Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2025; 57(03): 629-636
DOI: 10.1055/a-2412-9481
DOI: 10.1055/a-2412-9481
paper
Iridium-Catalyzed Leuckart-Type Reductive Amination of Carbonyls
This work was supported by the National Natural Science Foundation of China (22161004), the Fundamental Research Funds for Gannan Medical University (QD202019, QD202106, TD2021YX05), Department of Education of Guangdong Province (2023ZDZX2059), and Shaoguan University (408/9900064703) for financial support.
Abstract
Formamides are fundamental motifs that are prevalent in drugs, pesticides, dyes, and fragrances. Herein, we described an iridium-catalyzed Leuckart-type reductive amination of carbonyls, delivering formamides in moderate to excellent yields. In this process, ammonium formate was used as the N-formylating reagent to produce the formamide products. This protocol provides a new procedure for formamide synthesis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2412-9481.
- Supporting Information
Publication History
Received: 10 July 2024
Accepted after revision: 10 September 2024
Accepted Manuscript online:
10 September 2024
Article published online:
31 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem. 2015; 17: 157
- 1b Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2017; 7: 2500
- 1c Zhang Y, Dai X, Wang H, Shi F. J. Phys. Chem. 2018; 34: 845
- 1d Dong X, Wang Z, Duan Y, Yang Y. Chem. Commun. 2018; 54: 8913
- 1e Yu H, Wu Z, Wei Z, Zhai Y, Ru S, Zhao Q, Wang J, Han S, Wei Y. Commun. Chem. 2019; 2: 15
- 1f Nasrollahzadeh M, Motahharifar N, Sajjadi M, Aghbolagh AM, Shokouhimehr M, Varma RS. Green Chem. 2019; 21: 5144
- 2 Li C, Meng Y, Yang S, Li H. ChemCatChem 2021; 13: 5166
- 3a Sharma B, Ghosh A, Dubey MK, Bandichhor R, Das SK. A. ChemistrySelect 2023; 8: e202300443
- 3b Li C, Wang M, Lu X, Zhang L, Jiang J, Zhang L. ACS Sustainable Chem. Eng. 2020; 8: 4353
- 3c Zhang L, Jiang J, Li L, Chen Q, Zhang L, Sun H, Li C. ACS Sustainable Chem. Eng. 2022; 10: 8433
- 3d Mishra K, Khanal HD, Lee YR. Eur. J. Org. Chem. 2021; 4477
- 3e Cohen S, Bilyachenko AN, Gelman D. Eur. J. Inorg. Chem. 2019; 3203
- 4a Stille JK, Tjutrins J, Wang G, Venegas FA, Hennecker C, Rueda AM, Sharon I, Blaine N, Miron CE, Pinus S. Eur. J. Med. Chem. 2022; 229: 114046
- 4b Yurino T, Tange Y, Tani R, Ohkuma T. Org. Chem. Front. 2020; 7: 1308
- 4c Patre RE, Mal S, Nilkanth PR, Ghorai SK, Deshpande SH, El Qacemi M, Smejkal T, Pal S, Manjunath BN. Chem. Commun. 2017; 53: 2382
- 4d Brunelli F, Aprile S, Russo C, Giustiniano M, Tron GC. Green Chem. 2022; 24: 7022
- 5 Hill DR, Hsiao C.-N, Kurukulasuriya R, Wittenberger SJ. Org. lett. 2002; 4: 111
- 6 Blicke F, Lu C.-J. J. Am. Chem. Soc. 1952; 74: 3933
- 7a Noh HW, An Y, Lee S, Jung J, Son SU, Jang HY. Adv. Synth. Catal. 2019; 361: 3068
- 7b Li W, Wu XF. Chem. Eur. J. 2015; 21: 14943
- 7c Chen Y, Mao J, Shen R, Wang D, Peng Q, Yu Z, Guo H, He W. Nano Res. 2017; 10: 890
- 7d Wang Y, Zhang J, Chen H, Zhang Z, Zhang C, Li M, Wang F. Green Chem. 2017; 19: 88
- 8a Pichardo MC, Tavakoli G, Armstrong JE, Wilczek T, Thomas BE, Prechtl MH. ChemSusChem 2020; 13: 882
- 8b Ortega N, Richter C, Glorius F. Org. Lett. 2013; 15: 1776
- 8c Kang B, Hong SH. Adv. Synth. Catal. 2015; 357: 834
- 9a Chen X.-C, Guo L, Shi G.-H, Zhao K.-C, Lu Y, Liu Y. Mol. Catal. 2022; 528: 112431
- 9b Jiang J, Li L, Zhang L, Chen Q, Sun H, Liao S, Li C, Zhang L. ChemistrySelect 2021; 6: 12834
- 10a Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202
- 10b Arefi M, Heydari A. RSC Adv. 2016; 6: 24684
- 10c Fu R, Yang Y, Chen Z, Lai W, Ma Y, Wang Q, Yuan R. Tetrahedron 2014; 70: 9492
- 11a Ke Z, Zhang Y, Cui X, Shi F. Green Chem. 2016; 18: 808
- 11b Saidi O, Bamford MJ, Blacker AJ, Lynch J, Marsden SP, Plucinski P, Watson RJ, Williams JM. Tetrahedron Lett. 2010; 51: 5804
- 12 Chen Z, Cao Y, Tian Z, Zhou X, Xu W, Yang J, Teng H. Tetrahedron Lett. 2017; 58: 2166
- 13 Schmid L, Canonica A, Baiker A. Appl. Catal., A 2003; 255: 23
- 14a Mitsudome T, Urayama T, Fujita S, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. ChemCatChem 2017; 9: 3632
- 14b Zhang L, Han Z, Zhao X, Wang Z, Ding K. Angew. Chem. Int. Ed. 2015; 54: 6186
- 14c Dai X, Li T, Wang B, Kreyenschulte C, Bartling S, Liu S, He D, Yuan H, Brückner A, Shi F. Angew. Chem. Int. Ed. 2023; 135: e202217380
- 14d Dai X, Wang B, Wang A, Shi F. J. Catal. 2019; 40: 1141
- 15a Zhang Q, Lin X.-T, Fukaya N, Fujitani T, Sato K, Choi J.-C. Green Chem. 2020; 22: 8414
- 15b Gopakumar A, Lombardo L, Fei Z, Shyshkanov S, Vasilyev D, Chidambaram A, Stylianou K, Züttel A, Dyson PJ. J. CO2 Util. 2020; 41: 101240
- 16a Saptal VB, Sasaki T, Bhanage BM. ChemCatChem 2018; 10: 2593
- 16b Kumar A, Sharma P, Sharma N, Kumar Y, Mahajan D. RSC Adv. 2021; 11: 25777
- 16c Phatake VV, Mishra AA, Bhanage BM. Inorg. Chim. Acta 2020; 501: 119274
- 17a Liang G, Wang A, Li L, Xu G, Yan N, Zhang T. Angew. Chem. Int. Ed. 2017; 56: 3050
- 17b Irrgang T, Kempe R. Chem. Rev. 2020; 120: 9583
- 17c Dong C, Wu Y, Wang H, Peng J, Li Y, Samart C, Ding M. ACS Sustainable Chem. Eng. 2021; 9: 7318
- 17d Zou Q, Liu F, Zhao T, Hu X. Chem. Commun. 2021; 57: 8588
- 17e Gokhale TA, Raut AB, Bhanage BM. Mol. Catal. 2021; 510: 111667
- 17f Coeck R, Meeprasert J, Li G, Altantzis T, Bals S, Pidko EA, DVos DE. ACS Catal. 2021; 11: 7672
- 17g Funk P, Richrath RB, Bohle F, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2021; 60: 5482
- 18a Palo-Nieto C, Afewerki S, Anderson M, Tai C.-W, Berglund P, Córdova A. ACS Catal. 2016; 6: 3932
- 18b Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Chem. Eur. J. 2021; 27: 5919
- 19 Tanaka K, Miki T, Murata K, Yamaguchi A, Kayaki Y, Kuwata S, Ikariya T, Watanabe M. J. Org. Chem. 2019; 84: 10962
- 20a McCoy DE, Feo T, Harvey TA, Prum RO. Nat. Commun. 2018; 9: 1
- 20b Kadyrov R, Riermeier TH. Angew. Chem. Int. Ed. 2003; 42: 5472
- 20c Huang W, Mei Q, Xu S, An B, He M, Li J, Chen Y, Han X, Luo T, Guo L, Hurd J, Lee D, Tillotson E, Haigh SJ, Walton A, Day SJ, Natrajan LS, Schröder M, Yang S. Chem. Eur. J. 2024; 30: e202303289
- 21 Kitamura M, Lee D, Hayashi S, Tanaka S, Yoshimura M. J. Org. Chem. 2002; 67: 8685
- 22a Ouyang L, Miao R, Yang Z, Luo R. J. Catal. 2023; 418: 283
- 22b Xia Y, Wang S, Miao R, Liao J, Ouyang L, Luo R. Org. Biomol. Chem. 2022; 20: 6394
- 22c Ouyang L, Xia Y, Miao R, Liao J, Luo R. Org. Biomol. Chem. 2022; 20: 2621
- 22d Luo N, Zhong Y, Shui H, Luo R. J. Org. Chem. 2021; 86: 15509
- 22e Luo N, Shui H, Wen H, Luo R. ACS Omega 2020; 5: 27723
- 23 Li C, Meng Y, Yang S, Li H. ChemCatChem 2021; 13: 5166
- 24 Cuccu F, Basoccu F, Fattuoni C, Porcheddu A. Molecules 2022; 27: 5450
- 25 Chouhan KK, Chowdhury D, Mukherjee A. Org. Biomol. Chem. 2022; 20: 7929
- 26 Dai X, Li T, Wang B, Kreyenschulte C, Bartling S, Liu S, He D, Yuan H, Brückner A, Shi F, Rabeah J, Cui X. Angew. Chem. Int. Ed. 2023; 62: e202217380
- 27 Neochoritis CG, Zarganes-Tzitzikas T, Stotani S, Dömling A, Herdtweck E, Khoury K, Dömling A. ACS Comb. Sci. 2015; 17: 493
- 28 Gokhale TA, Gulhane SC, Bhanage BM. Eur. J. Org. Chem. 2023; e202200997
- 29 Zhang J, Liu C, Wang X, Chen J, Zhang Z, Zhang W. Chem. Commun. 2018; 54: 6024