Subscribe to RSS
DOI: 10.1055/a-2422-0992
Mechanochemistry: A Resurgent Force in Chemical Synthesis

Dedicated to Professor Brindaban C. Ranu on his 75th birthday.
Abstract
Mechanochemistry, a solvent-free approach that harnesses mechanical energy, is emerging as a transformative technique in modern chemistry. It has emerged from a niche technique to a versatile tool with broad applications. By inducing physical and chemical transformations, it enables the synthesis of complex molecules and nanostructured materials. Recent advancements have extended its applications beyond simple physical transformations to encompass catalytic processes, unlocking new possibilities for selective synthesis and product design. This account delves into the fundamentals of mechanochemistry and its applications in organic synthesis, also beyond traditional synthetic routes. Mechanochemistry offers new avenues for molecular and materials discovery, expanding the scope of accessible chemical space.
1 Introduction
2 Organic Synthesis in Ball Mills
3 Combination with Different Energy Sources
4 Advantages of Mechanochemistry
5 Future of Mechanochemistry
6 Conclusion
Key words
mechanochemistry - organic synthesis - solvent-free reactions - catalysis - green chemistryPublication History
Received: 31 July 2024
Accepted after revision: 25 September 2024
Accepted Manuscript online:
25 September 2024
Article published online:
31 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ranu BC, Chatterjee T, Mukherjee N. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . Ranu B, Stolle A. The Royal Society of Chemistry; Cambridge (UK): 2014: 1
- 1b Mukherjee N, Maity P, Ranu BC. Use of ball milling for the synthesis of biologically active heterocycles In: Green Synthetic Approaches for Biologically Relevant Heterocycles, Vol. 1. Brahmachari G. 2021: 167
- 1c James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
- 1d Takacs L. Chem. Soc. Rev. 2013; 42: 7649
- 2a Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
- 2b Šepelák V, Düvel A, Wilkening M, Becker K.-D, Heitjans P. Chem. Soc. Rev. 2013; 42: 7507
- 2c Rightmire NR, Hanusa TP. Dalton Trans. 2016; 45: 2352
- 2d Delori A, Friščić T, Jones W. CrystEngComm 2012; 14: 2350
- 2e Lazuen Garay A, Pichon A, James SL. Chem. Soc. Rev. 2007; 36: 846
- 2f Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013; 42: 7571
- 2g Titi HM, Do J.-L, Howarth AJ, Nagapudi K, Friščić T. Chem. Sci. 2020; 11: 7578
- 2h Crawford DE. Beilstein J. Org. Chem. 2017; 13: 65
- 2i Leonardi M, Villacampa M, Menéndez JC. Chem. Sci. 2018; 9: 2042
- 2j Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
- 2k Tan D, Friščić T. Eur. J. Org. Chem. 2018; 18
- 3a Walsh PJ, Li H, de Parrodi CA. Chem. Rev. 2007; 107: 2503
- 3b Sheldon RA. Green Chem. 2005; 7: 267
- 3c Constable DJ. C, Jiminez-Gonzales C, Henderson RK. Org. Process Res. Dev. 2007; 11: 133
- 3d Declerck V, Nun P, Martinez J, Lamaty F. Angew. Chem. Int. Ed. 2009; 48: 9318
- 4a Štrukil V, Margetić D, Igrc MD, Eckert-Maksić M, Friščić T. Chem. Commun. 2012; 48: 9705
- 4b Shi YX, Xu K, Clegg JK, Ganguly R, Hirao H, Friščić T, García F. Angew. Chem. Int. Ed. 2016; 55: 12736
- 4c Wang G.-W, Komatsu K, Murata Y, Shiro M. Nature 1997; 387: 583
- 4d Tan D, Mottillo C, Katsenis AD, Štrukil V, Friščić T. Angew. Chem. Int. Ed. 2014; 53: 9321
- 5a Katsenis AD, Puškarić A, Štrukil V, Mottillo C, Julien PA, Užarević K, Pham M.-H, Do T.-O, Kimber SA. J, Lazić P, Magdysyuk O, Dinnebier RE, Halasz I, Friščić T. Nat. Commun. 2015; 6: 6662
- 5b Užarević K, Halasz I, Friščić T. J. Phys. Chem. Lett. 2015; 6: 4129
- 6 Takacs L. JOM 2000; 52: 12
- 7 Tanaka K, Toda F. Chem. Rev. 2000; 100: 1025
- 8 Reichardt C. Org. Process Res. Dev. 2007; 11: 105
- 9 Takacs L. J. Therm. Anal. Calorim. 2007; 90: 81
- 10 Takacs L. J. Mater. Sci. 2004; 39: 4987
- 11 Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer-Verlag; Berlin/Heidelberg: 2008
- 12 Ling R, Baker JL. J. Chem. Soc., Trans. 1893; 63: 1314
- 13 Baig RB. N, Varma RS. Chem. Soc. Rev. 2012; 41: 1559
- 14a Jiménez-González C, Constable DJ. C, Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
- 14b Czaja A, Leung E, Trukhan N, Müller U. Industrial MOF Synthesis . In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, Chap. 14. Farrusseng D. Wiley-VCH; Weinheim: 2011
- 15a Stolle A, Schmidt R, Jacob K. Faraday Discuss. 2014; 170: 267
- 15b Schmidt R, Burmeister CF, Baláž M, Kwade A, Stolle A. Org. Process Res. Dev. 2015; 19: 427
- 16 Cinčić D, Brekalo I, Kaitner B. Chem. Commun. 2012; 48: 11683
- 17 Burmeister CF, Kwade A. Chem. Soc. Rev. 2013; 42: 7660
- 18 Friščić T, Jones W. Cryst. Growth Des. 2009; 9: 1621
- 19a Štrukil V, Fábián L, Reid DG, Duer MJ, Jackson GJ, Eckert-Maksić M, Friščić T. Chem. Commun. 2010; 46: 9191
- 19b Štrukil V, Igrc MD, Fábián L, Eckert-Maksić M, Childs SL, Reid DG, Duer MJ, Halasz I, Mottillo C, Friščić T. Green Chem. 2012; 14: 2462
- 20a Bonnamour J, Métro T.-X, Martinez J, Lamaty F. Green Chem. 2013; 15: 1116
- 20b Konnert L, Dimassi M, Gonnet L, Lamaty F, Martinez J, Colacino E. RSC Adv. 2016; 6: 36978
- 20c Eguaogie O, Cooke LA, Martin PM. L, Ravalico F, Conway LP, Hodgson DR. W, Law CJ, Vyle JS. Org. Biomol. Chem. 2016; 14: 1201
- 20d Cummings AJ, Ravalico F, McColgan-Bannon KI. S, Eguaogie O, Elliott PA, Shannon MR, Bermejo IA, Dwyer A, Maginty AB, Mack J, Vyle JS. Nucleosides, Nucleotides Nucleic Acids 2015; 34: 361
- 20e Tan D, Loots L, Friščić T. Chem. Commun. 2016; 52: 7760
- 20f Tan D, Štrukil V, Mottillo C, Friščić T. Chem. Commun. 2014; 50: 5248
- 21 Friščić T, Childs SL, Rizvi SA. A, Jones W. CrystEngComm 2009; 11: 418
- 22a Friščić T, Meštrović E, Škalec Šamec D, Kaitner B, Fábián L. Chem. Eur. J. 2009; 15: 12644
- 22b Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Cryst. Growth Des. 2009; 9: 1106
- 22c André V, Duarte MT, Braga D, Grepioni F. Cryst. Growth Des. 2012; 12: 3082
- 22d Stilinović V, Cinčić D, Zbačnik M, Kaitner B. Croat. Chem. Acta 2012; 85: 485
- 22e Trask AV, Shan N, Motherwell WD. S, Jones W, Feng S, Tan RB. H, Carpenter KJ. Chem. Commun. 2005; 880
- 22f Hardacre C, Huang H, James SL, Migaud ME, Norman SE, Pitner WR. Chem. Commun. 2011; 47: 5846
- 22g Štrukil V, Igrc MD, Eckert-Maksić M, Friščić T. Chem. Eur. J. 2012; 18: 8464
- 23a Hernández JG, Macdonald NA. J, Mottillo C, Butler IS, Friščić T. Green Chem. 2014; 16: 1087
- 23b Trask AV, van de Streek J, Motherwell WD. S, Jones W. Cryst. Growth Des. 2005; 5: 2233
- 23c Trask AV, Motherwell WD. S, Jones W. Chem. Commun. 2004; 890
- 24a Friščić T, Trask AV, Motherwell WD. S, Jones W. Cryst. Growth Des. 2008; 8: 1605
- 24b Fischer F, Scholz G, Benemann S, Rademann K, Emmerling F. CrystEngComm 2014; 16: 8272
- 24c Hasa D, Miniussi E, Jones W. Cryst. Growth Des. 2016; 16: 4582
- 25a IUPAC Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). McNaught AD, Wilkinson A. Blackwell Scientific Publications; Oxford: 1997
- 25b XML on-line corrected version (accessed Oct 4, 2024) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins; ISBN 0-9678550-9-8; http://goldbook.iupac.org/MT07141
- 26a Kaupp G. CrystEngComm 2009; 11: 388
- 26b Rodríguez B, Bruckmann A, Rantanen T, Bolm C. Adv. Synth. Catal. 2007; 349: 2213
- 27 Beyer MK, Clausen-Schaumann H. Chem. Rev. 2005; 105: 2921
- 28a Grandhi GK, Viswanath NS. M, Cho HB, Han JH, Kim SM, Choi S, Im WB. J. Phys. Chem. Lett. 2020; 11: 7723
- 28b de Oliveira PF, Torresi RM, Emmerling F, Camargo PH. J. Mater. Chem. A 2020; 8: 16114
- 28c Jiang Y, Tan Z, Xu R, Fan G, Di Z. Composites, Part A 2018; 111: 73
- 28d Liu X, Wen H, Guo B, Lv C, Shi W, Kang W, Zhang J, Yuan R, Zhang C. Adv. Energy Mater. 2021; 11: 2100310
- 28e Musa C, Danjou P.-E, Pauwels A, Cazier-Dennin F, Delattre F. Molecules 2019; 24: 1643
- 28f Boulatov R. Nat. Chem. 2021; 13: 112
- 28g Wang TW, Golder MR. Polym. Chem. 2021; 12: 958
- 29a Kubota K, Ito H. Trends Chem. 2020; 2: 1066
- 29b Do JL, Tan D, Friščić T. Angew. Chem. Int. Ed. 2018; 57: 2667
- 30a Raghuraman S, Elinski MB, Batteas JD, Felts JR. Nano Lett. 2017; 17: 2111
- 30b Howard JL, Brand MC, Browne DL. Angew. Chem. Int. Ed. 2018; 57: 16104
- 30c Boswell BR, Mansson CM. F, Cox JM, Jin Z, Romaniuk JA. H, Lindquist KP, Cegelski L, Xia Y, Lopez SA, Burns NZ. Nat. Chem. 2021; 13: 41
- 31a Gonnet L, Chamayou A, André-Barrès C, Micheau J.-C, Guidetti B, Sato T, Baron M, Baltas M, Calvet R. ACS Sustainable Chem. Eng. 2021; 9: 4453
- 31b Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y. Nat. Chem. 2019; 11: 310
- 32a Stevenson R, Bo GD. J. Am. Chem. Soc. 2017; 139: 16768
- 32b Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
- 33 Pladevall BS, de Aguirre A, Maseras F. ChemSusChem 2021; 14: 2763
- 34 Fox PG. J. Mater. Sci. 1975; 10: 340
- 35 Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SA. J, Honkimäki V, Dinnebier RE. Nat. Chem. 2013; 5: 66
- 36a Gracin D, Štrukil V, Friščić T, Halasz I, Užarević K. Angew. Chem. Int. Ed. 2014; 53: 6193
- 36b Batzdorf L, Fischer F, Wilke M, Wenzel K.-J, Emmerling F. Angew. Chem. Int. Ed. 2015; 54: 1799
- 37 Halasz I, Friščić T, Kimber SA. J, Užarević K, Puškarić A, Mottillo C, Julien P, Štrukil V, Honkimäki V, Dinnebier RE. Faraday Discuss. 2014; 170: 203
- 38 Ma X, Yuan W, Bell SE. J, James SL. Chem. Commun. 2014; 50: 1585
- 39 Užarević K, Štrukil V, Mottillo C, Julien PA, Puškarić A, Friščić T, Halasz I. Cryst. Growth Des. 2016; 16: 2342
- 40a Bruckman A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131
- 40b Kaupp G. Top. Curr. Chem. 2005; 254: 95
- 40c Polshettiwar V, Varma RS. In Eco-Friendly Synthesis of Fine Chemicals . Ballini R. Royal Society of Chemistry; 2009: 275
- 40d Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
- 41 Kaupp G, Naimi-Jamal MR, Schmeyers J. Tetrahedron 2003; 59: 3753
- 42 Gerard EM. C, Sahin H, Encinas A, Bräse S. Synlett 2008; 2702
- 43 Balema VP, Wiench JW, Pruski M, Pecharsky VK. J. Am. Chem. Soc. 2002; 124: 6244
- 44 Patil PR, Kartha KP. R. Green Chem. 2009; 11: 953
- 45 Giri N, Bowen C, Vyle JS, James SL. Green Chem. 2008; 10: 627
- 46 Gao J, Wang G.-W. J. Org. Chem. 2008; 73: 2955
- 47 Synthesis of Peptides and Peptidomimetics . In Houben-Weyl Methods of Organic Chemistry, 4th ed., Vol. E22. Goodman M, Felix A, Moroder L, Toniolo C. Thieme; Stuttgart: 2002
- 48a Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes . Anastas PT, Williamson TC. Oxford University Press; New York: 1999
- 48b Clark JH, Tavener SJ. Org. Process Res. Dev. 2007; 11: 149
- 49 Hernández JG, Juaristi E. J. Org. Chem. 2010; 75: 7107
- 50 Kaupp G, Schmeyers J, Boy J. J. Prakt. Chem. 2000; 342: 269
- 51a Kundu D, Mukherjee N, Ranu BC. RSC Adv. 2013; 3: 117
- 51b Mukherjee N, Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 11110
- 51c Mukherjee N, Chatterjee T, Ranu BC. ARKIVOC 2016; (ii): 53
- 52a Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM. Nature 2007; 450: 124
- 52b Koti Ainavarapu SR, Wiita AP, Dougan L, Uggerud E, Fernandez JM. J. Am. Chem. Soc. 2008; 130: 6479
- 52c Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Kiss J, Marx D. Nat. Chem. 2013; 5: 685
- 52d Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Marx D. Nat. Chem. 2017; 9: 164
- 52e Qin J, Zuo H, Ni Y, Yu Q, Zhong F. ACS Sustainable Chem. Eng. 2020; 8: 12342
- 53 Panja S, Paul B, Jalal S, Ghosh T, Ranu BC. ChemistrySelect 2020; 5: 14198
- 54 Toda F, Tanaka K, Iwata S. J. Org. Chem. 1989; 54: 3007
- 55 Tullberg E, Peters D, Frejd T. J. Organomet. Chem. 2004; 689: 3778
- 56 Effaty F, Ottenwaelder X, Friščić T. Curr. Opin. Green Sustainable Chem. 2021; 32: 100524
- 57 Grätz S, Wolfrum B, Borchardt L. Green Chem. 2017; 19: 2973
- 58 Yu J, Shou H, Yu W, Chen H, Su W. Adv. Synth. Catal. 2019; 361: 5133
- 59 Cao Q, Nicholson WI, Jones AC, Browne DL. Org. Biomol. Chem. 2019; 17: 1722
- 60 Cook TL, Walker JA. Jr, Mack J. Green Chem. 2013; 15: 617
- 61 Hermann GN, Unruh MT, Jung SH, Krings M, Bolm C. Angew Chem. Int. Ed. 2018; 57: 10723
- 62 Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Angew. Chem. Int. Ed. 2019; 58: 18942
- 63 Thorwirth R, Stolle A, Ondruschka B, Wild A, Schubert US. Chem. Commun. 2011; 47: 4370
- 64 Mukherjee N, Ahammed S, Bhadra S, Ranu BC. Green Chem. 2013; 15: 389
- 65a Hermann GN, Bolm C. ACS Catal. 2017; 7: 4592
- 65b Cheng H, Hernández JG, Bolm C. Org. Lett. 2017; 19: 6284
- 66 Das D, Bhutia ZT, Chatterjee A, Banerjee M. J. Org. Chem. 2019; 84: 10764
- 67 Lu X, Bai Y, Qin J, Wang N, Wu Y, Zhong F. ACS Sustainable Chem. Eng. 2021; 9: 1684
- 68 Do J.-L, Mottillo C, Tan D, Štrukil V, Friščić T. J. Am. Chem. Soc. 2015; 137: 2476
- 69 Lee GS, Lee HW, Lee HS, Do T, Do J.-L, Lim J, Peterson GI, Friščić T, Kim JG. Chem. Sci. 2022; 13: 11496
- 70a Beillard A, Golliard E, Gillet V, Bantreil X, Métro T.-X, Martinez J, Lamaty F. Chem. Eur. J. 2015; 21: 17614
- 70b Beillard A, Métro T.-X, Bantreil X, Martinez J, Lamaty F. Chem. Sci. 2017; 8: 1086
- 70c Beillard A, Bantreil X, Métro T.-X, Martinez J, Lamaty F. New J. Chem. 2017; 41: 1057
- 70d Beillard A, Bantreil X, Métro T.-X, Martinez J, Lamaty F. Dalton Trans. 2016; 45: 17859
- 70e Adams CJ, Lusi M, Mutambi EM, Orpen AG. Cryst. Growth Des. 2017; 17: 3151
- 70f Shaw TE, Shultz LR, Garayeva LR, Blair RG, Noll BC, Jurca T. Dalton Trans. 2018; 47: 16876
- 71 Beillard A, Bantreil X, Métro T.-X, Martinez J, Lamaty F. Green Chem. 2018; 20: 964
- 72 Higman CS, Lanterna AE, Marin ML, Scaiano JC, Fogg DE. ChemCatChem 2016; 8: 2446
- 73 Mukherjee N, Marczyk A, Szczepaniak G, Sytniczuk A, Kajetanowicz A, Grela K. ChemCatChem 2019; 11: 5362
- 74 Rodríguez B, Rantanen T, Bolm C. Angew. Chem. Int. Ed. 2006; 45: 6924
- 75a Guillena G, del Carmen Hita M, Nájera C, Viózquez SF. J. Org. Chem. 2008; 73: 5933
- 75b Guillena G, del Carmen Hita M, Nájera C, Viózquez SF. Tetrahedron: Asymmetry 2007; 18: 2300
- 76 Bruckmann A, Rodríguez B, Bolm C. CrystEngComm 2009; 11: 404
- 77 For more details, see this review: Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Nat. Rev. Chem. 2023; 7: 51
- 78a Bowden FP, Stone MA, Tudor GK. Proc. R. Soc. London, Ser. A 1947; 188: 329
- 78b Thiessen P.-A, Meyer K, Heinicke G. Grundlagen der Tribochemie, Chap. 1. Akademie Verlag; Berlin: 1967
- 79a Macfadyen A. Proc. R. Soc. London 1902; 71: 76
- 79b Cells O, Barnard M. Proc. R. Soc. London, Ser. B 1911; 84: 57
- 79c Mudd S, Shaw CH, Czarnetzky EJ, Flosdorf EW. J. Immunol. 1937; 32: 483
- 80 Seo T, Toyoshima N, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 6165
- 81 Toda F, Tanaka K, Sekikawa A. J. Chem. Soc., Chem. Commun. 1987; 279
- 82 Sokolov AN, Bučar D.-K, Baltrusaitis J, Gu SX, MacGillivray LR. Angew. Chem. Int. Ed. 2010; 49: 4273
- 83 Stojaković J, Farris BS, MacGillivray LR. Chem. Commun. 2012; 48: 7958
- 84 Hernández JG. Beilstein J. Org. Chem. 2017; 13: 1463
- 86a Zhu M, Dai LY, Gu NS, Cao B, Ouyang LZ. J. Alloys Compd. 2009; 478: 624
- 86b Borcia G, Anderson CA, Brown NM. D. Plasma Sources Sci. Technol. 2003; 12: 335
- 87a Schumacher C, Hernández JG, Bolm C. Angew. Chem. Int. Ed. 2020; 59: 16357
- 87b Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366: 1500
- 87c Pang Y, Won Lee J, Kubota K, Ito H. Angew. Chem. Int. Ed. 2020; 59: 22570
- 88a Mordyuk BN, Prokopenko GI. Ultrasonics 2004; 42: 43
- 88b Chen D, Xiao T. J. Am. Ceram. Soc. 2010; 93: 2675
- 88c Suslick KS. MRS Bull. 1995; 20: 29
- 88d Kozlov AV, Mordyuk BN, Prokopenko GI. Ukraine Patent 59770A, 2, 2002
- 89 Rak MJ, Saadé NK, Friščić T, Moores A. Green Chem. 2014; 16: 86
- 90 Korpany KV, Mottillo C, Bachelder J, Cross SN, Dong P, Trudel S, Friščić T, Szuchmacher Blum A. Chem. Commun. 2016; 52: 3054
- 91 Su Y.-T, Wang G.-W. Org. Lett. 2013; 15: 3408
- 92 Kunitake M, Uemura S, Ito O, Fujiwara K, Murata Y, Komatsu K. Angew. Chem. Int. Ed. 2002; 41: 969
- 93 Grela KL, Michrowska AA, Bieniek M. WO2007054483 A8, 2007 .
- 94 Rightmire NR, Hanusa TP, Rheingold AL. Organometallics 2014; 33: 5952
- 95a Katritzky AR, Witek RM, Rodriguez-Garcia V, Mohapatra PP, Rogers JW, Cusido J, Abdel-Fattah AA. A, Steel PJ. J. Org. Chem. 2005; 70: 7866
- 95b Štrukil V, Gracin D, Magdysyuk OV, Dinnebier RE, Friščić T. Angew. Chem. Int. Ed. 2015; 54: 8440
- 96a Mavračić J, Cinčić D, Kaitner B. CrystEngComm 2016; 18: 3343
- 96b Karki S, Friščić T, Jones W. CrystEngComm 2009; 11: 470
- 96c Cinčić D, Friščić T, Jones W. J. Am. Chem. Soc. 2008; 130: 7524
- 97 Schmidt R, Stolle A, Ondruschka B. Green Chem. 2012; 14: 1673
- 98 Alfonsi K, Colberg J, Dunn P, Fevig T, Jennings S, Johnson T, Kleine H, Knight C, Nagy M, Perry D, Stefaniak M. Green Chem. 2008; 10: 31
- 99 Carli F. Proc. Int. Symp. Controlled Release Bioact. Mater. 1999; 26: 873
- 100 Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. J. Pharm. Sci. 2010; 99: 1693
- 101 Pichon A, James SL. CrystEngComm 2008; 10: 1839