Subscribe to RSS
DOI: 10.1055/a-2408-0259
Risk-based ultrasound probe quality assurance – a single center proof-of-concept study
Risikobasierte Qualitätssicherung von Ultraschallsonden – eine Single-Center Proof-of-Concept-StudieAbstract
Purpose
Ultrasound probe quality assurance is an underserved and underregulated area in medical imaging. While several testing methods exist, their availability and adoption remains varied, and the frequency of testing is often insufficient. Here we aimed to conduct a user-driven simple and rapid probe quality testing approach and to evaluate its rationale.
Materials and Methods
Testing was based on physical examination of probe integrity (all probes) and in-air reverberation check (for curvilinear and linear array probes), findings, as well as probe age were registered. Prior to assessment, probes were divided into a high-risk vs. a low-risk category, based on the perceived risk of probe damage as a result of the typical application (e.g., non-invasive vs. interventional, inpatient vs. point-of-care).
Results
17.4% of the low-risk and 31.4% of high-risk probes demonstrated physical wear or damage. Reverberation artifacts were significantly more frequent (68%) in the high-risk category vs. the low-risk one (29.4%). Probes with either physical or reverberation faults were significantly older on average.
Conclusion
The simple, rapid investigational technique uncovered an alarming percentage of probe damage or faults. It also identified immediately solvable technical issues (e.g., poor cable contact mimicking dropout). High-risk probe usage resulted in an increased rate of reverberation errors and physical damage. Risk-based, frequent rapid observational testing of ultrasound probes could substantially improve both diagnostic quality and patient safety.
Zusammenfassung
Ziel
Die Qualitätssicherung von Ultraschallsonden ist ein unterregulierter Bereich in der medizinischen Bildgebung. Zwar gibt es verschiedene Testmethoden, ihre Verfügbarkeit und Akzeptanz ist jedoch unterschiedlich, und die Testhäufigkeit ist nicht ausreichend. Unser Ziel war es, einen einfachen und schnellen Qualitätstest-Ansatz durchzuführen und dessen Begründung zu bewerten.
Material und Methode
Die Tests basierten auf einer Untersuchung der Sondenintegrität (alle Sonden) und einer Überprüfung des Echoverlusts (konvexe und lineare Sonden). Die Ergebnisse sowie das Sondenalter wurden registriert. Vor der Bewertung wurden die Sonden subjektiv in eine Kategorie mit hohem und niedrigem Risiko eingeteilt, basierend auf dem wahrgenommenen Risiko einer Sondenschädigung aufgrund ihrer typischen Anwendung (z.B. nicht invasiv vs. interventionell, stationär vs. Point-of-Care).
Ergebnisse
17,4% der Schallköpfe mit geringem und 31,4% der Sonden mit hohem Risiko wiesen physische Abnutzung oder Schäden auf. Echoverlusts waren in der Hochrisiko-Kategorie häufiger (68%) als in der niedrigeren Risikokategorie (29,4%). Sonden mit physikalischen oder Echofehlern waren im Durchschnitt älter.
Schlussfolgerungen
Die einfache Untersuchungstechnik deckte einen alarmierenden Prozentsatz an Sondenschäden oder -fehlern auf. Außerdem wurden lösbare technische Probleme aufgedeckt (z.B. Ausfall wegen schlechten Kabelkontakts). Sonden in der Hochrisiko-Kategorie wiesen mehr physikalische oder Echofehler auf. Risikobasierte, häufige, schnelle Beobachtungstests von Ultraschallsonden könnten sowohl die diagnostische Qualität als auch die Patientensicherheit verbessern.
Publication History
Received: 23 March 2024
Accepted after revision: 30 August 2024
Article published online:
06 November 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hangiandreou NJ, Stekel SF, Tradup DJ. et al. Four-year experience with a clinical ultrasound quality control program. Ultrasound Med Biol 2011; 37: 1350-1357
- 2 Dudley NJ, Woolley DJ. A multicentre survey of the condition of ultrasound probes. Ultrasound; 2016; 24: 190-197
- 3 Hyldgaard N, Bolander Malvang L, Brix L. Five-year evaluation of a low-cost quality assurance protocol for clinical ultrasound transducers. Ultrasound; 2023; 31: 71-78
- 4 Mårtensson M, Olsson M, Segall B. et al. High incidence of defective ultrasound transducers in use in routine clinical practice. Eur J Echocardiogr 2009; 10: 389-394
- 5 Sipilä O, Mannila V, Vartiainen E. Quality assurance in diagnostic ultrasound. European Journal of Radiology 2011; 80: 519-525
- 6 DIN 6859–1:2022–01, Sicherung der Bildqualität in diagnostischen Betrieben_– Teil_1: Konstanzprüfung an Ultraschallgeräten für die medizinische Diagnostik und Überwachung, Beuth Verlag GmbH.
- 7 IEC TS 62736:2023 | IEC Webstore [cited 2024]. https://webstore.iec.ch/publication/68174
- 8 Kollmann C, Dolezal L. Technical Quality Evaluation of diagnostic ultrasound systems – a comprehensive overview of regulations and developments. In: EFSUMB Coursebook on Ultrasound. EFSUMB; 2020: 1-34
- 9 ÖNORM S 5240–22 Sicherung der Bildqualität in diagnostischen Betrieben – Teil 22: Konstanzprüfung an Ultraschallgeräten für die medizinische Diagnostik und Überwachung. Austrian Standards 2021 [cited 2024]. https://www.austrian-standards.at/de/shop/onorm-s-5240–22–2021–01–15~p2562463
- 10 Grazhdani H, David E, Ventura Spagnolo O. et al. Quality assurance of ultrasound systems: current status and review of literature. J Ultrasound 2018; 21: 173-182
- 11 Kollmann C, deKorte C, Dudley NJ. et al. Guideline for Technical Quality Assurance (TQA) of Ultrasound devices (B-Mode) – Version 1.0 (July 2012). Ultraschall in Med 2012; 33: 544-549
- 12 Botz B. Ultrasound probe quality assurance by the clinical user. In: EFSUMB Coursebook on Ultrasound. 2nd ed. EFSUMB; 2023;
- 13 Dudley N, Russell S, Ward B. et al. BMUS guidelines for the regular quality assurance testing of ultrasound scanners by sonographers. Ultrasound 2014; 22: 8-14
- 14 Dudley NJ, Woolley DJ. Blinded Comparison between an In-Air Reverberation Method and an Electronic Probe Tester in the Detection of Ultrasound Probe Faults. Ultrasound in Medicine & Biology 2017; 43: 2954-2958
- 15 Dudley NJ. Ultrasound Probe Acceptance Testing Using the In-Air Reverberation Pattern. Ultrasound in Medicine and Biology Elsevier; 2019; 45: 1475-1482
- 16 Vachutka J, Dolezal L, Kollmann C. et al. The Effect of Dead Elements on the Accuracy of Doppler Ultrasound Measurements. Ultrason Imaging SAGE Publications Inc; 2014; 36: 18-34
- 17 Mårtensson M, Olsson M, Brodin L-Å. Ultrasound transducer function: annual testing is not sufficient. Eur J Echocardiogr 2010; 11: 801-805
- 18 Vitikainen A-M, Peltonen JI, Vartiainen E. Routine Ultrasound Quality Assurance in a Multi-Unit Radiology Department: A Retrospective Evaluation of Transducer Failures. Ultrasound in Medicine & Biology 2017; 43: 1930-1937
- 19 Brage K, Pank KTT, Hansen S. et al. Technical ultrasonic quality assurance in Danish Radiology Departments. WFUMB Ultrasound Open 2023; 1: 100005
- 20 Fabiszewska E, Pasicz K, Grabska I. et al. Evaluation of Imaging Parameters of Ultrasound Scanners: Baseline for Future Testing. Pol J Radiol 2017; 82: 773-782
- 21 Russell S. Ultrasound quality assurance and equipment governance. Ultrasound 2014; 22: 66-69
- 22 Dudley NJ, Woolley DJ, Stevenson MA. A survey of ultrasound Quality Assurance implementation in the United Kingdom. Ultrasound SAGE Publications; 2022; 30: 308-314
- 23 Lorentsson R, Hosseini N, Aurell Y. et al. Investigation of the Impact of Defective Ultrasound Transducers on Clinical Image Quality in Grayscale 2-D Still Images. Ultrasound in Medicine & Biology 2023; 49: 2126-2133
- 24 Aarnio JV, Hermunen H, Heikkinen JO. A novel method for the daily quality control of diagnostic ultrasound transducers. In: ECR 2011 EPOS. [Text] European Congress of Radiology – ECR 2011; 2011 [cited 2024]. https://epos.myesr.org/poster/esr/ecr2011/C-1256
- 25 Aljahdali MH, Woodman A, Al-Jamea L. et al. Image Analysis for Ultrasound Quality Assurance. Ultrason Imaging 2021; 43: 113-123
- 26 Van Horssen P, Schilham A, Dickerscheid D. et al. Automated quality control of ultrasound based on in-air reverberation patterns. Ultrasound SAGE Publications 2017; 25: 229-238
- 27 Lorentsson R, Hosseini N, Johansson JO. et al. Method for automatic detection of defective ultrasound linear array transducers based on uniformity assessment of clinical images — A case study. Journal of Applied Clinical Medical Physics 2018; 19: 265-274
- 28 Lorentsson R, Hosseini N, Månsson LG. et al. Evaluation of an automatic method for detection of defects in linear and curvilinear ultrasound transducers. Physica Medica 2021; 84: 33-40
- 29 Dudley NJ, Woolley DJ. A simple uniformity test for ultrasound phased arrays. Physica Medica 2016; 32: 1162-1166