Die Wirbelsäule 2024; 08(04): 234-241
DOI: 10.1055/a-2401-5809
Übersicht

Funktionelle Diagnostik von Wirbelsäulenerkrankungen in der MRT

Functional Diagnostics of Spinal Diseases in MRI
Christian Joachim Entenmann
1   Klinik für Neurochirurgie, Charité Universitätsmedizin Berlin, Berlin, Germany (Ringgold ID: RIN14903)
,
Peter Vajkoczy
1   Klinik für Neurochirurgie, Charité Universitätsmedizin Berlin, Berlin, Germany (Ringgold ID: RIN14903)
,
Anna Zdunczyk
1   Klinik für Neurochirurgie, Charité Universitätsmedizin Berlin, Berlin, Germany (Ringgold ID: RIN14903)
› Author Affiliations

Zusammenfassung

Die Magnetresonanztomographie (MRT) ist der Goldstandard in der Diagnostik von Wirbelsäulenerkrankungen. Konventionelle T1- und T2-Sequenzen sind jedoch oft unspezifisch und korrelieren nur bedingt mit den zugrundeliegenden mikrostrukturellen Veränderungen. Moderne MRT-Techniken wie quantitatives MRT (qMRT), funktionelle MRT (fMRT), Magnetresonanzspektroskopie (MRS) und die transmagnetische Stimulation (TMS) bieten die Möglichkeit, quantifizierbare Veränderungen zu erfassen, die mit der mikrostrukturellen und funktionalen Integrität des Rückenmarks korrelieren. Dadurch werden neue Einblicke in die Pathophysiologie von Wirbelsäulenerkrankungen geliefert und somit ein umfassenderes Bild des Krankheitsbildes wie auch Schwere ermöglicht. Modalitätsspezifische Parameter, welche mit dem Ausmaß der Verletzung und der neurologischen Erholung korrelieren, können als wichtige Biomarker in der Zukunft dienen. Sie haben das Potenzial die diagnostische Genauigkeit zu verbessern, eine individuelle Prognoseabschätzung zu liefern wie auch Risikogruppen zu definieren und im Rahmen von randomisierten klinischen Studien als Endpunkte zu dienen, um den Effekt neuer Therapien zu evaluieren. Davor gilt es technische Herausforderungen zu überwinden und im Rahmen größerer, multizentrischer Studien die vielversprechenden Ergebnisse zu validieren, bevor es zu einer klinischen Translation kommt.

Abstract

Magnetic Resonance Imaging (MRI) is the gold standard in diagnosing spinal diseases. However, conventional T1- and T2-weighted sequences are often non-specific and correlate only partially with the underlying microstructural changes. Modern MRI techniques such as quantitative MRI (qMRI), functional MRI (fMRI), Magnetic Resonance Spectroscopy (MRS), and Transcranial Magnetic Stimulation (TMS) offer the possibility to detect quantifiable changes that correlate with the microstructural and functional integrity of the spinal cord. This provides new insights into the pathophysiology of spinal diseases, offering a more comprehensive understanding of the condition and its severity. Modality-specific parameters that correlate with the extent of injury and neurological recovery may serve as important biomarkers in the future. They have the potential to improve diagnostic accuracy, provide individual prognostic assessments, define risk groups, and serve as endpoints in randomized clinical trials to evaluate the effects of new therapies. Before clinical translation, however, technical challenges must be overcome, and promising results must be validated in larger, multicenter studies.



Publication History

Article published online:
21 October 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Freund P, Seif M, Weiskopf N. et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol 2019; 18: 1123-35
  • 2 Haynes G, Muhammad F, Khan AF. et al. The current state of spinal cord functional magnetic resonance imaging and its application in clinical research. J Neuroimaging 2023; 33: 877-88
  • 3 Ellingson BM, Salamon N, Holly LT. Advances in MR imaging for cervical spondylotic myelopathy. Eur Spine J 2015; 24 (Suppl. 02) 197-208
  • 4 David G, Mohammadi S, Martin AR. et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15: 718-31
  • 5 Grover VP, Tognarelli JM, Crossey MM. et al. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol 2015; 5: 246-55
  • 6 Barry RL, Vannesjo SJ, By S. et al. Spinal cord MRI at 7T. Neuroimage 2018; 168: 437-51
  • 7 Barisano G, Sepehrband F, Ma S. et al. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 2019; 92: 20180492
  • 8 Vedantam A, Jirjis MB, Schmit BD. et al. Diffusion tensor imaging of the spinal cord: insights from animal and human studies. Neurosurgery 2014; 74: 1-8
  • 9 Zhang H, Guan L, Hai Y. et al. Multi-shot echo-planar diffusion tensor imaging in cervical spondylotic myelopathy. Bone Joint J 2020; 102: 1210-1218
  • 10 Vedantam A, Eckardt G, Wang MC. et al. Clinical correlates of high cervical fractional anisotropy in acute cervical spinal cord injury. World Neurosurg 2015; 83: 824-8
  • 11 Holly LT, Ellingson BM, Salamon N. Metabolic Imaging Using Proton Magnetic Spectroscopy as a Predictor of Outcome After Surgery for Cervical Spondylotic Myelopathy. Clin Spine Surg 2017; 30: E615-e9
  • 12 Wyss PO, Hock A, Kollias S. The Application of Human Spinal Cord Magnetic Resonance Spectroscopy to Clinical Studies: A Review. Semin Ultrasound CT MR 2017; 38: 153-62
  • 13 Aleksanderek I, Stevens TK, Goncalves S. et al. Metabolite and functional profile of patients with cervical spondylotic myelopathy. J Neurosurg Spine 2017; 26: 547-53
  • 14 Zhu L, Wu G, Zhou X. et al. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. PLoS One 2015; 10: e0118816
  • 15 Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 2015; 58: 208-13
  • 16 Arora T, Desai N, Kirshblum S. et al. Utility of transcranial magnetic stimulation in the assessment of spinal cord injury: Current status and future directions. Front Rehabil Sci 2022; 3: 1005111
  • 17 Zdunczyk A, Schwarzer V, Mikhailov M. et al. The Corticospinal Reserve Capacity: Reorganization of Motor Area and Excitability As a Novel Pathophysiological Concept in Cervical Myelopathy. Neurosurgery 2018; 83: 810-8
  • 18 Stroman PW, Wheeler-Kingshott C, Bacon M. et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage 2014; 84: 1070-81
  • 19 Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182: 169-83
  • 20 De Leener B, Lévy S, Dupont SM. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017; 145: 24-43