Synthesis 2024; 56(23): 3680-3686
DOI: 10.1055/a-2417-9450
paper

Efficient and Direct Route to 5-Iodo-4H-Quinoxalines via Copper-Catalyzed Double C–N Arylations of 1,2,3-Triiodoarenes: Potential Application towards 5-Substituted 4H-Quinoxalines

a   Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar
b   Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
c   Department of Chemistry, College of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
,
Walid K. Al-Jammal
a   Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar
,
d   Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
,
Abdulilah D. Bani-Yaseen
d   Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
,
Michael J. Ferguson
e   Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G2G2, Canada
› Author Affiliations
The Deanship of Research at the Jordan University of Science and Technology (JUST) has provided funding for this project (Grant No. 100/2018 for R.M.A.).


Abstract

A simple, direct, and regioselective protocol to substituted 5-iodo-4H-quinoxalines through double C–N arylations of 1,2,3-triiodobenzenes and 1,2-diamines is reported. Remarkably, the N-arylation couplings proceed unimolecularly at the vicinal positions, the most active and less hindered positions. This process tolerates a wide range of aromatic substrates. The reactions of electron-deficient 1,2,3-triiodoarene systems and DMEDA under the optimized conditions provided the highest isolated yields. The chemical transformation of the target compound, which serves as a valuable precursor in synthesis, was successfully demonstrated in the Suzuki–Miyaura reaction, giving the desired coupling derivatives with excellent isolated yields. This article describes a method for the first and unprecedented synthesis of 5-iodo-4H-quinoxalines that is regioselective, scalable, and provides useful derivatives for other chemical reactions

Supporting Information



Publication History

Received: 22 June 2024

Accepted after revision: 18 September 2024

Accepted Manuscript online:
18 September 2024

Article published online:
15 October 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Green Synthetic Approaches for Biologically Relevant Heterocycles, 2nd ed., Vol. 1. Brahmachari G. Elsevier; Amsterdam: 2021
    • 1b Montana M, Montero V, Khoumeri O, Vanelle P. Molecules 2020; 25: 2784
    • 1c Al-Shamary DS, Al-Alshaikh MA, Kheder NA, Mabkhot YN, Badshah SL. Chem. Cent. J. 2017; 11: 48
    • 2a Sandford G, Tadeusiak A, Yufit DS, Howard JA. K. J. Fluorine Chem. 2007; 128: 1216
    • 2b Zhou C.-Z, Zhao Y.-R, Tan F.-F, Guo Y.-J, Li Y. ChemCatChem 2021; 13: 4724
    • 2c Shen G, Zhao L, Zhao X, Huangfu X, Li Z, Wang R, Zhang T. Synlett 2017; 28: 1111
    • 2d Kruse W, ten Hoeve CG, Luteyn JM, Thiecke JR. G, Wynberg H. J. Org. Chem. 1993; 58: 5101
    • 2e Cosmao JM, Collignon N, Queguiner G. J. Heterocycl. Chem. 1979; 16: 973
    • 2f Lalloz L, Caubere P. Synthesis 1975; 657
    • 3a Braje W, Mark H, Koolman H. (AbbVie Deutschland GmbH & Co. KG) Patent CN104418862, 2015
    • 3b Koolman H, Braje W, Mack H, Haupt A, Relo AL, Drescher K, Bakker MH. M, Lakics V, Hoft C, Xu R, Zhao X. (AbbVie Deutschland GmbH & Co. KG) Patent WO2014041131, 2014
  • 4 Yano T. (Shionogi & Co., Ltd.) Patent WO2008026564, 2008
  • 5 Yoshida T, Yamamoto Y, Yagi N, Yasuda S, Katoh H, Itoh Y. Yakugaku Zasshi 1990; 110: 258
  • 6 Ibrahim MK. J. Pharm. Sci. 1999; 39: 511
    • 7a Chai X, Zhang X, Wang Y, Yu H, Wang D, Fang S, Yu H, Dong X, Li R. (Tianjin University of Traditional Chinese Medicine) Patent CN114751906, 2022
    • 7b Jiang H, Jiang C. (Jiaxing Xiujun Medical Devices Co., Ltd.) Patent CN111269213, 2020
    • 7c Bhatti HA, Zaheer Q.-U.-a, Tehseen Y, Shaiq Z, Khan KM, Hameed A, Iqbal J. Sci. J. Chem. 2019; 7: 90
    • 7d Shen Z, Sun Z, Wang Q, Tan C, Liu X, Liu X, Zhang Y. (Zhejiang University of Technology) Patent CN106234385, 2016
    • 8a Al-Zoubi RM, Al-Jammal WK, Al-Zoubi MS, Ferguson MJ, Zarour A, Yassin A, Al-Ansari A. ChemistrySelect 2021; 6: 3417
    • 8b Al-Zoubi RM, Al-Jammal WK, Al-Zoubi MS, McDonald R, Zarour A, Yassin A, Al-Ansari A. New J. Chem. 2021; 45: 8432
    • 8c Al-Zoubi RM, Al-Jammal WK, El-Khateeb MY, McDonald R. Eur. J. Org. Chem. 2015; 3374
    • 8d Al-Zoubi RM, Al-Jammal WK, Ferguson MJ, Murphy GK. RSC Adv. 2021; 11: 30069
    • 8e Al-Zoubi RM, Al-Shatnawi NH, Al-Jammal WK, Ibdah A, Al-Zoubi MS, Ferguson MJ, Zarour A, Yassin A, Al-Ansari A. J. Organomet. Chem. 2021; 940: 121786
    • 8f Al-Zoubi RM, Altamimi RM, Al-Jammal WK, Shawakfeh KQ, Al-Zoubi MS, Ferguson MJ, Zarour A, Yassin A, Al-Ansari A. Synthesis 2021; 53: 2665
    • 8g Al-Zoubi RM, Al-Zoubi MS, Abazid AH, McDonald R. Asian J. Org. Chem. 2015; 4: 359
    • 8h Al-Zoubi RM, Al-Omari MK, Al-Jammal WK, Ferguson MJ. RSC Adv. 2020; 10: 16366
    • 9a Al-Zoubi RM, Al-Jammal WK, McDonald R. ChemistrySelect 2020; 5: 2848
    • 9b Al-Zoubi RM, Al-Mughaid H, Al-Zoubi MA, Jaradat KT, McDonald R. Eur. J. Org. Chem. 2015; 5501
    • 9c Al-Zoubi RM, Futouh HA, McDonald R. Aust. J. Chem. 2013; 66: 1570
    • 10a Baudelet D, Daïch A, Rigo B, Lipka E, Gautret P, Homerin G, Claverie C, Rousseau J, Abuhaie CM, Ghinet A. Synthesis 2016; 48: 2226
    • 10b Li W, Qiao M, Chen Z, Jin X, Su Y, Chen X, Guo L, Zhang Z, Su J. Chem. Commun. 2023; 59: 7439
    • 10c Jin X, Guo S, Wang X, Cong M, Chen J, Zhang Z, Su J, Qu D.-H, Tian H. Angew. Chem. Int. Ed. 2023; 62: e202305572
    • 10d Qiu S, Zhang Z, Wu Y, Tong F, Chen K, Liu G, Zhang L, Wang Z, Qu D.-H, Tian H. CCS Chem. 2022; 4: 2344
    • 10e Chen C.-Y, Reamer RA. Tetrahedron Lett. 2009; 50: 1529
  • 11 Jiangsu Sanyue Optoelectronic Technology Co Ltd, China, Patent CN111153919 A, 2020
  • 12 Altenhoff G, Glorius F. Adv. Synth. Catal. 2004; 346: 1661
  • 13 CCDC 2364451 and 2364452 contain the supplementary crystallographic data for 9e and 11. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 14 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 15a Vijayan A, Rao DN, Radhakrishnan KV, Lam PY. S, Das P. Synthesis 2021; 53: 805
    • 15b Yang Y, Cao F, Yao L, Shi T, Tang B, Kuninobu Y, Wang Z. J. Org. Chem. 2020; 85: 9713
    • 15c Li JM, Wang YH, Yu Y, Wu RB, Weng J, Lu G. ACS Catal. 2017; 7: 2661
    • 15d Tang S, Gong T, Fu Y. Sci. China Chem. 2013; 56: 619