Z Gastroenterol
DOI: 10.1055/a-2435-2659
Übersicht

Effect of Bacteroides on Crohn’s disease

Wirkung von Bacteroides auf Morbus Crohn
Xuanyu Wei
1   Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
,
Dong Tang
1   Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
2   Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Nanjing University, Yangzhou, China (Ringgold ID: RIN370089)
› Author Affiliations

Abstract

Crohn’s disease (CD), also known as cicatrizing enteritis, is an inflammatory bowel disease that occurs in the distal ileum and right colon of unknown cause and is also called inflammatory bowel disease (IBD) with ulcerative colitis (UC). In recent years, intestinal biota have been confirmed to play a significant role in various gastrointestinal diseases. Studies have found that intestinal microbiota disorders are closely associated with the onset and progression of Crohn’s disease. Bacteroidetes, the second largest microbiota in the intestine, are crucial for equilibrium in the microbiota and intestinal environment. Certain Bacteroides can induce the development of Crohn’s disease and aggravate intestinal inflammation directly or through their metabolites. Conversely, certain Bacteroides can reduce intestinal inflammation and symptoms of Crohn’s disease. This article reviews the effect of several intestinal Bacteroides in the onset and progression of Crohn’s disease and their impact on its treatment.

Zusammenfassung

Morbus Crohn hat verschiedene Bezeichnungen, zu denen die entzündliche Darmerkrankung mit Colitis ulcerosa sowie die vernarbende Enteritis gehören. Der Morbus Crohn, dessen Ursache bislang unbekannt ist, ist eine entzündliche Darmerkrankung, die im distalen Ileum und im rechten Dickdarm auftritt. Jüngste Forschungen haben gezeigt, dass die Darmbiota bei verschiedenen Magen-Darm-Erkrankungen eine wichtige Rolle spielt. So wurde festgestellt, dass Störungen der Darmmikrobiota eng mit dem Auftreten und Fortschreiten von Morbus Crohn verbunden sind. Das Gleichgewicht in der Mikrobiota und der Darmumgebung wird von Bacteroides gewährleistet, die die zweitgrößte Mikrobiota im Darm darstellen. Es wird darauf hingewiesen, dass bestimmte Bacteroides die Entwicklung von Morbus Crohn auslösen und die Darmentzündung direkt oder durch ihre Metaboliten verschlimmern. Andererseits gibt es bestimmte Bacteroides, die die Darmentzündung und die Symptome von Morbus Crohn verringern können. Ziel dieses Artikels ist es daher, die Wirkung verschiedener intestinaler Bacteroides auf den Ausbruch und das Fortschreiten von Morbus Crohn und ihre Auswirkungen auf die Behandlung zu untersuchen.



Publication History

Received: 02 March 2024

Accepted after revision: 04 October 2024

Article published online:
25 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Ng SC, Shi HY, Hamidi N. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2017; 390: 2769-2778
  • 2 Mak WY, Zhao M, Ng SC. et al. The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol 2020; 35 (03) 380-389
  • 3 Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12 (02) 113-122
  • 4 Franke A, McGovern DP, Barrett JC. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 2010; 42 (12) 1118-1125
  • 5 López-Serrano P, Pérez-Calle JL, Pérez-Fernández MT. et al. Environmental risk factors in inflammatory bowel diseases. Investigating the hygiene hypothesis: a Spanish case-control study. Scand J Gastroenterol 2010; 45 (12) 1464-1471
  • 6 Chu KM, Watermeyer G, Shelly L. et al. Childhood helminth exposure is protective against inflammatory bowel disease: a case control study in South Africa. Inflamm Bowel Dis 2013; 19 (03) 614-620
  • 7 Asakura H, Suzuki K, Kitahora T. et al. Is there a link between food and intestinal microbes and the occurrence of Crohn’s disease and ulcerative colitis?. J Gastroenterol Hepatol 2008; 23 (12) 1794-1801
  • 8 Piccioni A, Rosa F, Manca F. et al. Gut Microbiota and Clostridium difficile: What We Know and the New Frontiers. Int J Mol Sci 2022; 23 (21) 13323
  • 9 Labanski A, Langhorst J, Engler H. et al. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology 2020; 111: 104501
  • 10 Frank DN, St Amand AL, Feldman RA. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007; 104 (34) 13780-13785
  • 11 Abenavoli L, Scarpellini E, Colica C. et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019; 11 (11) 2690
  • 12 Flint HJ, Scott KP, Duncan SH. et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3 (04) 289-306
  • 13 Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health?. J Pediatr Gastroenterol Nutr 2015; 60 (03) 294-307
  • 14 Kuhn KA, Schulz HM, Regner EH. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol 2018; 11 (02) 357-368
  • 15 Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107 (27) 12204-12209
  • 16 Brown EM, Ke X, Hitchcock D. et al. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 2019; 25 (05) 668-680.e7
  • 17 Tamana SK, Tun HM, Konya T. et al. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021; 13 (01) 1-17
  • 18 Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007; 20 (04) 593-621
  • 19 Yang C, Mogno I, Contijoch EJ. et al. Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host Microbe 2020; 27 (03) 467-475
  • 20 Wang H, Wang Q, Yang C. et al. Bacteroides acidifaciens in the gut plays a protective role against CD95-mediated liver injury. Gut Microbes 2022; 14 (01) 2027853
  • 21 Kmezik C, Krska D, Mazurkewich S. et al. Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep 2021; 11 (01) 17662
  • 22 Wang K, Pereira GV, Cavalcante JJ. et al. Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep 2016; 6: 34360
  • 23 Grondin JM, Déjean G, Van Petegem F. et al. Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis. Appl Environ Microbiol 2022; 88 (01) e0156621
  • 24 Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014; 124 (10) 4166-4172
  • 25 Kuballa A, Geraci M, Johnston M. et al. The Gut Microbial Profile of Preclinical Crohn’s Disease Is Similar to That of Healthy Controls. Inflamm Bowel Dis 2020; 26 (11) 1682-1690
  • 26 Scanlan P D, Shanahan F, O’Mahony C. et al. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 2006; 44 (11) 3980-3988
  • 27 Wei F, Fan MH, Liu GC. et al. Bacteroides fragilis ATCC25285 through TGF-β/Smad3 Pathway induces Treg cell differentiation to alleviate colitis. Journal of China Pharmaceutical University 2023; 54: 226-237
  • 28 Shao X, Sun S, Zhou Y. et al. Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis. Cancer Lett 2021; 523: 170-181
  • 29 Wang FF, Huang YH, Wang XQ. et al. The pathogenesis of enterotoxin-producing Bacteroides fragilis in colorectal cancer Research progress of system and treatment strategies. Zhongnan Pharmaceutical 2023; 21: 1117-1124
  • 30 Cheng WT, Kantilal HK, Davamani F. The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malays J Med Sci 2020; 27 (04) 9-21
  • 31 Cao Y, Wang Z, Yan Y. et al. Enterotoxigenic Bacteroidesfragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149–3p. Gastroenterology 2021; 161 (05) 1552-1566.e12
  • 32 Becker HEF, Jamin C, Bervoets L. et al. Higher Prevalence of Bacteroides fragilis in Crohn’s Disease Exacerbations and Strain-Dependent Increase of Epithelial Resistance. Front Microbiol 2021; 12: 598232
  • 33 Zhou Y, Chen H, He H. et al. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine (Baltimore) 2016; 95 (39) e5019
  • 34 Mourelle M, Salas A, Guarner F. et al. Stimulation of transforming growth factor beta1 by enteric bacteria in the pathogenesis of rat intestinal fibrosis. Gastroenterology 1998; 114 (03) 519-526
  • 35 Zhang L, Wang K. Bacteroides polymorpha and host nutrient utilization. Chinese Journal of Animal Husbandry 2009; 45: 57-61
  • 36 Lynch A, Tammireddy SR, Doherty MK. et al. The Glycine Lipids of Bacteroides thetaiotaomicron Are Important for Fitness during Growth In Vivo and In Vitro. Appl Environ Microbiol 2019; 85 (10) e02157-18
  • 37 Li K, Hao Z, Du J. et al. Bacteroides thetaiotaomicron relieves colon inflammation by activating aryl hydrocarbon receptor and modulating CD4(+)T cell homeostasis. Int Immunopharmacol 2021; 90: 107183
  • 38 Charlet R, Le Danvic C, Sendid B. et al. Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms 2022; 10 (09) 1803
  • 39 Durant L, Stentz R, Noble A. et al. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. Microbiome 2020; 8 (01) 88
  • 40 Delday M, Mulder I, Logan E T. et al. Bacteroides thetaiotaomicron Ameliorates Colon Inflammation in Preclinical Models of Crohn’s Disease. Inflamm Bowel Dis 2019; 25 (01) 85-96
  • 41 Edwards LA, Lucas M, Edwards EA. et al. Aberrant response to commensal Bacteroides thetaiotaomicron in Crohn’s disease: an ex vivo human organ culture study. Inflamm Bowel Dis 2011; 17 (05) 1201-1208
  • 42 Horvath T D, Ihekweazu F D, Haidacher S J. et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience 2022; 25 (05) 104158
  • 43 Ihekweazu FD, Engevik MA, Ruan W. et al. Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid-Driven Colonic Inflammation. Am J Pathol 2021; 191 (04) 704-719
  • 44 Ihekweazu FD, Fofanova TY, Queliza K. et al. Bacteroides ovatus ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model. Gut Microbes 2019; 10 (04) 504-520
  • 45 Tan H, Zhao J, Zhang H. et al. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl Microbiol Biotechnol 2019; 103 (05) 2353-2365
  • 46 Lavoie S, Conway K L, Lassen K G. et al. The Crohn’s disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. Elife 2019; 8: e39982
  • 47 Saitoh S, Noda S, Aiba Y. et al. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol 2002; 9 (01) 54-59
  • 48 Onderdonk A B, Cisneros R L, Bronson R T. Enhancement of experimental ulcerative colitis by immunization with Bacteroides vulgatus. Infect Immun 1983; 42 (02) 783-788
  • 49 Mills R H, Dulai P S, Vázquez-Baeza Y. et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol 2022; 7 (02) 262-276
  • 50 Cuív PÓ, de Wouters T, Giri R. et al. The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe 2017; 47: 209-217
  • 51 Liu L, Xu M, Lan R. et al. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front Immunol 2022; 13: 1036196
  • 52 Wang C, Xiao Y, Yu L. et al. Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. J Adv Res 2022; 36: 27-37
  • 53 Li S, Wang C, Zhang C. et al. Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis. J Immunol Res 2021; 2021: 9117805
  • 54 Wei B, Dalwadi H, Gordon L K. et al. Molecular cloning of a Bacteroides caccae TonB-linked outer membrane protein identified by an inflammatory bowel disease marker antibody. Infect Immun 2001; 69 (10) 6044-6054
  • 55 Iltanen S, Tervo L, Halttunen T. et al. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflamm Bowel Dis 2006; 12 (05) 389-394
  • 56 Ashorn S, Honkanen T, Kolho K L. et al. Fecal calprotectin levels and serological responses to microbial antigens among children and adolescents with inflammatory bowel disease. Inflamm Bowel Dis 2009; 15 (02) 199-205
  • 57 Hansen R, Sanderson I, Muhammed R. et al. A Double-Blind, Placebo-Controlled Trial to Assess Safety and Tolerability of (Thetanix) Bacteroides thetaiotaomicron in Adolescent Crohn’s Disease. Clin Transl Gastroenterol 2020; 12 (01) e00287
  • 58 Yan DL, Wu JR, Shi HS. et al. Research progress of the next generation of probiotics: Bacteroides ovatus. Dairy Science and Technology 2020; 43: 50-54
  • 59 Zhou Q, Shen B, Huang R. et al. Bacteroides fragilis strain ZY-312 promotes intestinal barrier integrity via upregulating the STAT3 pathway in a radiation-induced intestinal injury mouse model. Front Nutr 2022; 9: 1063699
  • 60 Alauzet C, Lozniewski A, Marchandin H. Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019; 55: 40-53
  • 61 Jean S, Wallace M J, Dantas G. et al. Time for Some Group Therapy: Update on Identification, Antimicrobial Resistance, Taxonomy, and Clinical Significance of the Bacteroides fragilis Group. J Clin Microbiol 2022; 60 (09) e0236120
  • 62 Sóki J, Wybo I, Hajdú E. et al. A Europe-wide assessment of antibiotic resistance rates in Bacteroides and Parabacteroides isolates from intestinal microbiota of healthy subjects. Anaerobe 2020; 62: 102182
  • 63 Gao Q, Wu S, Xu T. et al. Emergence of carbapenem resistance in Bacteroides fragilis in China. Int J Antimicrob Agents 2019; 53 (06) 859-863
  • 64 Xu J, Chen N, Wu Z. et al. 5-Aminosalicylic Acid Alters the Gut Bacterial Microbiota in Patients With Ulcerative Colitis. Front Microbiol 2018; 9: 1274
  • 65 Liu F, Ma R, Riordan S M. et al. Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Front Microbiol 2017; 8: 527
  • 66 Liu H, Zhang B, Li F. et al. Shifts in the intestinal microflora of meat rabbits in response to glucocorticoids. J Sci Food Agric 2022; 102 (12) 5422-5428
  • 67 Delboy H. Mode of action of sulfasalazine in chronic inflammatory enterocolonic diseases. Therapie 1992; 47 (02) 157-159
  • 68 Bruscoli S, Febo M, Riccardi C. et al. Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Front Immunol 2021; 12: 691480
  • 69 Nitzan O, Elias M, Peretz A. et al. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol 2016; 22 (03) 1078-1087
  • 70 Chande N, Townsend CM, Parker CE. et al. Azathioprine or 6-mercaptopurine for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2016; 10 (10) Cd000545
  • 71 Shah B, Mayer L. Current status of monoclonal antibody therapy for the treatment of inflammatory bowel disease. Expert Rev Clin Immunol 2010; 6 (04) 607-620
  • 72 Cheng F, Huang Z, Wei W. et al. Fecal microbiota transplantation for Crohn’s disease: a systematic review and meta-analysis. Tech Coloproctol 2021; 25 (05) 495-504
  • 73 Wang G, Yang S, Sun S. et al. Lactobacillus rhamnosus Strains Relieve Loperamide-Induced Constipation via Different Pathways Independent of Short-Chain Fatty Acids. Front Cell Infect Microbiol 2020; 10: 423
  • 74 Sokol H, Landman C, Seksik P. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 2020; 8 (01) 12
  • 75 Wu J, Wei Z, Cheng P. et al. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics 2020; 10 (23) 10665-10679
  • 76 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-563