Subscribe to RSS
DOI: 10.1055/a-2390-3145
Bildgebung der Arteria-vertebralis-Dissektion bei Kindern

Die VAD (Dissektion der A. vertebralis) ist eine häufige Ursache für eine seltene Erkrankung, den PCAIS (pädiatrischer arterieller ischämischer Schlaganfall im hinteren Kreislauf des Gehirns). Sie kann zu einer fortschreitenden Arteriopathie und rezidivierenden Schlaganfällen führen. Die Autoren geben einen Überblick über die charakteristischen Bildgebungsmerkmale und die optimierte Bildgebung der VAD und des assoziierten PCAIS.
-
Multifokale isolierte PCAIS-Läsionen (aufgrund von Thromboembolien von Gefäß zu Gefäß) und Schlaganfälle unterschiedlichen Alters, die bei der ersten Bildgebung entdeckt werden, deuten stark auf eine VAD hin. In einigen Fällen sind zum Zeitpunkt der ersten Bildgebung nur chronische Infarkte zu sehen.
-
Intrakranielle MR- oder CT-Angiogramme können abrupte Arterienverschlüsse im hinteren Kreislauf aufgrund von Gefäß-zu-Gefäß-Thromboembolien zeigen. Diese Verschlüsse deuten stark auf eine VAD als Ursache hin und sollten Anlass für eine zervikale vaskuläre Bildgebung sein, falls vorhanden.
-
Die meisten VAD bei Kindern treten auf der Ebene von C2 auf und betreffen typischerweise das horizontale proximale V3-Segment oder den angrenzenden V2/V3-Übergang. Das V3-Segment kann aufgrund seiner Nähe zum lateralen Aspekt des beweglichen atlantoaxialen Gelenks besonders anfällig sein.
-
Im Vergleich zur Dissektion der A. carotis stellt die VAD besondere Herausforderungen. Zu den anatomischen Merkmalen, die einen alternativen Ansatz erfordern, gehören der umgebende Knochen, die im Allgemeinen geringere Größe der Arterie, die Tortuosität des V3-Segments und der periarterielle Venenplexus.
-
Eine zervikale arterielle Dissektion, insbesondere eine Dissektion im hinteren Kreislauf, kann sich im Laufe der Zeit verändern. Fast 50% der Gefäßanomalien entwickeln sich innerhalb des ersten Jahres fort, und einige arterielle Anomalien können erst bei der Nachuntersuchung entdeckt werden.
Publication History
Article published online:
01 January 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Goeggel Simonetti B, Rafay MF, Chung M. IPSS Study Group. et al. Comparative study of posterior and anterior circulation stroke in childhood: results from the International Pediatric Stroke Study. Neurology 2020; 94: e337-e344
- 2 McCrea N, Saunders D, Bagkeris E. et al. Diagnosis of vertebral artery dissection in childhood posterior circulation arterial ischaemic stroke. Dev Med Child Neurol 2016; 58: 63-69
- 3 Uohara MY, Beslow LA, Billinghurst L. et al. Incidence of recurrence in posterior circulation childhood arterial ischemic stroke. JAMA Neurol 2017; 74: 316-323
- 4 Rafay MF, Shapiro KA, Surmava AM. International Pediatric Stroke Study (IPSS) Group. et al. Spectrum of cerebral arteriopathies in children with arterial ischemic stroke. Neurology 2020; 94: e2479-e2490
- 5 Wintermark M, Hills NK, DeVeber GA. VIPS Investigators. et al. Clinical and imaging characteristics of arteriopathy subtypes in children with arterial ischemic stroke: results of the VIPS Study. AJNR Am J Neuroradiol 2017; 38: 2172-2179
- 6 Markus HS, Levi C, King A. et al. Cervical Artery Dissection in Stroke Study (CADISS) Investigators. Antiplatelet therapy vs anticoagulation therapy in cervical artery dissection: the Cervical Artery Dissection in Stroke Study (CADISS) randomized clinical trial final results. JAMA Neurol 2019; 76: 657-664
- 7 Ganesan V, Cox TC, Gunny R. Abnormalities of cervical arteries in children with arterial ischemic stroke. Neurology 2011; 76: 166-171
- 8 Bernard TJ, Manco-Johnson MJ, Lo W. et al. Towards a consensus-based classification of childhood arterial ischemic stroke. Stroke 2012; 43: 371-377
- 9 Nash M, Rafay MF. Craniocervical arterial dissection in children: pathophysiology and management. Pediatr Neurol 2019; 95: 9-18
- 10 Mackay MT, Prabhu SP, Coleman L. Childhood posterior circulation arterial ischemic stroke. Stroke 2010; 41: 2201-2209
- 11 Rambaud T, Legris N, Bejot Y. et al. Acute ischemic stroke in adolescents. Neurology 2020; 94: e158-e169
- 12 Rollins N, Pride GL, Plumb PA. et al. Brainstem strokes in children: an 11-year series from a tertiary pediatric center. Pediatr Neurol 2013; 49: 458-464
- 13 Tan MA, Armstrong D, MacGregor DL. et al. Late complications of vertebral artery dissection in children: pseudoaneurysm, thrombosis, and recurrent stroke. J Child Neurol 2009; 24: 354-360
- 14 Ferriero DM, Fullerton HJ, Bernard TJ. American Heart Association Stroke Council and Council on Cardiovascular and Stroke Nursing. et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke 2019; 50: e51-e96
- 15 Medley TL, Miteff C, Andrews I. et al. Australian clinical consensus guideline: the diagnosis and acute management of childhood stroke. Int J Stroke 2019; 14: 94-106
- 16 Kleindorfer DO, Towfighi A, Chaturvedi S. et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 2021; 52 (7): e364–e467 [published correction appears in Stroke 2021; 52: e483-e484]
- 17 Fullerton HJ, Johnston SC, Smith WS. Arterial dissection and stroke in children. Neurology 2001; 57: 1155-1160
- 18 Völker W, Dittrich R, Grewe S. et al. The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology 2011; 76: 1463-1471
- 19 Fink M, Slavova N, Grunt S. et al. Posterior arterial ischemic stroke in childhood. Stroke 2019; 50: 2329-2335
- 20 Songsaeng D, Srivatanakul K, Krings T. et al. Symptomatic spontaneous vertebrobasilar dissections in children: review of 29 consecutive cases. J Neurosurg Pediatr 2010; 6: 233-243
- 21 Simonnet H, Deiva K, Bellesme C. et al. Extracranial vertebral artery dissection in children: natural history and management. Neuroradiology 2015; 57: 729-738
- 22 Ritchey Z, Bernard TJ, Fenton LZ. et al. Stroke recurrence in children with vertebral artery dissecting aneurysm. AJNR Am J Neuroradiol 2022; 43: 913-918
- 23 Carey S, Wrogemann J, Booth FA. et al. Epidemiology, clinical presentation, and prognosis of posterior circulation ischemic stroke in children. Pediatr Neurol 2017; 74: 41-50
- 24 Braga BP, Sillero R, Pereira RM. et al. Dynamic compression in vertebral artery dissection in children: apropos of a new protocol. Childs Nerv Syst 2021; 37: 1285-1293
- 25 Weber CD, Lefering R, Weber MS. TraumaRegister DGU. et al. Predictors for pediatric blunt cerebrovascular injury (BCVI): an International multicenter analysis. World J Surg 2019; 43: 2337-2347
- 26 Kadom N, Palasis S, Pruthi S. Expert Panel on Pediatric Imaging. et al. ACR appropriateness criteria: suspected spine trauma – child. J Am Coll Radiol 2019; 16: S286-S299
- 27 Engelter ST, Traenka C, Gensicke H. TREAT-CAD investigators. et al. Aspirin versus anticoagulation in cervical artery dissection (TREAT-CAD): an open-label, randomised, non-inferiority trial. Lancet Neurol 2021; 20: 341-350
- 28 Gordon WR, Edgell RC. Neurointervention in the medical specialties: a comprehensive guide. Curr Clin Neurology 2022; 2: 9-21
- 29 Böhmer M, Niederstadt T, Heindel W. et al. Impact of childhood arterial ischemic stroke standardized classification and diagnostic evaluation classification on further course of arteriopathy and recurrence of childhood stroke. Stroke 2019; 50: 83-87
- 30 Pandey S, Hakky M, Kwak E. et al. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts. RadioGraphics 2013; 33: E113-E123
- 31 Fox CK, Fullerton HJ, Hetts SW. et al. Single-center series of boys with recurrent strokes and rotational vertebral arteriopathy. Neurology 2020; 95: e1830-e1834
- 32 Hanning U, Sporns PB, Schmiedel M. et al. CT versus MR techniques in the detection of cervical artery dissection. J Neuroimaging 2017; 27: 607-612
- 33 Robertson RL, Palasis S, Rivkin MJ. Expert Panel on Pediatric Imaging. et al. ACR appropriateness criteria: cerebrovascular disease – child. J Am Coll Radiol 2020; 17: S36-S54
- 34 Bernard TJ, Beslow LA, Manco-Johnson MJ. et al. Inter-rater reliability of the CASCADE criteria: challenges in classifying arteriopathies. Stroke 2016; 47: 2443-2449
- 35 Zuccoli G, Fitz C, Greene S. et al. Imaging review of common and rare causes of stroke in children. Top Magn Reson Imaging 2018; 27: 463-477
- 36 American College of Radiology. ACR-ASNR-SPR practice parameter for the performance and interpretation of cervicocerebral computed tomography angiography (CTA). 2020 Accessed October 23, 2024 at: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/CervicoCerebralCTA.pdf
- 37 Rollins N, Braga B, Hogge A. et al. Dynamic arterial compression in pediatric vertebral arterial dissection. Stroke 2017; 48: 1070-1073
- 38 Symons R, Reich DS, Bagheri M. et al. Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results. Invest Radiol 2018; 53: 135-142
- 39 Schellinger PD, Bryan RN, Caplan LR. et al. Evidence-based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke – report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2010; 75 (2): 177–185 [published correction appears in Neurology 2010; 75: 938]
- 40 Jaimes C, Robson CD, Machado-Rivas F. et al. Success of nonsedated neuroradiologic MRI in children 1–7 years old. AJR Am J Roentgenol 2021; 216: 1370-1377
- 41 Wharton JD, Barry MM, Lee CA. et al. Pediatric acute stroke protocol implementation and utilization over 7 years. J Pediatr 2020; 220: 214.e1-220.e1
- 42 Oelerich M, Stögbauer F, Kurlemann G. et al. Craniocervical artery dissection: MR imaging and MR angiographic findings. Eur Radiol 1999; 9: 1385-1391
- 43 Arnold M, Bousser MG, Fahrni G. et al. Vertebral artery dissection: presenting findings and predictors of outcome. Stroke 2006; 37: 2499-2503
- 44 Vertinsky AT, Schwartz NE, Fischbein NJ. et al. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol 2008; 29: 1753-1760
- 45 Edjlali M, Roca P, Rabrait C. et al. 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol 2013; 34: E103-E106
- 46 Nguyen Bui L, Brant-Zawadzki M, Verghese P. et al. Magnetic resonance angiography of cervicocranial dissection. Stroke 1993; 24: 126-131
- 47 Cuvinciuc V, Viallon M, Momjian-Mayor I. et al. 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection. Neuroradiology 2013; 55: 595-602
- 48 McNally JS, Hinckley PJ, Sakata A. et al. Magnetic resonance imaging and clinical factors associated with ischemic stroke in patients suspected of cervical artery dissection. Stroke 2018; 49: 2337-2344
- 49 Anene-Maidoh TI, Vega RA, Fautheree GL. et al. An unusual case of pediatric bow hunter’s stroke. Surg Neurol Int 2013; 4: 148
- 50 Hu Y, Du J, Liu Z. et al. Vertebral artery dissection caused by atlantoaxial dislocation: a case report and review of literature. Childs Nerv Syst 2019; 35: 187-190
- 51 Pirozzi Chiusa CG, Pinto MR, Ferrario A. et al. Clinical response to surgical decompression in atypical pediatric bow hunter’s syndrome suggesting alternative pathophysiology: case report. Childs Nerv Syst 2022; 38: 2199-2203
- 52 Greiner HM, Abruzzo TA, Kabbouche M. et al. Rotational vertebral artery occlusion in a child with multiple strokes: a case-based update. Childs Nerv Syst 2010; 26: 1669-1674