Subscribe to RSS
DOI: 10.1055/a-2388-9578
Sustainable N-Formylation of Anilines: Harnessing Aleuritic Acid as a Renewable Formyl Source
H.A.V. is thankful to the Department of Science and Technology (DST), Ministry of Science and Technology, India, for the award of INSPIRE Fellowship and G.B. is thankful to the University Grants Commission, New Delhi, India for the award of Senior Research Fellowship. We are also thankful to the Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR-CSMCRI, MLP-074 and HCP-049) for partial financial support.

Dedicated to Professor B. C. Ranu on the occasion of his 75th birthday celebration
Abstract
N-Formylation of anilines using a renewable aleuritic acid as an eco-friendly and sustainable formylating source has been developed. para-Substituted anilines generally provided good yields, while moderate yields were observed with meta- and ortho-substituted derivatives. In situ generated formic acid through oxidative cleavage of aleuritic acid serve as a formyl source, which has been confirmed through control experiments.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2388-9578.
- Supporting Information
Publication History
Received: 27 June 2024
Accepted after revision: 15 August 2024
Accepted Manuscript online:
15 August 2024
Article published online:
18 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science . Greenberg A, Breneman CM, Liebman JF. Wiley-Interscience; Hoboken, NJ: 2003
- 1b Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 1c Cupido T, Tulla-Puche J, Spengler J, Albericia F. Curr. Opin. Drug Discov. Devel. 2007; 10: 768
- 1d Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 1e Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
- 1f Westergaard CG, Porsbjerg C, Backer V. Expert Opin. Pharmacother. 2013; 14: 339
- 2a Gerack CJ, McElwee-White L. Molecules 2014; 19: 7689
- 2b Abbasi F, Sardarian AR. Sci. Rep. 2024; 14: 1
- 2c Yu H, Wu Z, Wei Z, Zhai Y, Ru S, Zhao Q, Wang J, Han S, Wei Y. Commun. Chem. 2019; 2: 15
- 2d Li C, Wang M, Lu X, Zhang L, Jiang J, Zhang L. ACS Sustainable Chem. Eng. 2020; 8: 4353
- 2e Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. ACS Catal. 2020; 10: 14824
- 2f Kandula V, Gudipati R, Chatterjee A, Yennam S, Behera M. SynOpen 2018; 2: 176
- 2g Wu Z, Zhai Y, Zhao W, Wei Z, Yu H, Han S, Wei Y. Green Chem. 2020; 22: 737
- 2h Mishra K, Datta Khanal H, Rok Lee Y. Eur. J. Org. Chem. 2021; 4477
- 2i Song Z, Liu J, Xing S, Shao X, Li J, Peng J, Bai Y. Org. Biomol. Chem. 2022; 21: 832
- 3a Deutsch J, Eckelt R, Köckritz A, Martin A. Tetrahedron 2009; 65: 10365
- 3b Das VK, Devi RR, Raul PK, Thakur AJ. Green Chem. 2012; 14: 847
- 3c Sorribes I, Junge K, Beller M. Chem. Eur. J. 2014; 20: 7878
- 4a Thakur V, Kumar A, Sharma N, Shil AK, Das P. Adv. Synth. Catal. 2018; 360: 432
- 4b Wang Y, Zhan Z, Zhou Y, Lei M, Hu L. Monatsh. Chem. 2018; 149: 527
- 4c Li M, Hu L, Cao X, Hong H, Lu J, Gu H. Chem. Eur. J. 2011; 17: 2763
- 4d Yu L, Zhang Q, Li S.-S, Huang J, Liu Y.-M, He H.-Y, Cao Y. ChemSusChem 2015; 8: 3029
- 4e Wei Y, Wu J, Xue D, Wang C, Liu Z, Zhang Z, Chen G, Xiao J. Synlett 2014; 25: 1295
- 5 Adimurthy S, Yadav S. IN202211012417, 2022
- 6a Adimurthy S, Ramachandraiah G, Bedekar AV, Ghosh S, Ranu BC, Ghosh PK. Green Chem. 2006; 8: 916
- 6b Rao SN, Mohan DC, Adimurthy S. Org. Lett. 2013; 15: 1496
- 6c Badhani G, Biramya VM, Adimurthy S. New J. Chem. 2023; 47: 21596
- 6d Joshi A, Kumar R, Semwal R, Rawat D, Adimurthy S. Green Chem. 2019; 21: 962
- 6e Badhani G, Joshi A, Adimurthy S. Eur. J. Org. Chem. 2021; 6705