Subscribe to RSS
DOI: 10.1055/a-2418-8285
Merging the Reactivity of (Pseudo)cyclic Hypervalent Iodine Reagents and Carbenes or Carbenoids
We thank École Polytechnique Fédérale de Lausanne (EPFL, Switzerland ) for financial support. This publication was created as part of NCCR catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation (Grant No. 180544). Dr. Nieves P. Ramirez thanks the Generalitat Valenciana for a APOSTD 2022 postdoctoral fellowship (CIAPOS/2021/31).

Dedicated to Prof. Erick M. Carreira at the occasion of his 60th birthday
Abstract
In this short review, we present applications merging the reactivity of cyclic hypervalent iodine reagents with carbenes and carbenoids developed in the period 2014–2024. The use of more stable cyclic hypervalent iodine reagents has led to major advances in this area. The combination of iodine(III) chemistry with carbenes or carbenoids enables new disconnections that are not possible using classical reactivity. Both the use of hypervalent iodine compounds as partners in reactions with metal carbenes and as reagents combining the reactivity of iodine(III) and carbenes in a single molecule to give carbyne equivalents are discussed in this review.
1 Introduction
2 Transfer of Fluorinated Groups (F, CF3)
3 Oxy- and Aminoalkyn(en)ylation
3.1 Oxy- and Aminoalkynylation with Acceptor-Substituted Diazo Compounds
3.2 Oxyalkenylation with Acceptor-Substituted Diazo Compounds
3.3 Oxyalkynylation with Acceptor-Acceptor-Substituted Diazo Compounds
4 Carbyne Equivalents
4.1 Diazo-Based Reagents
4.2 Sulfur Ylide Based Reagents
5 Conclusion
Key words
Umpolung - carbenes - carbenoids - cyclic hypervalent iodine reagents - transition-metal catalysis - photocatalysisPublication History
Received: 07 June 2024
Accepted after revision: 19 September 2024
Accepted Manuscript online:
19 September 2024
Article published online:
24 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Current address: Organic Chemistry/Biomimetic Catalysis, Saarland University, 66123 Saarbruecken, Germany.
- 2a Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2014
- 2b Hypervalent Iodine Chemistry . In Topics in Current Chemistry, Vol. 373. Wirth T. Springer International; Switzerland: 2016
- 2c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 2d Iodine Catalysis in Organic Synthesis . Ishihara K, Muñiz K. Wiley-VCH; Weinheim: 2022
- 3a Corey EJ, Seebach D. Angew. Chem. Int. Ed. 1965; 4: 1075
- 3b Corey EJ, Seebach D. Angew. Chem. Int. Ed. 1965; 4: 1077
- 4 Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 5 Ochiai M, Masaki Y, Shiro M. J. Org. Chem. 1991; 56: 5511
- 6a Zhdankin VV, Kuehl C, Krasutsky AP, Boltz JT, Mismash B, Woodward JK, Simonsen A. Tetrahedron Lett. 1995; 36: 7975
- 6b Zhdankin VV, Krasutsky AP, Kuchl CJ, Simonse AJ, Woodward JK, Mismash B, Bolz J. J. Am. Chem. Soc. 1996; 118: 5192
- 7a Ochiai M, Sueda K, Miyamoto K, Kipof P, Zhdankin VV. Angew. Chem. Int. Ed. 2006; 45: 8203
- 7b Le Du E, Ramirez NP, Nicolai S, Scopelliti R, Fadaei-Tirani F, Wodrich MD, Hari DP, Waser J. Helv. Chim. Acta 2023; 106: e202200175
- 8a Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2015; 54: 8876
- 8b Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
- 8c Zhdankin VV. ARKIVOK 2020; (iv): 1
- 8d Allouche EM. D, Grinhagena E, Waser J. Angew. Chem. Int. Ed. 2022; 61: e202112287
- 8e Simonet-Davin R, Waser J. Synthesis 2023; 55: 1652
- 8f Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Molecules 2023; 28: 2136
- 8g Yoshimura A, Saito A, Zhdankin VV. Adv. Synth. Catal. 2023; 365: 2653
- 9 Brand JP, Chevalley C, Scopelliti R, Waser J. Chem. Eur. J. 2012; 18: 5655
- 10 Milzarek TM, Ramirez NP, Liu X.-Y, Waser J. Chem. Commun. 2023; 59: 12637
- 11a Metal Carbenes in Organic Synthesis. In Topics in Organometallic Chemistry, Vol. 13. Dötz KH. Springer; Heidelberg: 2004
- 11b Gessner VH. Chem. Commun. 2016; 52: 12011
- 11c Transition Metal-Catalyzed Carbene Transformations . Wang J, Che C.-M, Doyle MP. Wiley-VCH; Weinheim: 2022
- 12a Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
- 12b Chen DF, Han ZY, Zhou XL, Gong LZ. Acc. Chem. Res. 2014; 47: 2365
- 12c Zhang D, Hu WH. Chem. Rec. 2017; 17: 739
- 13a Tao J, Tran R, Murphy GK. J. Am. Chem. Soc. 2013; 135: 16312
- 13b Sinclair GS, Tran R, Tao J, Hopkins WS, Murphy GK. Eur. J. Org. Chem. 2016; 2016: 4603
- 13c Arnold AM, Ulmer A, Gulder T. Chem. Eur. J. 2016; 22: 8728
- 13d Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
- 13e Molnár IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
- 13f Sarie JC, Thiehoff C, Mudd RJ, Daniliuc CG, Kehr G, Gilmour R. J. Org. Chem. 2017; 82: 117988
- 13g Zhao Z, Racicot L, Murphy GK. Angew. Chem. Int. Ed. 2017; 56: 11620
- 13h Murphy GK, Gulder T. Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically). In Synthetic Organofluorine Chemistry. Hu J, Umemoto T. Springer; Singapore: 2018. DOI:
- 13i Scheidt F, Thiehoff C, Yilmaz G, Meyer S, Daniliuc CG, Kehr G, Gilmour R. Beilstein J. Org. Chem. 2018; 14: 1021
- 13j Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
- 13k Scheidt F, Neufeld J, Schäfer M, Thiehoff C, Gilmour R. Org. Lett. 2018; 20: 8073
- 13l Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232
- 13m Chidley T, Jameel I, Rizwan S, Peixoto PA, Pouységu L, Quideau S, Hopkins WS, Murphy GK. Angew. Chem. Int. Ed. 2019; 58: 16959
- 13n Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
- 13o Meyer S, Häfliger J, Schäfer M, Molloy JJ, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 6430
- 13p Neufeld J, Stünkel T, Mück-Lichtenfeld C, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 13647
- 13q Häfliger J, Livingstone K, Daniliuc CG, Gilmour R. Chem. Sci. 2021; 12: 6142
- 13r Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2022; 61: e202205508
- 13s Yu Y.-J, Schäfer M, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2023; 62: e202214906
- 13t Yu Y.-J, Häfliger J, Wang Z.-X, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2023; 62: e202309789
- 13u Zhao P, Wang W, Gulder T. Org. Lett. 2023; 25: 6560
- 13v Arnold A, Bindler J, Kretzschmar M, Gulder T. Synlett 2024; 35: 1001
- 14a Shi L, Zhao R. Angew. Chem. Int. Ed. 2020; 59: 12282
- 14b Timmann S, Alcarazo M. Chem. Commun. 2023; 59: 8032
- 15a Chambers RD. Fluorine in Organic Chemistry . Wiley-Blackwell; Oxford: 2004
- 15b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 15c Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 15d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 15e Swallow S. Fluorine-Containing Pharmaceuticals. In Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Fluorine-Containing Pharmaceuticals Vol. 6; Imperial College Press; London: 2012: 141-174
- 15f Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 15g Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 15h Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Wittaker AK. Chem. Rev. 2022; 122: 167
- 16 Yuan W, Erickson L, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 8410
- 17 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 18a Mai BK, Szabó KJ, Himo F. ACS Catal. 2018; 8: 4483
- 18b Lübcke M, Szabó KJ. Synlett 2020; 32: 1060
- 19 Szabó KJ. Fluorination, Trifluoromethylation, and Trifluoromethylthiolation of Alkenes, Cyclopropanes, and Diazo Compounds. In Organofluorine Chemistry: Synthesis, Modeling, and Applications, Szabó K, Selander N. Wiley-VCH: 2021: 201
- 20 Cortés González MA, Jiang X, Nordeman P, Antoni G, Szabó KJ. Chem. Commun. 2019; 55: 13358
- 21a Brand JP, Fernandez Gonzalez D, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
- 21b Brand JP, Waser J. Chem. Soc. Rev. 2012; 41: 4165
- 21c Waser J. Top. Curr. Chem. 2016; 373: 187
- 21d Waser J. Synlett 2016; 27: 2761
- 21e Hari DP, Nicolai S, Waser J. Alkynylations and Vinylations . In Hypervalent Halogen Compounds . Rappoport Z. PATAI’S Chemistry of Functional Groups; John Wiley & Sons; Chichester: 2018
- 21f Hari DP, Caramenti P, Waser J. Acc. Chem. Res. 2018; 51: 3212
- 21g Le Du E, Waser J. Chem. Commun. 2023; 59: 1589
- 22a Declas N, Pisella G, Waser J. Helv. Chim. Acta 2020; 103: e2000191
- 22b Di Tomasso EM, Norrby P.-O, Olofsson B. Angew. Chem. Int. Ed. 2022; 61: e202206347
- 23 Boelke A, Finkbeiner P, Nachtsheim B. Beilstein J. Org. Chem. 2018; 14: 1263
- 24 Hari DP, Waser J. J. Am. Chem. Soc. 2016; 138: 2190
- 25 Hari DP, Waser J. J. Am. Chem. Soc. 2017; 139: 8420
- 26 Hari DP, Pisella G, Wodrich MD, Tsymbal AV, Tirani FF, Scopelliti R, Waser J. Angew. Chem. Int. Ed. 2021; 60: 5475
- 27 Pisella G, Gagnebin A, Waser J. Chem. Eur. J. 2020; 26: 10199
- 28 Hari DP, Schouwey L, Barber V, Scopelliti R, Fadaei-Tirani F, Waser J. Chem. Eur. J. 2019; 25: 9522
- 29 Le Du E, Duhail T, Wodrich MD, Scopelliti R, Fadaei-Tirani F, Anselmi E, Magnier E, Waser J. Chem. Eur. J. 2021; 27: 10979
- 30 Ramirez NP, Pisella G, Waser J. J. Org. Chem. 2021; 86: 10928
- 31a Arshadi S, Vessally E, Edjlali L, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E. Beilstein J. Org. Chem. 2017; 13: 625
- 31b Irfana J, Chandra Nandi GC. Eur. J. Org. Chem. 2019; 2019: 2704
- 32 Ramirez NP, Waser J. Angew. Chem. Int. Ed. 2023; 62: e202305776
- 33 Cao M, Ren Y, Zhang R, Xu H, Cheng P, Xu H, Xu Y, Li P. Org. Lett. 2023; 25: 6300
- 34 Stridfeldt E, Seemann A, Bouma MJ, Dey C, Ertan A, Olofsson B. Chem. Eur. J. 2016; 22: 16066
- 35 Pisella G, Gagnebin A, Waser J. Org. Lett. 2020; 22: 3884
- 36 Liu Q, Ma Y.-T, Huang X.-Y, Li Y.-Z, Yang F, Ali S, Ji K, Chen Z.-S. Org. Lett. 2023; 25: 4044
- 37a Weiss R, Seubert J, Hampel F. Angew. Chem. Int. Ed. 1994; 33: 1952
- 37b Taylor MT, Nelson JE, Suero MG, Gaunt MJ. Nature 2018; 562: 568
- 37c Jiang L, Wang Z, Armstrong M, Suero MG. Angew. Chem. Int. Ed. 2021; 60: 6177
- 38 Thap DM, Gunning HE, Strausz OP. J. Am. Chem. Soc. 1967; 89: 6785
- 39 Wang Z, Herraiz AG, Hoyo AM, Suero MG. Nature 2018; 554: 86
- 40 He Q, Zhang Q, Rolka AB, Suero MG. J. Am. Chem. Soc. 2024; 146: 12294
- 41 Wang Z, Jiang L, Sarró P, Suero MG. J. Am. Chem. Soc. 2019; 141: 15509
- 42 Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Chem. Sci. 2022; 13: 4327
- 43 Tu H.-F, Jeandin A, Suero MG. J. Am. Chem. Soc. 2022; 144: 16737
- 44 Tu H.-F, Jeandin A, Bon C, Brocklehurst C, Lima F, Suero MG. Angew. Chem. Int. Ed. 2023; 62: e202308379
- 45 Palomo E, Sharma AK, Wang Z, Jiang L, Maseras F, Suero MG. J. Am. Chem. Soc. 2023; 145: 4975
- 46 Li J, Lu X.-C, Xu Y, Wen J.-X, Hou G.-Q, Liu L. Org. Lett. 2020; 22: 9621
- 47 Zhao W.-W, Shao Y.-C, Want A.-N, Huang J.-L, He C.-Y, Cui B.-D, Wan N.-W, Chen Y.-Z, Han W.-Y. Org. Lett. 2021; 23: 9256
- 48 Dong J.-Y, Wang H, Mao S, Wang X, Zhou M.-D, Li L. Adv. Synth. Catal. 2021; 363: 2133
- 49 Wu F.-P, Chintawar CC, Lalisse R, Mukherjee P, Dutta S, Tyler J, Daniliuc CG, Gutierrez O, Glorius F. Nat. Catal. 2024; 7: 242
- 50 Vaitla J, Vayer E. Synthesis 2019; 51: 612
- 51 Li L, Deng K, Xing Y, Ma C, Ni S.-F, Wang Z, Huang Y. Nat. Commun. 2022; 13: 6588
Selected examples:
Selected reviews for propargylic amines: