RSS-Feed abonnieren
DOI: 10.1055/a-2409-3735
Translational Perspectives on the Therapeutic Potential of Hyptis Crenata Essential Oil Terpenes in Smooth Muscle Function
This work was supported by research grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP). We also acknowledge the Superior Institute of Biomedical Sciences – State University of Ceará, Fortaleza, CE, Brazil, and the Christus University Center – Unichristus, Fortaleza, CE, Brazil, for supporting this research, although not financially.
Abstract
Monoterpenes and sesquiterpenes are classes of organic compounds found in various natural products, such as the essential oil of Hyptis crenata (EOHc). The therapeutic potential of these terpenes present in EOHc is evidenced by their effect on smooth muscle and potential clinical applications. Among the highlighted monoterpenes, such as sabinene, α-pinene, and β-pinene, a relaxing effect on rat intestinal smooth muscles is observed, attributed to interaction with calcium channels. Furthermore, monoterpenoids like borneol, cineole, and linalool also demonstrate vasorelaxant properties, suggesting potential in the treatment of cardiovascular conditions. Sesquiterpenes, such as caryophyllene and aromadendrenes, exhibit relaxing effects in various smooth muscle tissues, such as rat uterus and guinea pig ileum, indicating pharmacological potential in these areas. The translational exploration of targets, such as calcium channels and G protein-coupled receptors, highlights the importance of these compounds in discovering new therapies based on natural products for treating various medical conditions.
Keywords
Hyptis crenata - Lamiaceae - monoterpenes and sesquiterpenes - effect on smooth muscle - biomedical applicationsPublikationsverlauf
Eingereicht: 06. Juni 2024
Angenommen nach Revision: 03. September 2024
Accepted Manuscript online:
03. September 2024
Artikel online veröffentlicht:
23. September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Adhikary K, Banerjee P, Barman S, Bandyopadhyay B, Bagchi D. Nutritional aspects, chemistry profile, extraction techniques of lemongrass essential oil and itʼs physiological benefits. J Am Nutr Assoc 2024; 43: 183-200
- 2 Wang SQ, Xiang J, Zhang GQ, Fu LY, Xu YN, Chen Y, Tao L, Hu XX, Shen XC. Essential oil from fructus Alpinia zerumbet ameliorates atherosclerosis by activating PPARγ-LXRα-ABCA1/G1 signaling pathway. Phytomedicine 2024; 123: 155227
- 3 Jamir Y, Bhushan M, Sanjukta R, Robindro Singh L. Plant-based essential oil encapsulated in nanoemulsions and their enhanced therapeutic applications: An overview. Biotechnol Bioeng 2024; 121: 415-433
- 4 Rebelo MM, da Silva JKR, Andrade EHA, Maia JGS. Antioxidant capacity and biological activity of essential oil and methanol extract of Hyptis crenata Pohl ex Benth. Rev bras farmacogn 2009; 19: 230-235
- 5 Violante IMP, Garcez WS, Barbosa CS, Garcez FR. Chemical composition and biological activities of essential oil from Hyptis crenata growing in the Brazilian cerrado. Nat Prod Commun 2012; 7: 1387-1389
- 6 Rodenak Kladniew B, Polo M, Montero Villegas S, Galle M, Crespo R, García de Bravo M. Synergistic antiproliferative and anticholesterogenic effects of linalool, 1, 8-cineole, and simvastatin on human cell lines. Chem Biol Interact 2014; 214: 57-68
- 7 Zuo J, Zhang TH, Peng C, Xu BJ, Dai O, Lu Y, Zhou QM, Xiong L. Essential oil from Ligusticum chuanxiong Hort. Alleviates lipopolysaccharide-induced neuroinflammation: Integrating network pharmacology and molecular mechanism evaluation. J Ethnopharmacol 2024; 319: 117337
- 8 Oh J, Cho JY, Kim D. Hyptis obtusiflora C. Presl ex Benth methanolic extract exhibits anti-inflammatory and anti-gastritis activities via suppressing AKT/NF-κB pathway. Plants (Basel) 2023; 12: 1146
- 9 Coelho-de-Souza AN, Alves-Soares R, Oliveira HD, Gomes-Vasconcelos YA, Souza PJC, Santos-Nascimento T, Oliveira KA, Diniz LRL, Guimarães-Pereira J, Leal-Cardoso JH. The essential oil of Hyptis crenata Pohl ex Benth. presents an antiedematogenic effect in mice. Braz J Med Biol Res 2021; 54: e9422
- 10 Lima GC, Vasconcelos YAG, de Santana Souza MT, Oliveira AS, Bomfim RR, de Albuquerque Júnior RLC, Camargo EA, Portella VG, Coelho-de-Souza AN, Diniz LRL. Hepatoprotective effect of essential oils from Hyptis crenata in sepsis-induced liver dysfunction. J Med Food 2018; 21: 709-715
- 11 Diniz LRL, Vieira CFX, Santos ECD, Lima GC, Aragão KKV, Vasconcelos RP, da Costa Araújo PC, Vasconcelos YAG, Oliveira AC, Oliveira HD, Portella VG, Coelho-de-Souza AN. Gastroprotective effects of the essential oil of Hyptis crenata Pohl ex Benth. on gastric ulcer models. J Ethnopharmacol 2013; 149: 694-700
- 12 Williams E, Pauley A, Dewan A. The behavioral sensitivity of mice to acyclic, monocyclic, and bicyclic monoterpenes. PLoS One 2024; 19: e0298448
- 13 de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2023; 63: 1352-1389
- 14 Liu M, Wang K, Haapanen M, Ghimire RP, Kivimäenpää M, Asiegbu FO. Analysis of transcriptome and terpene constituents of scots pine genotypes inherently resistant or susceptible to Heterobasidion annosum . Front Plant Sci 2022; 13: 947734
- 15 Iovinella I, Pierattini EC, Bedini S, Dani FR, Guarino S, Lucchi A, Giannotti P, Cuzzupoli G, Girardi J, Conti B. Semiochemicals for intraspecific communication of the fig weevil Aclees sp. cf. foveatus (Coleoptera: Curculionidae): a first survey. Sci Rep 2020; 10: 1092
- 16 Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and antifungal terpenes from the medicinal angiosperms of Asia and the Pacific: Haystacks and gold needles. Molecules 2023; 28: 3873
- 17 OʼNeill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14: eabh1478
- 18 Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24: 6936
- 19 Ez-Zriouli R, ElYacoubi H, Imtara H, Mesfioui A, ElHessni A, Al Kamaly O, Zuhair Alshawwa S, Nasr FA, Benziane Ouaritini Z, Rochdi A. Chemical composition, antioxidant and antibacterial activities and acute toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis essential oils. Molecules 2023; 28: 2974
- 20 Wu YJ, Huang TY, Huang CY, Lin CC, Wang WL, Huang HC, Liu SYV, Chao CH, Sheu JH. Anti-inflammatory halogenated monoterpenes from the red alga Portieria hornemannii . Mar Drugs 2023; 21: 493
- 21 Braz J de VC, Carvalho FO de, Meneses D de VC, Calixto FAF, Santana HSR, Almeida IB, Aquino LAG de, Araújo AA de S, Serafini MR. Mechanism of action of limonene in tumor cells: A systematic review and meta-analysis. Curr Pharm Des 2021; 27: 2956-2965
- 22 Arafat K, Al-Azawi AM, Sulaiman S, Attoub S. Exploring the anticancer potential of Origanum majorana essential oil monoterpenes alone and in combination against non-small cell lung cancer. Nutrients 2023; 15: 5010
- 23 Đukanović Đ, Bojić MG, Marinković S, Trailović S, Stojiljković MP, Škrbić R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can J Physiol Pharmacol 2022; 100: 755-762
- 24 de Lima MNN, Costa JS, Guimarães BA, Freitas JJS, Setzer WN, Silva JKR, Maia JGS, Figueiredo PLB. Chemometrics of the composition and antioxidant capacity of Hyptis crenata essential oils from Brazil. Molecules 2023; 28: 3371
- 25 Messire G, Ferreira V, Caillet E, Bodin L, Auville A, Berteina-Raboin S. Sabinene: A new green solvent used in the synthesis of Thiazolo[5, 4-b]pyridines by thermal or microwave activation. Molecules 2023; 28: 6924
- 26 Zang X, Zhang Z, Zhao Y, Li G, Xie H, Zhang W, Wu G, Yang X, Jiang L. Effects of NO2 and SO2 on the secondary organic aerosol formation from β-pinene photooxidation. J Environ Sci (China) 2024; 136: 151-160
- 27 Li Y, Gao Y, Deng L, Lian H, Guo W, Wu W, Xue B, Li B, Su Y, Zhang H. Volatile profiling and transcriptome sequencing provide insights into the biosynthesis of α-pinene and β-pinene in Liquidambar formosana hance leaves. Genes (Basel) 2023; 14: 163
- 28 Abe M, Asada N, Kimura M, Fukui C, Yamada D, Wang Z, Miyake M, Takarada T, Ono M, Aoe M, Kitamura W, Matsuda M, Moriyama T, Matsumura A, Maeda Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci 2024; 115: 1317-1332
- 29 Karim A, Berrabah M, Mekhfi H, Ziyyat A, Legssyer A, Bouali A, Haloui B, Amrani S, Aziz M. Effect of essential oil of Anthemis mauritiana Maire & Sennen flowers on intestinal smooth muscle contractility. J Smooth Muscle Res 2010; 46: 65-75
- 30 Sadraei H, Asghari GR, Hajhashemi V, Kolagar A, Ebrahimi M. Spasmolytic activity of essential oil and various extracts of Ferula gummosa Boiss. on ileum contractions. Phytomedicine 2001; 8: 370-376
- 31 Câmara CC, Nascimento NR, Macêdo-Filho CL, Almeida FB, Fonteles MC. Antispasmodic effect of the essential oil of Plectranthus barbatus and some major constituents on the guinea-pig ileum. Planta Med 2003; 69: 1080-1085
- 32 Lima FJB, Brito TS, Freire WBS, Costa RC, Linhares MI, Sousa FCF, Lahlou S, Leal-Cardoso JH, Santos AA, Magalhães PJC. The essential oil of Eucalyptus tereticornis, and its constituents alpha- and beta-pinene, potentiate acetylcholine-induced contractions in isolated rat trachea. Fitoterapia 2010; 81: 649-655
- 33 Yang HD, Tang ZS, Xue TT, Xu HL, Hou BL, Zhu YY, Su ZH, Xu HB. Monoterpenoids from the root bark of Acanthopanax gracilistylus and their inhibitory effects on neutrophil elastase, 5-lipoxygenase, andcyclooxygenase-2 in vitro. Phytochemistry 2023; 215: 113851
- 34 Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38: 939-969
- 35 Li-Zhulanov NS, Zaikova NP, Sari S, Gülmez D, Sabuncuoğlu S, Ozadali-Sari K, Arikan-Akdagli S, Nefedov AA, Rybalova TV, Volcho KP, Salakhutdinov NF. Rational design of new monoterpene-containing azoles and their antifungal activity. Antibiotics 2023; 12: 818
- 36 Al Kury LT, Abdoh A, Ikbariah K, Sadek B, Mahgoub M. In vitro and in vivo antidiabetic potential of monoterpenoids: An update. Molecules 2022; 27: 182
- 37 Bhatti HN, Khan SS, Khan A, Rani M, Ahmad VU, Choudhary MI. Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine 2014; 21: 1597-1626
- 38 Bi X, Han L, Qu T, Mu Y, Guan P, Qu X, Wang Z, Huang X. Anti-inflammatory effects, SAR, and action mechanism of monoterpenoids from Radix Paeoniae Alba on LPS-stimulated RAW 264.7 cells. Molecules 2017; 22: 715
- 39 Maia-Joca RPM, Joca HC, Ribeiro FJP, do Nascimento RV, Silva-Alves KS, Cruz JS, Coelho-de-Souza AN, Leal-Cardoso JH. Investigation of terpinen-4-ol effects on vascular smooth muscle relaxation. Life Sci 2014; 115: 52-58
- 40 Liu S, Long Y, Yu S, Zhang D, Yang Q, Ci Z, Cui M, Zhang Y, Wan J, Li D, Shi A, Li N, Yang M, Lin J. Borneol in cardio-cerebrovascular diseases: Pharmacological actions, mechanisms, and therapeutics. Pharmacol Res 2021; 169: 105627
- 41 Santos SE, Ribeiro FPRA, Menezes PMN, Duarte-Filho LAM, Quintans JSS, Quintans-Junior LJ, Silva FS, Ribeiro LAA. New insights on relaxant effects of (−)-borneol monoterpene in rat aortic rings. Fundam Clin Pharmacol 2019; 33: 148-158
- 42 Luz MS, Gadelha DDA, Andrade KJS, Travassos RA, Ribeiro JD, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, França-Falcão MS. Borneol reduces sympathetic vasomotor hyperactivity and restores depressed baroreflex sensitivity in rats with renovascular hypertension. Hypertens Res 2022; 45: 802-813
- 43 Müller J, Greiner JFW, Zeuner M, Brotzmann V, Schäfermann J, Wieters F, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C. 1, 8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci (Lond) 2016; 130: 1339-1352
- 44 Michalsen A, Goldenstein K, Kardos P, Klimek L, Palm J, Parganlija D, Stöckl J. The impact of cineole treatment timing on common cold duration and symptoms: Non-randomized exploratory clinical trial. PLoS One 2024; 19: e0296482
- 45 Pereira-Gonçalves Á, Ferreira-da-Silva FW, de Holanda-Angelin-Alves CM, Cardoso-Teixeira AC, Coelho-de-Souza AN, Leal-Cardoso JH. 1, 8-Cineole blocks voltage-gated L-type calcium channels in tracheal smooth muscle. Pflugers Arch 2018; 470: 1803-1813
- 46 Nascimento NRF, Refosco RMDC, Vasconcelos ECF, Kerntopf MR, Santos CF, Batista FJA, De Sousa CM, Fonteles MC. 1, 8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J Pharm Pharmacol 2009; 61: 361-366
- 47 dos Santos ANC, Freire JEC, Vasconcelos YAG, Honório JER, Cardoso JHL, de Souza ANC. Possible adjuvant role of cineole in controlling vascular smooth muscle dysfunction. AJBSR 2024; 21: 68
- 48 Debong MW, NʼDiaye K, Schöberl D, Yin Y, Lang R, Buettner A, Hofmann T, Loos HM. Linalool, 1, 8-cineole, and eugenol transfer from a curry dish into human urine. Mol Nutr Food Res 2024; 68: e2300396
- 49 Straface M, Makwana R, Palmer A, Rombolà L, Aleong JC, Morrone LA, Sanger GJ. Inhibition of neuromuscular contractions of human and rat colon by bergamot essential oil and linalool: Evidence to support a therapeutic action. Nutrients 2020; 12: 1381
- 50 Anjos PJC, Lima AO, Cunha PS, De Sousa DP, Onofre ASC, Ribeiro TP, Medeiros IA, Antoniolli AR, Quintans-Júnior LJ, Santosa MRV. Cardiovascular effects induced by linalool in normotensive and hypertensive rats. Z Naturforsch C J Biosci 2013; 68: 181-190
- 51 Kundu S, Shabir H, Basir SF, Khan LA. Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone. J Smooth Muscle Res 2014; 50: 93-102
- 52 Nuermaimaiti M, Turak A, Yang Q, Tang B, Zang Y, Li J, Aisa HA. Sesquiterpenes from Artemisia Sieversiana and their anti-inflammatory activities. Fitoterapia 2021; 154: 104996
- 53 Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous fungi-derived orsellinic acid-sesquiterpene meroterpenoids: Fungal sources, chemical structures, bioactivities, and biosynthesis. Planta Med 2023; 89: 1110-1124
- 54 Yuyama KT, Fortkamp D, Abraham WR. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 2017; 399: 13-28
- 55 Paço A, Brás T, Santos JO, Sampaio P, Gomes AC, Duarte MF. Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27: 1142
- 56 Chen L, Liu Y, Li Y, Yin W, Cheng Y. Anti-cancer effect of sesquiterpene and triterpenoids from agarwood of Aquilaria sinensis . Molecules 2022; 27: 5350
- 57 Dong X, Qu L, Xiong J, Wang B, Sha X, Wu B, Sun Y, Pan X, Sun J, Pan L-L. Shizukaol C alleviates trimethylamine oxide-induced inflammation through activating Keap1-Nrf2-GSTpi pathway in vascular smooth muscle cell. Phytomedicine 2024; 128: 155403
- 58 Guo Y, Liu C, Zhang Y, Zheng S, Cao P, Wang X, Tian Z. Characterization key genes of Arabidopsis seedlings in response to β-caryophyllene, eugenol using combined transcriptome and WGCN analysis. Front Plant Sci 2023; 14: 1295779
- 59 Leonhardt V, Leal-Cardoso JH, Lahlou S, Albuquerque AAC, Porto RS, Celedônio NR, Oliveira AC, Pereira RF, Silva LP, Garcia-Teófilo TMN, Silva APFS, Magalhães PJC, Duarte GP, Coelho-de-Souza AN. Antispasmodic effects of essential oil of Pterodon polygalaeflorus and its main constituent β-caryophyllene on rat isolated ileum. Fundam Clin Pharmacol 2010; 24: 749-758
- 60 Menezes PMN, de Oliveira HR, Brito MC, de Paiva GO, Ribeiro LAA, Lucchese AM, Silva FS. Spasmolytic and antidiarrheal activities of Lippia thymoides (Verbenaceae) essential oil. Nat Prod Res 2019; 33: 2571-2573
- 61 Perez-Hernandez N, Ponce-Monter H, Medina JA, Joseph-Nathan P. Spasmolytic effect of constituents from Lepechinia caulescens on rat uterus. J Ethnopharmacol 2008; 115: 30-35
- 62 Pérez-Hernández N, Ponce-Monter H, Ortiz MI, Cariño-Cortés R, Joseph-Nathan P. Structure-activity relationships of aromadendranes in uterus- relaxant activity. Z Naturforsch C J Biosci 2009; 64: 840-846
- 63 Kar K, Puri VN, Patnaik GK, Sur RN, Dhawan BN, Kulshrestha DK, Rastogi RP. Spasmolytic constituents of Cedrus deodara (Roxb.) Loud: pharmacological evaluation of himachalol. J Pharm Sci 1975; 64: 258-262
- 64 Faris A, Edder Y, Louchachha I, Lahcen IA, Azzaoui K, Hammouti B, Merzouki M, Challioui A, Boualy B, Karim A, Hanbali G, Jodeh S. From himachalenes to trans-himachalol: Unveiling bioactivity through hemisynthesis and molecular docking analysis. Sci Rep 2023; 13: 17653
- 65 Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 2019; 177: 1495-1506.e12
- 66 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27-30
- 67 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46: W296-W303
- 68 Ishchenko A, Stauch B, Han GW, Batyuk A, Shiriaeva A, Li C, Zatsepin N, Weierstall U, Liu W, Nango E, Nakane T, Tanaka R, Tono K, Joti Y, Iwata S, Moraes I, Gati C, Cherezov V. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ 2019; 6: 1106-1119
- 69 Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 2010; 132: 11443-11445
- 70 Guedes IA, Pereira da Silva MM, Galheigo M, Krempser E, de Magalhães CS, Correa Barbosa HJ, Dardenne LE. DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening. J Mol Biol 2024; 168548
- 71 Guedes IA, Barreto AMS, Marinho D, Krempser E, Kuenemann MA, Sperandio O, Dardenne LE, Miteva MA. New machine learning and physics-based scoring functions for drug discovery. Sci Rep 2021; 11: 3198
- 72 de Magalhães CS, Almeida DM, Barbosa HJC, Dardenne LE. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf Sci (Ny) 2014; 289: 206-224
- 73 Guedes IA, Pereira FSS, Dardenne LE. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Front Pharmacol 2018; 9: 1089
- 74 Santos KB, Guedes IA, Karl ALM, Dardenne LE. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP protein-peptide data set. J Chem Inf Model 2020; 60: 667-683
- 75 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402