Diabetologie und Stoffwechsel 2024; 19(S 02): S167-S185
DOI: 10.1055/a-2374-0813
DDG-Praxisempfehlung

Diagnostik, Therapie und Verlaufskontrolle des Typ-1-Diabetes mellitus im Kindes- und Jugendalter

Martin Holder
1   Olgahospital, Klinikum Stuttgart, Stuttgart, Deutschland
,
Clemens Kamrath
2   Universitäts-Kinderklinik Freiburg, Freiburg, Deutschland
,
Karin Lange
3   Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
,
Sebastian Kummer
4   Universitäts-Kinderklinik Düsseldorf, Düsseldorf, Deutschland
,
Ralph Ziegler
5   Diabetologische Schwerpunktpraxis für Kinder und Jugendliche, Münster, Deutschland
› Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.



Publication History

Article published online:
21 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Buchmann M, Tuncer O, Auzanneau M. et al. Inzidenz, Prävalenz und Versorgung von Typ-1-Diabetes bei Kindern und Jugendlichen in Deutschland: Zeittrends und sozialräumliche Lage. J Health Monit 2023; 8: 59-81
  • 2 Stahl-Pehe A, Kamrath C, Prinz N. et al. Prevalence of type 1 and type 2 diabetes in children and adolescents in Germany from 2002 to 2020: A study based on electronic health record data from the DPV registry. J Diabetes 2022; 14: 840-850
  • 3 Ehehalt S, Blumenstock G, Willasch AM. et al. Continuous rise in incidence of childhood Type 1 diabetes in Germany. Diabet Med 2008; 25: 755-757
  • 4 Neu A, Ehehalt S, Bendas A. et al. Incidence of childhood type 1 diabetes in Germany: A nationwide survey over a period of ten years. Pediatr Diabetes 2013; 14: 119
  • 5 Rosenbauer J, Castillo K, Stahl-Pehe A. Recent incidence trends of type 1 diabetes in children and adolescents in Germany. Pediatr Diabetes 2014; 15: 78
  • 6 Robert Koch-Institut (RKI). RKI Diabetes Surveillance Kooperationsprojekte 2020. 2020
  • 7 Roche EF, McKenna AM, Ryder KJ. et al. Is the incidence of type 1 diabetes in children and adolescents stabilising? The first 6 years of a National Register. Eur J Pediatr 2016; 175: 1913-1919
  • 8 Abbasi A, Juszczyk D, van Jaarsveld CHM. et al. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J Endocr Soc 2017; 1: 524-537
  • 9 Dabelea D, Bell RA, D'Agostino RB. et al. Incidence of diabetes in youth in the United States. JAMA 2007; 297: 2716-2724
  • 10 Lawrence JM, Divers J, Isom S. et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001–2017. JAMA 2021; 326: 717-727
  • 11 Neu A, Feldhahn L, Ehehalt S. et al. Type 2 diabetes mellitus in children and adolescents is still a rare disease in Germany: A population-based assessment of the prevalence of type 2 diabetes and MODY in patients aged 0–20 years. Pediatr Diabetes 2009; 10: 468-473
  • 12 Denzer C, Rosenbauer J, Klose D. et al. Is COVID-19 to Blame? Trends of Incidence and Sex Ratio in Youth-Onset Type 2 Diabetes in Germany. Diabetes Care 2023; 46: 1379-1387
  • 13 American Diabetes Association (ADA). Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45 (Suppl. 01)
  • 14 Philip M, Achenbach P, Addala A. et al. Consensus Guidance for Monitoring Individuals with Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetes Care 2024; 47: 1-23
  • 15 Krischer JP, Liu X, Lernmark Å. et al. Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study. Diabetologia 2021; 64: 2247-2257
  • 16 Ziegler AG, Rewers M, Simell O. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013; 309: 2473-2479
  • 17 Herold KC, Bundy BN, Long SA. et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med 2019; 381: 603-613
  • 18 Sims EK, Bundy BN, Stier K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 2021; 13: eabc8980
  • 19 Elding Larsson H, Vehik K, Bell R. et al. Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 2011; 34: 2347-2352
  • 20 Hekkala AM, Ilonen J, Toppari J. et al. Ketoacidosis at diagnosis of type 1 diabetes: Effect of prospective studies with newborn genetic screening and follow up of risk children. Pediatr Diabetes 2018; 19: 314-319
  • 21 Hummel S, Carl J, Friedl N. et al. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 2023; 66: 1633-1642
  • 22 Jacobsen LM, Vehik K, Veijola R. et al. Heterogeneity of DKA Incidence and Age-Specific Clinical Characteristics in Children Diagnosed With Type 1 Diabetes in the TEDDY Study. Diabetes Care 2022; 45: 624-633
  • 23 American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45 (Suppl. 01)
  • 24 Mayer-Davis EJ, Lawrence JM, Dabelea D. et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N Engl J Med 2017; 376: 1419-1429
  • 25 Patterson CC, Harjutsalo V, Rosenbauer J. et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: A multicentre prospective registration study. Diabetologia 2019; 62: 408-417
  • 26 International Society for Pediatric and Adolescent Diabetes (ISPAD). ISPAD Clinical Practice Consensus Guidelines 2022. 2022 https://www.ispad.org/page/ISPADGuidelines2022
  • 27 Watkins RA, Evans-Molina C, Blum JS. et al. Established and emerging biomarkers for the prediction of type 1 diabetes: A systematic review. Transl Res 2014; 164: 110-121
  • 28 Zhang L, Eisenbarth GS. Prediction and prevention of Type 1 diabetes mellitus. J Diabetes 2011; 3: 48-57
  • 29 Arslanian S, Bacha F, Grey M. et al. Evaluation and Management of Youth-Onset Type 2 Diabetes: A Position Statement by the American Diabetes Association. Diabetes Care 2018; 41: 2648-2668
  • 30 Kuppermann N, Ghetti S, Schunk JE. et al. Clinical Trial of Fluid Infusion Rates for Pediatric Diabetic Ketoacidosis. N Engl J Med 2018; 378: 2275-2287
  • 31 Rewers A, Kuppermann N, Stoner MJ. et al. Effects of Fluid Rehydration Strategy on Correction of Acidosis and Electrolyte Abnormalities in Children With Diabetic Ketoacidosis. Diabetes Care 2021; 44: 2061-2068
  • 32 Bode BW, Iotova V, Kovarenko M. et al. Efficacy and Safety of Fast-Acting Insulin Aspart Compared With Insulin Aspart, Both in Combination With Insulin Degludec, in Children and Adolescents With Type 1 Diabetes: The onset 7 Trial. Diabetes Care 2019; 42: 1255-1262
  • 33 Danne T, Lüpke K, Walte K. et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. Diabetes Care 2003; 26: 3087-3092
  • 34 Danne T, Råstam J, Odendahl R. et al. Parental preference of prandial insulin aspart compared with preprandial human insulin in a basal-bolus scheme with NPH insulin in a 12-wk crossover study of preschool children with type 1 diabetes. Pediatr Diabetes 2007; 8: 278-285
  • 35 Wadwa RP, Laffel LM, Franco DR. et al. Efficacy and safety of ultra-rapid lispro versus lispro in children and adolescents with type 1 diabetes: The PRONTO-Peds trial. Diabetes Obes Metab 2023; 25: 89-97
  • 36 Chase HP, Arslanian S, White NH. et al. Insulin glargine versus intermediate-acting insulin as the basal component of multiple daily injection regimens for adolescents with type 1 diabetes mellitus. J Pediatr 2008; 153: 547-553
  • 37 Danne T, Philotheou A, Goldman D. et al. A randomized trial comparing the rate of hypoglycemia-assessed using continuous glucose monitoring in 125 preschool children with type 1 diabetes treated with insulin glargine or NPH insulin (the PRESCHOOL study). Pediatr Diabetes 2013; 14: 593-601
  • 38 Danne T, Tamborlane WV, Malievsky OA. et al. Efficacy and Safety of Insulin Glargine 300 Units/mL (Gla-300) Versus Insulin Glargine 100 Units/mL (Gla-100) in Children and Adolescents (6–17 years) With Type 1 Diabetes: Results of the EDITION JUNIOR Randomized Controlled Trial. Diabetes Care 2020; 43: 1512-1519
  • 39 Hemmingsen B, Metzendorf M-I, Richter B. (Ultra-)long-acting insulin analogues for people with type 1 diabetes mellitus. Cochrane Database Syst Rev 2021; 3: CD013498
  • 40 Liu M, Zhou Z, Yan J. et al. A randomised, open-label study of insulin glargine or neutral protamine Hagedorn insulin in Chinese paediatric patients with type 1 diabetes mellitus. BMC Endocr Disord 2016; 16: 67
  • 41 Robertson KJ, Schoenle E, Gucev Z. et al. Insulin detemir compared with NPH insulin in children and adolescents with Type 1 diabetes. Diabet Med 2007; 24: 27-34
  • 42 Schober E, Schoenle E, van Dyk J. et al. Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes. Diabetes Care 2001; 24: 2005-2006
  • 43 Thalange N, Bereket A, Larsen J. et al. Insulin analogues in children with Type 1 diabetes: A 52-week randomized clinical trial. Diabet Med 2013; 30: 216-225
  • 44 Urakami T, Mine Y, Aoki M. et al. A randomized crossover study of the efficacy and safety of switching from insulin glargine to insulin degludec in children with type 1 diabetes. Endocr J 2017; 64: 133-140
  • 45 Libman IM, Miller KM, Dimeglio LA. et al. Effect of Metformin Added to Insulin on Glycemic Control Among Over-weight/Obese Adolescents With Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2015; 314: 2241-2250
  • 46 Liu Y-S, Chen C-N, Chen Z-G. et al. Vascular and metabolic effects of metformin added to insulin therapy in patients with type 1 diabetes: A systematic review and meta-analysis. Diabetes Metab Res Rev 2020; 36: e3334
  • 47 Adolfsson P, Björnsson V, Hartvig NV. et al. Improved Glycemic Control Observed in Children with Type 1 Diabetes Fol-lowing the Introduction of Smart Insulin Pens: A Real-World Study. Diabetes Ther 2022; 13: 43-56
  • 48 Adolfsson P, Hartvig NV, Kaas A. et al. Increased Time in Range and Fewer Missed Bolus Injections After Introduction of a Smart Connected Insulin Pen. Diabetes Technol Ther 2020; 22: 709-718
  • 49 Toschi E, Slyne C, Greenberg JM. et al. Examining the Relationship Between Pre- and Postprandial Glucose Levels and Insulin Bolus Timing Using Bluetooth-Enabled Insulin Pen Cap Technology and Continuous Glucose Monitoring. Diabetes Technol Ther 2020; 22: 19-24
  • 50 Dos Santos TJ, Donado Campos JdM, Argente J. et al. Effectiveness and equity of continuous subcutaneous insulin infusions in pediatric type 1 diabetes: A systematic review and meta-analysis of the literature. Diabetes Res Clin Pract 2021; 172: 108643
  • 51 Kamrath C, Tittel SR, Kapellen TM. et al. Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: Results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health 2021; 5: 17-25
  • 52 Qin Y, Yang LH, Huang XL. et al. Efficacy and Safety of Continuous Subcutaneous Insulin Infusion vs. Multiple Daily Injections on Type 1 Diabetes Children: A Meta-Analysis of Randomized Control Trials. J Clin Res Pediatr Endocrinol 2018; 10: 316-323
  • 53 Rosner B, Roman-Urrestarazu A. Health-related quality of life in paediatric patients with Type 1 diabetes mellitus using insulin infusion systems. A systematic review and meta-analysis. PLoS ONE 2019; 14: e0217655
  • 54 Schöttler H, Auzanneau M, Best F. et al. Insulinpumpe, kontinuierliche und kapilläre Glukosemessung bei Kindern, Jugendlichen und Erwachsenen mit Diabetes mellitus: Daten des DPV-Registers zwischen 1995–2019. Diabetol Stofffwechs 2020; 15: 477-486
  • 55 Karges B, Schwandt A, Heidtmann B. et al. Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes: 1358–1366. JAMA 2017; 318: 1358-1366
  • 56 Ridder F de, den Brinker M, Block C de. The road from intermittently scanned continuous glucose monitoring to hybrid closed-loop systems. Part B: Results from randomized controlled trials. Ther Adv Endocrinol Metab 2019; 10: 2042018819871903
  • 57 Evans M, Welsh Z, Ells S. et al. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther 2020; 11: 83-95
  • 58 Karges B, Tittel SR, Bey A. et al. Continuous glucose monitoring versus blood glucose monitoring for risk of severe hypo-glycaemia and diabetic ketoacidosis in children, adolescents, and young adults with type 1 diabetes: A population-based study. Lancet Diabetes Endocrinol 2023; 11: 314-323
  • 59 Champakanath A, Akturk HK, Alonso GT. et al. Continuous Glucose Monitoring Initiation Within First Year of Type 1 Dia-betes Diagnosis Is Associated With Improved Glycemic Outcomes: 7-Year Follow-Up Study. Diabetes Care 2022; 45: 750-753
  • 60 Laffel LM, Kanapka LG, Beck RW. et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adolescents and Young Adults With Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2020; 323: 2388-2396
  • 61 Kanapka LG, Wadwa RP, Breton MD. et al. Extended Use of the Control-IQ Closed-Loop Control System in Children With Type 1 Diabetes. Diabetes Care 2021; 44: 473-478
  • 62 Ware J, Allen JM, Boughton CK. et al. Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes. N Engl J Med 2022; 386: 209-219
  • 63 Isganaitis E, Raghinaru D, Ambler-Osborn L. et al. Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults: Outcomes from the International Diabetes Closed-Loop Trial. Diabetes Technol Ther 2021; 23: 342-349
  • 64 Bombaci B, Passanisi S, Alibrandi A. et al. One-Year Real-World Study on Comparison among Different Continuous Subcutaneous Insulin Infusion Devices for the Management of Pediatric Patients with Type 1 Diabetes: The Supremacy of Hybrid Closed-Loop Systems. Int J Environ Res Public Health 2022; 19: 10293
  • 65 Zeng B, Gao L, Yan Q. et al. Automated Insulin Delivery Systems in Children and Adolescents With Type 1 Diabetes: A Systematic Review and Meta-analysis of Outpatient Randomized Controlled Trials. Diabetes Care 2023; 46: 2300-2307
  • 66 Eckstein ML, Weilguni B, Tauschmann M. et al. Time in Range for Closed-Loop Systems versus Standard of Care during Physical Exercise in People with Type 1 Diabetes: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10: 2445
  • 67 Beck RW, Bergenstal RM, Cheng P. et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c . J Diabetes Sci Technol 2019; 13: 614-626
  • 68 Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr 1994; 125: 177-188
  • 69 Karges B, Tittel SR, Bey A. et al. Continuous glucose monitoring versus blood glucose monitoring for risk of severe hypo-glycaemia and diabetic ketoacidosis in children, adolescents, and young adults with type 1 diabetes: A population-based study. Lancet Diabetes Endocrinol 2023; 11: 314-323
  • 70 Lind M, Pivodic A, Svensson A-M. et al. HbA1c level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ 2019; 366: l4894
  • 71 Bergenstal RM, Beck RW, Close KL. et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care 2018; 41: 2275-2280
  • 72 Kersting M, Kalhoff H, Lücke T. Von Nährstoffen zu Lebensmitteln und Mahlzeiten: Das Konzept der Optimierten Mischkost für Kinder und Jugendliche in Deutschland. Aktuel Ernahrungsmed 2017; 42: 304-315
  • 73 Annan SF, Higgins LA, Jelleryd E. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2022; 23: 1297-1321
  • 74 Gilbertson HR, Reed K, Clark S. et al. An audit of the dietary intake of Australian children with type 1 diabetes. Nutr Diabetes 2018; 8: 10
  • 75 Fiordalisi I, Novotny WE, Holbert D. et al. An 18-yr prospective study of pediatric diabetic ketoacidosis: An approach to minimizing the risk of brain herniation during treatment. Pediatr Diabetes 2007; 8: 142-149
  • 76 Glaser N, Fritsch M, Priyambada L. et al. ISPAD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2022; 23: 835-856
  • 77 Glaser NS, Wootton-Gorges SL, Buonocore MH. et al. Frequency of sub-clinical cerebral edema in children with diabetic ketoacidosis. Pediatr Diabetes 2006; 7: 75-80
  • 78 Glaser N, Fritsch M, Priyambada L. et al. ISPAD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2022; 23: 835-856
  • 79 Craig ME, Twigg SM, Donaghue KC. et al. National evidence-based clinical care guidelines for type 1 diabetes in children, adolescents and adults. Canberra: Australian Government Department of Health and Ageing; 2011
  • 80 Edge JA, Jakes RW, Roy Y. et al. The UK case-control study of cerebral oedema complicating diabetic ketoacidosis in children. Diabetologia 2006; 49: 2002-2009
  • 81 Banks CJ, Furyk JS. Review article: Hypertonic saline use in the emergency department. Emerg Med Australas 2008; 20: 294-305
  • 82 Franklin B, Liu J, Ginsberg-Fellner F. Cerebral edema and ophthalmoplegia reversed by mannitol in a new case of insulin-dependent diabetes mellitus. Pediatrics 1982; 69: 87-90
  • 83 Hanas R, Lindgren F, Lindblad B. Diabetic ketoacidosis and cerebral oedema in Sweden – a 2-year paediatric population study. Diabet Med 2007; 24: 1080-1085
  • 84 Roberts MD, Slover RH, Chase HP. Diabetic ketoacidosis with intracerebral complications. Pediatr Diabetes 2001; 2: 109-114
  • 85 Muir AB, Quisling RG, Yang MCK. et al. Cerebral edema in childhood diabetic ketoacidosis: Natural history, radiographic findings, and early identification. Diabetes Care 2004; 27: 1541-1546
  • 86 Battelino T, Danne T, Bergenstal RM. et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019; 42: 1593-15603
  • 87 Clarke W, Jones T, Rewers A. et al. Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2008; 9: 165-174
  • 88 Pacaud D, Hermann JM, Karges B. et al. Risk of recurrent severe hypoglycemia remains associated with a past history of severe hypoglycemia up to 4 years: Results from a large prospective contemporary pediatric cohort of the DPV initiative. Pediatr Diabetes 2018; 19: 493-500
  • 89 Braune K, Boss K, Schmidt-Herzel J. et al. Shaping Workflows in Digital and Remote Diabetes Care During the COVID-19 Pandemic via Service Design: Prospective, Longitudinal, Open-label Feasibility Trial. JMIR Mhealth Uhealth 2021; 9: e24374
  • 90 von Sengbusch S, Doerdelmann J, Lemke S. et al. Parental expectations before and after 12-month experience with video consultations combined with regular outpatient care for children with type 1 diabetes: A qualitative study. Diabet Med 2021; 38: e14410
  • 91 Crossen SS, Marcin JP, Qi L. et al. Home Visits for Children and Adolescents with Uncontrolled Type 1 Diabetes. Diabetes Technol Ther 2020; 22: 34-41
  • 92 Gandrud L, Altan A, Buzinec P. et al. Intensive remote monitoring versus conventional care in type 1 diabetes: A randomized controlled trial. Pediatr Diabetes 2018;
  • 93 Reid MW, Krishnan S, Berget C. et al. CoYoT1 Clinic: Home Telemedicine Increases Young Adult Engagement in Diabetes Care. Diabetes Technol Ther 2018; 20: 370-379
  • 94 von Sengbusch S, Eisemann N, Mueller-Godeffroy E. et al. Outcomes of monthly video consultations as an add-on to regular care for children with type 1 diabetes: A 6-month quasi-randomized clinical trial followed by an extension phase. Pediatr Diabetes 2020; 21: 1502-1515
  • 95 Cameron FJ, Beaufort C de, Aanstoot HJ. et al. Lessons from the Hvidoere International Study Group on childhood diabetes: Be dogmatic about outcome and flexible in approach. Pediatr Diabetes 2013; 14: 473-480
  • 96 Weerdt de I, Visser AP, Kok GJ. et al. Randomized controlled multicentre evaluation of an education programme for insulin-treated diabetic patients: Effects on metabolic control, quality of life, and costs of therapy. Diabet Med 1991; 8: 338-345
  • 97 American Association of Diabetes Educators (ADCES). Management of Children With Diabetes in the School Setting. Diabetes Educ 2019; 45: 54-59
  • 98 Jackson CC, Albanese-O'Neill A, Butler KL. et al. Diabetes care in the school setting: A position statement of the American Diabetes Association. Diabetes Care 2015; 38: 1958-1963
  • 99 Lange K, Klotmann S, Saßmann H. et al. A pediatric diabetes toolbox for creating centres of reference. Pediatr Diabetes 2012; 13: 49-61
  • 100 Martin D, Lange K, Sima A. et al. Recommendations for age-appropriate education of children and adolescents with diabetes and their parents in the European Union. Pediatr Diabetes 2012; 13: 20-28
  • 101 Arslanian S, Bacha F, Grey M. et al. Evaluation and Management of Youth-Onset Type 2 Diabetes: A Position Statement by the American Diabetes Association. Diabetes Care 2018; 41: 2648-2668
  • 102 Gemeinsamer Bundesausschuss (G-BA). Richtlinie des Gemeinsamen Bundesausschusses über die 21. Änderung der DMP-Anforderungen-Richtlinie (DMP-A-RL): Änderung der Anlage 7 (DMP Diabetes mellitus Typ 1) und der Anlage 8 (DMP Diabetes mellitus Typ 1 und Typ 2 – Dokumentation). 2020 Accessed September 25, 2022 at: https://www.g-ba.de/downloads/40–268–6304/2020–01–16_DMP-A-RL_Aenderung-Anlage-7–8-DMP-Diabetes-mellitus_Servicedokument.pdf
  • 103 Fegan-Bohm K, Minard CG, Anderson BJ. et al. Diabetes distress and HbA1c in racially/ethnically and socioeconomically diverse youth with type 1 diabetes. Pediatr Diabetes 2020; 21: 1362-1369
  • 104 Gruhn MA, Lord JH, Jaser SS. Collaborative and Overinvolved Parenting Differentially Predict Outcomes in Adolescents With Type 1 Diabetes. Health Psychol 2016; 21
  • 105 Hood KK, Rausch JR, Dolan LM. Depressive symptoms predict change in glycemic control in adolescents with type 1 diabetes: Rates, magnitude, and moderators of change. Pediatr Diabetes 2011; 12: 718-723
  • 106 Stanek KR, Noser AE, Patton SR. et al. Stressful life events, parental psychosocial factors, and glycemic management in school-aged children during the 1 year follow-up of new-onset type 1 diabetes. Pediatr Diabetes 2020; 21: 673-680
  • 107 DeCosta P, Grabowski D, Skinner TC. The psychosocial experience and needs of children newly diagnosed with type 1 diabetes from their own perspective: A systematic and narrative review. Diabet Med 2020; 37: 1640-1652
  • 108 Dehn-Hindenberg A, Saßmann H, Berndt V. et al. Long-term Occupational Consequences for Families of Children With Type 1 Diabetes: The Mothers Take the Burden. Diabetes Care 2021; 44: 2656-2663
  • 109 Schwartz DD, Cline VD, Axelrad ME. et al. Feasibility, acceptability, and predictive validity of a psychosocial screening program for children and youth newly diagnosed with type 1 diabetes. Diabetes Care 2011; 34: 326-331
  • 110 Zenlea IS, Mednick L, Rein J. et al. Routine behavioral and mental health screening in young children with type 1 diabetes mellitus. Pediatr Diabetes 2014; 15: 384-388
  • 111 Zhao X, Ai Z, Chen Y. et al. The Effectiveness of Parenting Interventions on Psychosocial Adjustment in Parents of Children and Adolescents with Type 1 Diabetes: A Meta-Analysis. Worldviews Evid Based Nurs 2019; 16: 462-469
  • 112 Berger G, Waldhoer T, Barrientos I. et al. Association of insulin-manipulation and psychiatric disorders: A systematic epidemiological evaluation of adolescents with type 1 diabetes in Austria. Pediatr Diabetes 2019; 20: 127-136
  • 113 Cooper MN, Lin A, Alvares GA. et al. Psychiatric disorders during early adulthood in those with childhood onset type 1 diabetes: Rates and clinical risk factors from population-based follow-up. Pediatr Diabetes 2017; 18: 599-606
  • 114 Dybdal D, Tolstrup JS, Sildorf SM. et al. Increasing risk of psychiatric morbidity after childhood onset type 1 diabetes: A population-based cohort study. Diabetologia 2018; 61: 831-828
  • 115 Reynolds KA, Helgeson VS. Children with diabetes compared to peers: Depressed? Distressed? A meta-analytic review. Ann Behav Med 2011; 42: 29-41
  • 116 Browne JL, Nefs G, Pouwer F. et al. Depression, anxiety and self-care behaviours of young adults with Type 2 diabetes: Results from the International Diabetes Management and Impact for Long-term Empowerment and Success (MILES) Study. Diabet Med 2015; 32: 133-140
  • 117 Roberts AJ, Bao H, Qu P. et al. Mental health comorbidities in adolescents and young adults with type 2 diabetes. J Pediatr Nurs 2021; 61: 280-283
  • 118 Today Study Group. Longitudinal Association of Depressive Symptoms, Binge Eating, and Quality of Life With Cardiovascular Risk Factors in Young Adults With Youth-Onset Type 2 Diabetes: The TODAY2 Study. Diabetes Care 2022; 45: 1073-1081
  • 119 Butwicka A, Frisén L, Almqvist C. et al. Risks of psychiatric disorders and suicide attempts in children and adolescents with type 1 diabetes: A population-based cohort study. Diabetes Care 2015; 38: 453-459
  • 120 Luyckx K, Verschueren M, Palmeroni N. et al. Disturbed Eating Behaviors in Adolescents and Emerging Adults With Type 1 Diabetes: A One-Year Prospective Study. Diabetes Care 2019; 42: 1637-1644
  • 121 Reinehr T, Dieris B, Galler A. et al. Worse Metabolic Control and Dynamics of Weight Status in Adolescent Girls Point to Eating Disorders in the First Years after Manifestation of Type 1 Diabetes Mellitus: Findings from the Diabetes Patienten Verlaufsdokumentation Registry. J Pediatr 2019; 207: 205-212.e5
  • 122 Burckhardt MA, Chetty T, Smith GJ. et al. Use of Continuous Glucose Monitoring Trends to Facilitate Exercise in Children with Type 1 Diabetes strukturierten. Diabetes Technol Ther 2019; 21: 51-55
  • 123 Moser O, Riddell MC, Eckstein ML. et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: Position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes 2020; 21: 1375-1393
  • 124 Riddell MC, Milliken J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: An observational field study. Diabetes Technol Ther 2011; 13: 819-825
  • 125 Cherubini V, Gesuita R, Skrami E. et al. Optimal predictive low glucose management settings during physical exercise in adolescents with type 1 diabetes. Pediatr Diabetes 2019; 20: 107-112
  • 126 Dovc K, Macedoni M, Bratina N. et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: A randomised controlled crossover trial. Diabetologia 2017; 60: 2157-2167
  • 127 Laffel LM, Limbert C, Phelan H. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Sick day management in children and adolescents with diabetes. Pediatr Diabetes 2018; 19: 193-204
  • 128 Kapellen T, Agwu JC, Martin L. et al. ISPAD clinical practice consensus guidelines 2022: Management of children and adolescents with diabetes requiring surgery. Pediatr Diabetes 2022; 23: 1468-1477
  • 129 Thiele AG, Heckenmüller M, Bartelt H. et al. Review of Leipzig protocol for intravenous insulin infusion in pediatric patients with type 1 diabetes during intercurrent illness and surgery. Pediatr Diabetes 2019; 20: 421-426
  • 130 American Diabetes Association (ADA) Professional Practice Committee. 14. Children and Adolescents: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47 (01) S258-S281
  • 131 Fendler W, Borowiec M, Baranowska-Jazwiecka A. et al. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia 2012; 55: 2631-2635
  • 132 Shepherd M, Shields B, Hammersley S. et al. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care 2016; 39: 1879-1888
  • 133 Johansson BB, Irgends HU, Molnes J. et al. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia 2017; 60: 625-635
  • 134 Johnson SR, Carter HE, Leo P. et al. Cost-effectiveness Analysis of Routine Screening Using Massively Parallel Sequencing for Maturity-Onset Diabetes of the Young in a Pediatric Diabetes Cohort: Reduced Health System Costs and Improved Patient Quality of Life. Diabetes Care 2019; 42: 69-76
  • 135 Stankute I, Verkauskiene R, Blouin JL. et al. Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy. Diabetes 2020; 69: 1065-1071
  • 136 Greeley SAW, Polak M, Njølstad PR. et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2022; 23: 1188-1211
  • 137 Steele AM, Shields BM, Wensley KJ. et al. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 2014; 311: 279-286
  • 138 De Franco E, Flanagan SE, Houghton JAL. et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 2015; 386: 957-963
  • 139 Babiker T, Vedovato N, Patel K. et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia 2016; 59: 1162-1166
  • 140 Bowman P, Mathews F, Barbetti F. et al. Long-term Follow-up of Glycemic and Neurological Outcomes in an International Series of Patients With Sulfonylurea-Treated ABCC8 Permanent Neonatal Diabetes. Diabetes Care 2021; 44: 35-42
  • 141 Garcin L, Mericp V, Fauret-Amsellem AL. et al. Neonatal diabetes due to potassium channel mutation: Response to sulfonylurea according to the genotype. Pediatr Diabetes 2020; 21: 932-941
  • 142 Thurber BW, Carmody D, Tadie EC. et al. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia 2015; 58: 1430-1435
  • 143 Beltrand J, Elie C, Busiah K. et al. Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations. Diabetes Care 2015; 38: 2033-2041
  • 144 Shah RP, Spruyt K, Kragie BC. et al. Visuomotor performance in KCNJ11-related neonatal diabetes is impaired in children with DEND-associated mutations and may be improved by early treatment with sulfonylureas. Diabetes Care 2012; 35: 2086-2088
  • 145 Ode KL, Ballman M, Battezzati A. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2022; 23: 1212-1228
  • 146 Ballmann M, Hubert D, Assael BM. et al. Open randomised prospective comparative multi-centre intervention study of patients with cystic fibrosis and early diagnosed diabetes mellitus. BMC Pediatr 2014; 14: 70
  • 147 Ballmann M, Hubert D, Assael BM. et al. Repaglinide versus insulin for newly diagnosed diabetes in patients with cystic fibrosis: A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 2018; 6: 114-121
  • 148 Mäkimattila S, Harjutsalo V, Forsblom C. et al. Response to Comment on Mäkimattila et al. Every Fifth Individual With Type 1 Diabetes Suffers From an Additional Autoimmune Disease: A Finnish Nationwide Study. Diabetes Care 2020; 43: 1041-1047
  • 149 Nederstigt C, Uitbeijerse BS, Janssen LGM. et al. Associated auto-immune disease in type 1 diabetes patients: A systematic review and meta-analysis. Eur J Endocrinol 2019; 180: 135-144
  • 150 Hughes JW, Riddlesworth TD, Dimeglio LA. et al. Autoimmune Diseases in Children and Adults With Type 1 Diabetes From the T1D Exchange Clinic Registry. J Clin Endocrinol Metab 2016; 101: 4931-4937
  • 151 Husby S, Koletzko S, Korponay-Szabó IR. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 2012; 54: 136-160
  • 152 Mahmud FH, Elbarbary NS, Fröhlich-Reiterer E. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes. Pediatr Diabetes 2018; 19 (27) 275-86
  • 153 Lazarus J, Brown RS, Daumerie C. et al. 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J 2014; 3: 76-94
  • 154 Saari A, Pokka J, Mäkitie O. et al. Early Detection of Abnormal Growth Associated with Juvenile Acquired Hypothyroidism. J Clin Endocrinol Metab 2021; 106: e739-e748
  • 155 Dujovne NV, Gazek NA, Lazzati JM. et al. Variables predictivas de talla baja adulta en pacientes con hipotiroidismo adquirido grave de origen autoinmune. Arch Argent Pediatr 2019; 117: 388-391
  • 156 Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: The failure to achieve normal adult stature. N Engl J Med 1988; 318: 599-602
  • 157 Mohn A, Di Michele S, Di Luzio R. et al. The effect of subclinical hypothyroidism on metabolic control in children and adolescents with Type 1 diabetes mellitus. Diabet Med 2002; 19: 70-73
  • 158 Felber J, Bläker H, Fischbach W. et al. Aktualisierte S2k-Leitlinie Zöliakie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). Z Gastroenterol 2022; 60: 790-856
  • 159 Kamrath C, Tittel SR, Dunstheimer D. et al. Early vs late histological confirmation of coeliac disease in children with new-onset type 1 diabetes. Diabetologia 2022; 65: 1108-1118
  • 160 Pham-Short A, Donaghue KC, Ambler G. et al. Screening for Celiac Disease in Type 1 Diabetes: A Systematic Review. Pediatrics 2015; 136: e170-e176
  • 161 Jansen MAE, Kiefte-de Jong JC, Gaillard R. et al. Growth trajectories and bone mineral density in anti-tissue transglutaminase antibody-positive children: The Generation R Study. Clin Gastroenterol Hepatol 2015; 13: 913-920.e5
  • 162 Husby S, Koletzko S, Korponay-Szabó I. et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr 2020; 70: 141-156
  • 163 Hansen D, Brock-Jacobsen B, Lund E. et al. Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: A population-based screening study with 2 years' follow-up. Diabetes Care 2006; 29: 2452-2456
  • 164 Nagl K, Bollow E, Liptay S. et al. Lower HbA1c in patients with type 1 diabetes and celiac disease who reached celiac-specific antibody-negativity-A multicenter DPV analysis. Pediatr Diabetes 2019; 20: 1100-1109
  • 165 Weiman DI, Mahmud FH, Clarke ABM. et al. Impact of a Gluten-Free Diet on Quality of Life and Health Perception in Patients With Type 1 Diabetes and Asymptomatic Celiac Disease. J Clin Endocrinol Metab 2021; 106: e1984-e1992
  • 166 Triolo TM, Armstrong TK, McFann K. et al. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care 2011; 34: 1211-1213
  • 167 Warncke K, Fröhlich-Reiterer EE, Thon A. et al. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: A multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care 2010; 33: 2010-2012
  • 168 Bundesarbeitsgemeinschaft für Rehabilitation (BAR). Gemeinsames Rahmenkonzept der Gesetzlichen Krankenkassen und der Gesetzlichen Rentenversicherung für die Durchführung stationärer medizinischer Leistungen der Vorsorge und Rehabilitation für Kinder und Jugendliche. 2008 Accessed October 16, 2022 at: https://www.bar-frankfurt.de/fileadmin/dateiliste/_publikationen/reha_vereinbarungen/pdfs/Gemeinsames_Rahmenkonzept.pdf
  • 169 Deutsche Rentenversicherung Bund. Leitlinien für die sozialmedizinische Begutachtung: Beurteilung der Rehabilitationsbedürftigkeit von Kindern und Jugendlichen für die Deutsche Rentenversicherung. Accessed October 16, 2022 at: https://www.deutsche-rentenversicherung.de/SharedDocs/Downloads/DE/Experten/infos_fuer_aerzte/begutachtung/leitlinie_rehabed-uerftigkeit_kiju_langfassung_pdf.html
  • 170 Heinrich M, Boß K, Wendenburg J. et al. Unzureichende Versorgung gefährdet Inklusion von Kindern mit Diabetes mellitus Typ 1. Diabetol Stoffwechs 2019; 14: 380-387
  • 171 Dehn-Hindenberg A, Lange K. Eltern von Kindern mit Typ-1-Diabetes: Folgen für Berufstätigkeit, psychosoziale Belastungen und Bedarf an Unterstützungsleistungen – Ergebnisse der AMBA-Studie. Diabetol Stoffwechs 2019; 14 (01) S69
  • 172 Cranston I, Lomas J, Maran A. et al. Restoration of hypoglycaemia awareness in patients with long-duration insulin-dependent diabetes. Lancet 1994; 344: 283-287
  • 173 Guvener M, Pasaoglu I, Demircin M. et al. Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr J 2002; 49: 531-537
  • 174 Patterson CC, Karuranga S, Salpea P. et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107842