Subscribe to RSS
DOI: 10.1055/a-2376-3429
Palladium-Catalyzed γ-C–H Arylation of Unsaturated Carbonyl Compounds: An Emerging Remote Buchwald–Hartwig–Miura Arylation
We are grateful for funding from the National Natural Science Foundation of China (Grant Nos. 82260683 and 22267024), the Yunnan Talents Support Plan-Young Talents Project (D.L.), the Start-up Fund of Yunnan University of Chinese Medicine (Grant No. 2019YZG03), and the Bioactive Ethnopharmacol Molecules Chemical Conversion and Application Innovation Team of the Department of Education of Yunnan Province (2022).

We dedicate this paper to Prof. Qin-Shi Zhao on the occasion of his 60th birthday.
Abstract
As an important complement to the Buchwald–Hartwig–Miura arylation, Pd-catalyzed γ-C–H arylations, including γ-C(sp3)–H and γ-C(sp2)–H arylations, provide a more direct route to install an aryl group on the less reactive γ-site of unsaturated carbonyl compounds, and have attracted considerable interest from the chemistry community in recent years. This review summarizes the applications of this method with both cyclic and linear unsaturated carbonyl compounds (aldehydes, ketones, esters, amide, and nitriles), as well as in the total synthesis of natural products (NPs), natural product skeletons, and bioactive analogues.
1 Introduction
2 γ-C–H Arylation of Cyclic Unsaturated Carbonyl Substrates
2.1 Exocyclic γ-Arylation
2.1.1 Unsaturated Ketones and the Corresponding Silyl-Dienol Ethers
2.1.2 Unsaturated Lactones
2.2 Endocyclic γ-C–H Arylation
2.2.1 Unsaturated Ketones and the Corresponding Silyl-Dienol Ethers
2.2.2 Unsaturated Lactones
2.2.3 Unsaturated Nitriles
3 γ-C–H Arylation of Linear Unsaturated Carbonyl Substrates
3.1 Unsaturated Aldehydes
3.2 Unsaturated Ketones
3.3 Unsaturated Amides
3.4 Unsaturated Nitriles
3.5 Silyl Ketene Acetals of α,β-Unsaturated Esters
4 Conclusion
Key words
unsaturated carbonyls - palladium-catalyzed - γ-C–H arylation - Buchwald–Hartwig–Miura arylation - remote arylation - total synthesisPublication History
Received: 10 May 2024
Accepted after revision: 30 July 2024
Accepted Manuscript online:
30 July 2024
Article published online:
27 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Stuart DR, Fagnou K. Science 2007; 316: 1172
- 1b Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
- 1c Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science 2010; 327: 315
- 1d Chen M, Zheng X, Li W, He J, Lei A. J. Am. Chem. Soc. 2010; 132: 4101
- 1e Guin S, Dolui P, Zhang X, Paul S, Singh VK, Pradhan S, Chandrashekar HB, Anjana SS, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 5633
- 1f Dolui P, Das J, Chandrashekar HB, Anjana SS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 13773
- 1g Yuen OY, So CM. Angew. Chem. Int. Ed. 2020; 59: 23438
- 1h Han C, Cai L, Zhang D, Pan R, Li Q, Lin A, Yao H. CCS Chem. 2022; 4: 616
- 2 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
- 3a Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
- 3b Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
- 3c Wang M, Wang W, Li D, Wang W.-J, Zhan R, Shao L.-D. Nat. Prod. Bioprospect. 2021; 11: 379
- 4 Shao L.-D, Chen Y, Wang M, Xiao N, Zhang Z.-J, Li D, Li R.-T. Org. Chem. Front. 2022; 9: 2308
- 5 Hyde AM, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 177
- 6a Huang DS, Hartwig JF. Angew. Chem. Int. Ed. 2010; 49: 5757
- 6b Franzoni I, Guénée L, Mazet C. Chem. Sci. 2013; 4: 2619
- 7a Zhao Y, Zhou Y, Liang L, Yang X, Du F, Li L, Zhang H. Org. Lett. 2009; 11: 555
- 7b Johnson T, Pultar F, Menke F, Lautens M. Org. Lett. 2016; 18: 6488
- 7c Wang W, Dai J, Yang Q, Deng Y.-H, Peng F, Shao Z. Org. Lett. 2021; 23: 920
- 8a Yang Y.-C, Lin Y.-C, Wu Y.-K. Org. Lett. 2019; 21: 9286
- 8b Lin Y.-C, Yen K.-W, Lin H.-J, Yang Y.-C, Wu Y.-K. Chem. Commun. 2021; 57: 12119
- 9 Terao Y, Kametani Y, Wakui H, Satoh T, Miura M, Nomura M. Tetrahedron 2001; 57: 5967
- 10 Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929
- 11a Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
- 11b Chen X, Martinez JS, Mohr JT. Org. Lett. 2015; 17: 378
- 12 Rao X, Li N, Bai H, Dai C, Wang Z, Tang W. Angew. Chem. Int. Ed. 2018; 57: 12328
- 13a Terao Y, Satoh T, Miura M, Nomura M. Tetrahedron Lett. 1998; 39: 6203
- 13b Varseev GN, Maier ME. Org. Lett. 2005; 7: 3881
- 13c Hyde AM, Buchwald SL. Org. Lett. 2009; 11: 2663
- 13d Duez S, Bernhardt S, Heppekausen J, Fleming FF, Knochel P. Org. Lett. 2011; 13: 1690
- 13e Yu M, Xie Y, Li J, Zhang Y. Adv. Synth. Catal. 2011; 353: 2933
- 13f Imahori T, Tokuda T, Taguchi T, Takahata H. Org. Lett. 2012; 14: 1172
- 13g Saini G, Mondal A, Kapur M. Org. Lett. 2019; 21: 9071
- 13h Song Y.-K, Xu S.-Y, Zhang S.-S, Fu J.-G, Lin G.-Q, Feng C.-G. Adv. Synth. Catal. 2021; 363: 3001
- 13i Sexton ME, Okazaki A, Yu Z, van Venrooy A, Schmink JR, Malachowski WP. Tetrahedron Lett. 2019; 60: 151057
- 13j Li S, Chen Q, Yang J, Zhang J. Angew. Chem. Int. Ed. 2022; 61: e202202046
- 14 Mulholland DA, McFarland K, Randrianarivelojosia M. Biochem. Syst. Ecol. 2006; 34: 365
- 15a Marco-Contelles J, do Carmo Carreiras M, Rodríguez C, Villarroya M, García AG. Chem. Rev. 2006; 106: 116
- 15b Jin Z. Nat. Prod. Rep. 2007; 24: 886
- 15c Jin Z. Nat. Prod. Rep. 2009; 26: 363
- 15d Jin Z. Nat. Prod. Rep. 2011; 28: 1126
- 15e Jin Z. Nat. Prod. Rep. 2013; 30: 849
- 15f Jin Z. Nat. Prod. Rep. 2016; 33: 1318
- 15g Trost BM, Toste FD. J. Am. Chem. Soc. 2000; 122: 11262
- 15h Chen P, Bao X, Zhang L.-F, Ding M, Han X.-J, Li J, Zhang G.-B, Tu Y.-Q, Fan C.-A. Angew. Chem. Int. Ed. 2011; 50: 8161
- 15i Chen J.-Q, Xie J.-H, Bao D.-H, Liu S, Zhou Q.-L. Org. Lett. 2012; 14: 2714
- 15j Li L, Yang Q, Wang Y, Jia Y. Angew. Chem. Int. Ed. 2015; 54: 6255
- 15k Liu C.-H, Yu Z.-X. Org. Biomol. Chem. 2016; 14: 5945
- 16 Li L, Chen Z, Zhang X, Jia Y. Chem. Rev. 2018; 118: 3752
- 17 Majetich G, Liu S, Fang J, Siesel D, Zhang Y. J. Org. Chem. 1997; 62: 6928
- 18 Yenesew A, Ogur JA, Duddeckt H. Phytochemistry 1993; 34: 1442
- 19 Zhang X.-W, Zhang H, Wang H.-C, Zhu M.-H, Cong H, Liu W.-B. Chem. Commun. 2020; 56: 12013
- 20a Yamamoto Y, Hatsuya S, Yamada J.-I. J. Chem. Soc., Chem. Commun. 1988; 86
- 20b Yamamoto Y, Hatsuya S, Yamada J. J. Org. Chem. 1990; 55: 3118
- 21 Su W, Raders S, Verkade JG, Liao X, Hartwig JF. Angew. Chem. Int. Ed. 2006; 45: 5852
- 22a Hartwig JF. Inorg. Chem. 2007; 46: 1936
- 22b Xue L, Lin Z. Chem. Soc. Rev. 2010; 39: 1692
- 22c Franzoni I, Poblador-Bahamonde AI. Organometallics 2016; 35: 2955
- 23a Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
- 23b Kirillova MS, Miloserdov FM, Echavarren AM. Org. Chem. Front. 2018; 5: 273
- 23c Pritchett BP, Stoltz BM. Nat. Prod. Rep. 2018; 35: 559
- 24a Liu G, Wu Y. Palladium-Catalyzed Allylic C–H Bond Functionalization of Olefins. In C–H Activation (Topics in Current Chemistry), Vol. 292. Yu J.-Q, Shi Z. Springer-Verlag; Berlin/Heidelberg: 2010: 195
- 24b Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; 5863
- 25a Yasukawa N, Yokoyama H, Masuda M, Monguchi Y, Sajiki H, Sawama Y. Green Chem. 2018; 20: 1213
- 25b Diao T, Stahl SS. J. Am. Chem. Soc. 2011; 133: 14566
- 26a Mansilla S, Garcia-Ferrer I, Méndez C, Salas JA, Portugal J. Biochem. Pharmacol. 2010; 79: 1418
- 26b Bosserman MA, Downey T, Noinaj N, Buchanan SK, Rohr J. ACS Chem. Biol. 2013; 8: 2466
- 27 Wanjohi JM, Yenesew A, Midiwo JO, Heydenreich M, Peter MG, Dreyer M, Reichert M, Bringmann G. Tetrahedron 2005; 61: 2667
- 28 Shiraishi M, Aramaki Y, Seto M, Imoto H, Nishikawa Y, Kanzaki N, Okamoto M, Sawada H, Nishimura O, Baba M, Fujino M. J. Med. Chem. 2000; 43: 2049
- 29 vanLeeuwen PW. N. M, Kamer PC. J, Reek JN. H, Dierkes P. Chem. Rev. 2000; 100: 2741
- 30a Kobayashi S, Ueda T, Fukuyama T. Synlett 2000; 883
- 30b Elliott GI, Fuchs JR, Blagg BS. J, Ishikawa H, Tao H, Yuan ZQ, Boger DL. J. Am. Chem. Soc. 2006; 128: 10589
- 31 Marino JP, Cao G. Tetrahedron Lett. 2006; 47: 7711
- 32a Meisner J, Kästner J. Angew. Chem. Int. Ed. 2016; 55: 5400
- 32b Schreiner PR. J. Am. Chem. Soc. 2017; 139: 15276
- 33a Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC. J. Am. Chem. Soc. 1993; 115: 2408
- 33b Shelton GR, Hrovat DA, Borden WT. J. Am. Chem. Soc. 2007; 129: 164
- 34 Gioria E, del Pozo J, Martínez-Ilarduya JM, Espinet P. Angew. Chem. Int. Ed. 2016; 55: 13276
- 35 Boominathan SS. K, Wang J.-J. Chem. Eur. J. 2015; 21: 17044
- 36 Cargill RL, Bushey DF, Good JJ. J. Org. Chem. 1979; 44: 300
- 37 Palucki M, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
- 38 Hamann BC, Hartwig JF. J. Am. Chem. Soc. 1997; 119: 12382
- 39 Numata S, Kurosawa H. J. Organomet. Chem. 1977; 131: 301