabavizadeh SM, Ghanbari MM, Batta G, Turos E. Med. Chem. Res. 2020; 29: 1355
- 23b Farhan MM, Guma MA, Rabeea MA, Ahmad I, Patel H. J. Mol. Struct. 2022; 1269: 133781
- 23c Bashiri M, Jarrahpour A, Rastegari B, Iraji A, Irajie C. Monatsh. Chem. 2020; 151: 821
- 23d Kirillov NF, Nikiforova EA, Baibarodskikh DV, Zakharova TA, Govorushkin LS. J. Chem. 2019; 7496512
- 23e Bashiri M, Jarrahpour A, Nabavizadeh SM, Karimian S, Rastegari B, Haddadi E, Turos E. Med. Chem. Res. 2021; 30: 258
- 24a De Rosa M, Verdino A, Soriente A, Marabotti A. Int. J. Mol. Sci. 2021; 22: 617
- 24b Habib OM, Mohamed AS, Ibrahim YA, Al-Awadi NA. J. Org. Chem. 2021; 86: 14777
- 24c Mohamed AS, Al-Awadhi FH, Al-Awadi NA. ACS Omega 2022; 7: 36795
- 25 Filatov VE, Iuzabchuk DA, Tafeenko VA, Grishin YK, Roznyatovsky VA, Lukianov DA, Fedotova YA, Sukonnikov MA, Skvortsov DA, Zyk NV. Int. J. Mol. Sci. 2022; 23: 6666
- 26 Jarrahpour A, Jowkar Z, Haghighijoo Z, Heiran R, Rad JA, Sinou V, Rouvier F, Latour C, Brunel JM, Özdemir N. Med. Chem. Res. 2022; 31: 1026
- 27 Mondal P, Mondal S. Curr. Chem. Lett. 2022; 11: 403
- 28 Dabhi RA, Dhaduk MP, Bhatt VD, Bhatt BS. J. Biomol. Struct. Dyn. 2023; 41: 5382
- 29 Tang J, Yan ZH, Yang QQ, Cheng YY, Li X, Huang W. Org. Chem. Front. 2022; 9: 4341
- 30 Popescu MV, Parker NA, Jia Z, Solon P, Alegre-Requena JV, Paton RS, Smith MD. ChemRxiv 2023; preprint
- 31a Kirillov NF, Nikiforova EA, Baibarodskikh DV. Russ. J. Org. Chem. 2015; 51: 518
- 31b Nikiforova EA, Baibarodskikh DV, Kirillov NF, Glavatskikh LA. Russ. J. Org. Chem. 2020; 56: 1029
- 31c Nikiforova EA, Makhmudov RR, Rudin AA, Dmitriev MV, Baibarodskikh DV, Kirillov NF, Zverev DP, Romanov AM. Russ. J. Gen. Chem. 2021; 91: 64
- 32 Nikiforova EA, Makhmudov RR, Zverev DP, Dmitriev MV, Shurov SN, Kirillov NF. Russ. J. Gen. Chem. 2023; 93: 1941
- 33a Alves AJ. S, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2020; 6259
- 33b Hussein M, El Dine AN, Farès F, Dorcet V, Hachem A, Grée R. Tetrahedron Lett. 2016; 57: 1990
- 33c Imai K, Takayama Y, Murayama H, Ohmiya H, Shimizu Y, Sawamura M. Org. Lett. 2019; 21: 1717
- 33d Bhalla A, Venugopalan P, Bari SS. Eur. J. Org. Chem. 2006; 4943
- 33e Narula D, Bari SS, Banik BK, Bhalla A. Asian J. Chem. 2017; 29: 2582
- 34a Yang YY, Shou WG, Hong D, Wang YG. J. Org. Chem. 2008; 73: 3574
- 34b Broccolo F, Cainelli G, Caltabiano G, Cocuzza CE. A, Fortuna CG, Galletti P, Giacomini D, Musumarra G, Musumeci R, Quintavalla A. J. Med. Chem. 2006; 49: 2804
- 34c Cainelli G, Galletti P, Garbisa S, Giacomini D, Sartor L, Quintavalla A. Bioorg. Med. Chem. 2005; 13: 6120
- 34d Giacomini D, Musumeci R, Galletti P, Martelli G, Assennato L, Sacchetti G, Guerrini A, Calaresu E, Martinelli M, Cocuzza C. Eur. J. Med. Chem. 2017; 140: 604
- 34e Giacomini D, Martelli G, Picciche M, Calaresu E, Cocuzza CE, Musumeci R. ChemMedChem 2017; 12: 1525
- 34f Global HIV & AIDS Statistics – 2019 Fact Sheet. UNAIDS; Geneva: 2020. https://www.unaids.org/en/resources/fact-sheet (accessed Aug 06, 2024)
- 34g Understanding Fast-Track: Accelerating Action to End the AIDS Epidemic by 2030. UNAIDS; Geneva: 2015. https://www.unaids.org/en/resources/documents/2015/ 201506_JC2743_Understanding_FastTrack (accessed Aug 06, 2024)
- 35a Bártolo I, Santos BS, Fontinha D, Machado M, Francisco D, Sepodes B, Rocha J, Filipe HM, Pinto R, Figueira ME, Barroso H, Nascimento T, de Matos AP. A, Alves AJ. S, Alves NG, Simões CJ. V, Prudêncio M, Pinho e Melo TM. V. D, Taveira N. ACS Infect. Dis. 2021; 7: 421
- 35b Alves NG, Bártolo I, Alves AJ. S, Fontinha D, Francisco D, Lopes SM. M, Soares MI. L, Simoes CJ. V, Prudencio M, Taveira N, Pinho e Melo TM. V. D. Eur. J. Med. Chem. 2021; 219: 113439
- 35c Alves AJ. S, Alves NG, Bártolo I, Fontinha D, Caetano S, Prudêncio M, Taveira N, Pinho e Melo TM. V. D. Front. Chem. 2022; 10: 1017250
- 35d Alves AJ. S, Silvestre JA. D, Pinho e Melo TM. V. D. RSC Adv. 2022; 12: 30879
- 36a Chmielewski M, Kałuża Z, Furman B. Chem. Commun. 1996; 2689
- 36b Furman B, Borsuk K, Kałuża Z, Lysek R, Chmielewski M. Curr. Org. Chem. 2004; 8: 463
- 36c Cossío FP, Lecea B, Lopez X, Roa G, Arrieta A, Ugalde JM. J. Chem. Soc. 1993; 1450
- 36d József J, Somsák L, Tóth M, Juhász L. Eur. J. Org. Chem. 2023; 26: e202201488
- 37a Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8578
- 37b Nosovska O, Liebing P, Vilotijevic I. Chem. Eur. J. 2024; 30: e202304014
- 38 Yadav P, Kumari S, Kaur J, Sahoo SC, Reenu, Pinnaka AK, Bhalla A. ChemMedChem 2023; 19: e202300505
- 39 Narula D, Bari SS, Yadav P, Khullar S, Mandal SK, Kaur G, Chaudhary GR, Bhalla A. ChemistrySelect 2021; 6: 3932
- 40a Dandia A, Singh R, Laxkar A. J. Serb. Chem. Soc. 2011; 76: 1339
- 40b Cremonesi G, Croce PD, Rosa CL. Tetrahedron 2004; 60: 93
- 40c Jain R, Sharma K, Kumar D. Tetrahedron Lett. 2012; 53: 6236
- 41a Empel C, Pei C, Koenigs RM. Chem. Commun. 2022; 58: 2788
- 41b Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
- 42a Qin C, Davies HM. L. J. Am. Chem. Soc. 2014; 136: 9792
- 42b Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
- 42c Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
- 43 Mondal AR. S, Ghorai B, Hari DP. Org. Lett. 2023; 25: 4974