Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(24): 3849-3858
DOI: 10.1055/a-2403-2247
DOI: 10.1055/a-2403-2247
feature
A General Synthesis of 3,7-Di(carboxyalkyl)-Functionalized Pyrimidopteridine Photoredox Catalysts
This project was supported the RoHan Project funded by the German Academic Exchange Service (DAAD, No. 57315854) and the FederalMinistry for Economic Cooperation and Development (BMZ) within the framework ‘SDG Bilateral Graduate School Programmes’. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within theframework of the research training group GRK 2943 SPECTRE (No. 507189291), the priority program SPP 2102 (LO 714/11-2, No. 404479188) and research grant (PO 2055/5-1, No. 519357254) is gratefully acknowledged.

Abstract
In this work, the multi-step synthesis of three novel pyrimidopteridine photoredox catalysts is reported. These catalysts contain di(carboxyalkyl)-substitution at the 3- and 7-positions as handles for further synthetic modifications. The catalysts are fully characterized including by photochemical and electrochemical means. Additionally, a catalytic application in the oxidative annulation of 2-phenylbenzoic acid is presented.
Key words
photoredox catalysis - pyridmidopteridines - organic photoredox catalysts - photophysical characterization - amino acid - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2403-2247.
- Supporting Information
Publication History
Received: 01 July 2024
Accepted after revision: 26 August 2024
Accepted Manuscript online:
26 August 2024
Article published online:
25 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 3a Petrosyan A, Hauptmann R, Pospech J. Eur. J. Org. Chem. 2018; 5237
- 3b Hauptmann R, Petrosyan A, Fennel F, Argüello Cordero MA, Surkus A.-E, Pospech J. Chem. Eur. J. 2019; 25: 4325
- 3c El-Hage F, Schöll C, Pospech J. J. Org. Chem. 2020; 85: 13853
- 3d Taeufer T, Hauptmann R, El-Hage F, Mayer TS, Jiao H, Rabeah J, Pospech J. ACS Catal. 2021; 11: 4862
- 3e Taeufer T, Argüello Cordero MA, Petrosyan A, Surkus A.-E, Lochbrunner S, Pospech J. ChemPhotoChem 2021; 5: 999
- 3f Petrosyan A, Zach L, Taeufer T, Mayer TS, Rabeah J, Pospech J. Chem. Eur. J. 2022; 28: e202201761
- 3g Mayer TS, Taeufer T, Brandt S, Rabeah J, Pospech J. J. Org. Chem. 2023; 88: 6347
- 4a Sako M, Shimada K, Hirota K, Maki Y. Tetrahedron Lett. 1985; 26: 6493
- 4b Sako M, Shimada K, Hirota K, Maki Y. J. Am. Chem. Soc. 1986; 108: 6039
- 4c Sako M, Shimada K, Hirota K, Maki Y. J. Chem. Soc., Chem. Commun. 1986; 1704
- 4d Sako M, Shimada K, Hirota K, Maki Y. Tetrahedron Lett. 1986; 27: 3877
- 4e Shimada K, Sako M, Hirota K, Maki Y. Tetrahedron Lett. 1987; 28: 207
- 4f Maki Y, Shimada K, Sako M, Hirota K. Tetrahedron 1988; 44: 3187
- 4g Maki Y, Shimada K, Sako M, Kitade Y, Hirota K. Chem. Pharm. Bull. 1988; 36: 1714
- 4h Maki Y, Oyabu I, Ohara S, Sako M, Kitade Y, Hirota K. Chem. Pharm. Bull. 1989; 37: 3239
- 4i Maki Y, Sako M, Oyabu I, Murase T, Kitade Y, Hirota K. J. Chem. Soc., Chem. Commun. 1989; 1780
- 4j Sako M, Hirota K, Maki Y. Chem. Pharm. Bull. 1990; 38: 2069
- 4k Sako M, Ohara S, Hirota K, Maki Y. J. Chem. Soc., Perkin Trans. 1 1990; 3339
- 4l Sako M, Ohara S, Hirota K, Maki Y. Chem. Pharm. Bull. 1990; 38: 2676
- 4m Sako M, Ohara S, Hirota K, Maki Y. Tetrahedron 1990; 46: 4171
- 4n Sako M, Ohara S, Shimada K, Hirota K, Maki Y. J. Chem. Soc., Perkin Trans. 1 1990; 863
- 4o Maki Y, Sako M, Murase T, Kitade Y, Hirota K. Heterocycles 1990; 30: 279
- 4p Sako M, Ohara S, Hirota K, Maki Y. Chem. Pharm. Bull. 1991; 39: 195
- 4q Sako M, Oyabu I, Hirota K, Maki Y. J. Chem. Soc., Chem. Commun. 1991; 601
- 4r Sako M, Makino T, Kitade Y, Hirota K, Maki Y. J. Chem. Soc., Perkin Trans. 1 1992; 1801
- 4s Maki Y, Makino T, Hirota K, Sako M. Heterocycles 1993; 35: 325
- 5a De Garmo O. Patent US2561324A, 1951
- 5b Timmis GM. Patent US2581889A, 1952
- 5c Maki Y. Yakugaku Zasshi 1994; 114: 711
- 5d Guo F.-F, Li T, Mu X.-P, Zhang X, Xu Z.-H, Sun P, Yu R.-L, Xia Y.-M, Gao W.-W. Anal. Bioanal. Chem. 2023; 415: 2249
- 6a Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, MacMillan DW. C, Schlau-Cohen GS. Chem 2022; 8: 174
- 6b Mora-Rodríguez SE, Camacho-Ramírez A, Cervantes-González J, Vázquez MA, Cervantes-Jauregui JA, Feliciano A, Guerra-Contreras A, Lagunas-Rivera S. Org. Chem. Front. 2022; 9: 2856
- 6c Guadalupe Martin M, Lázaro-Martínez JM, Martín SE, Uberman PM, Budén ME. Chem. Eur. J. 2024; 30: e202303382
- 7 Cyclization with cyanoacetic acid for the direct synthesis of aminouracil 7 is not attainable with sterically demanding and electron-poor ureas.
- 8 For details, please see Table S1 in the SI.
- 9 Pfleiderer W, Ferch H. Liebigs Ann. Chem. 1958; 615: 52
- 10a Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
- 10b Corey EJ, Link JO. J. Am. Chem. Soc. 1992; 114: 1906
- 11 Yoneda F, Nagamatsu T, Ogiwara K, Kanahori M, Nishigaki S, Taylor EC. Chem. Pharm. Bull. 1978; 26: 367
- 12a Taylor EC, Maki Y, McKillop A. J. Org. Chem. 1972; 37: 1601
- 12b 10% of a bicyclic furazan sideproduct was observed. See also: Yoneda F, Sakuma Y. J. Heterocycl. Chem. 1973; 10: 993
- 13 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
- 14 Proietti G, Prathap KJ, Ye X, Olsson RT, Dinér P. Synthesis 2021; 54: 133
- 15 Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97