RSS-Feed abonnieren
DOI: 10.1055/a-2438-4383
Role of the Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease
Funding This research is supported by an Australian Government Research Training Program (RTP) Scholarship, provided to the lead author.

Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)—previously described as nonalcoholic fatty liver disease—continues to rise globally. Despite this, therapeutic measures for MASLD remain limited. Recently, there has been a growing interest in the gut microbiome's role in the pathogenesis of MASLD. Understanding this relationship may allow for the administration of therapeutics that target the gut microbiome and/or its metabolic function to alleviate MASLD development or progression. This review will discuss the interplay between the gut microbiome's structure and function in relation to the development of MASLD, assess the diagnostic yield of gut microbiome-based signatures as a noninvasive tool to identify MASLD severity, and examine current and emerging therapies targeting the gut microbiome–liver axis.
Publikationsverlauf
Accepted Manuscript online:
10. Oktober 2024
Artikel online veröffentlicht:
19. November 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
- 2 Riazi K, Azhari H, Charette JH. et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022; 7 (09) 851-861
- 3 Estes C, Anstee QM, Arias-Loste MT. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol 2018; 69 (04) 896-904
- 4 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
- 5 Rinella ME, Lazarus JV, Ratziu V. et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023; 79 (06) 1542-1556
- 6 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449 (7164): 804-810
- 7 Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008; 6 (10) 776-788
- 8 Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017; 17 (04) 219-232
- 9 Le Roy T, Llopis M, Lepage P. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013; 62 (12) 1787-1794
- 10 Wang B, Jiang X, Cao M. et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 2016; 6: 32002
- 11 Boursier J, Mueller O, Barret M. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63 (03) 764-775
- 12 Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019; 7 (01) 91
- 13 Caussy C, Hsu C, Lo MT. et al; Genetics of NAFLD in Twins Consortium. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 2018; 68 (03) 918-932
- 14 Chen YM, Liu Y, Zhou RF. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 2016; 6: 19076
- 15 De Munck TJI, Xu P, Verwijs HJA. et al. Intestinal permeability in human nonalcoholic fatty liver disease: a systematic review and meta-analysis. Liver Int 2020; 40 (12) 2906-2916
- 16 Luther J, Garber JJ, Khalili H. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol 2015; 1 (02) 222-232
- 17 Miele L, Valenza V, La Torre G. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49 (06) 1877-1887
- 18 Malesza IJ, Malesza M, Walkowiak J. et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells 2021; 10 (11) 3164
- 19 Ding S, Chi MM, Scull BP. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010; 5 (08) e12191
- 20 Nakanishi T, Fukui H, Wang X. et al. Effect of a high-fat diet on the small-intestinal environment and mucosal integrity in the gut-liver axis. Cells 2021; 10 (11) 3168
- 21 Lam YY, Ha CW, Campbell CR. et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 2012; 7 (03) e34233
- 22 Martinez-Medina M, Denizot J, Dreux N. et al. Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 2014; 63 (01) 116-124
- 23 Everard A, Belzer C, Geurts L. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110 (22) 9066-9071
- 24 Agus A, Denizot J, Thévenot J. et al. Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci Rep 2016; 6: 19032
- 25 Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology 2021; 73 (06) 2180-2195
- 26 Dao MC, Everard A, Aron-Wisnewsky J. et al; MICRO-Obes Consortium. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65 (03) 426-436
- 27 Depommier C, Everard A, Druart C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019; 25 (07) 1096-1103
- 28 Wu W, Lv L, Shi D. et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol 2017; 8: 1804
- 29 Chelakkot C, Choi Y, Kim DK. et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50 (02) e450
- 30 Huck O, Mulhall H, Rubin G. et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol 2020; 47 (02) 202-212
- 31 Wade H, Pan K, Duan Q. et al. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J Biomed Sci 2023; 30 (01) 38
- 32 Reunanen J, Kainulainen V, Huuskonen L. et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 2015; 81 (11) 3655-3662
- 33 Lam YY, Ha CW, Hoffmann JM. et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring) 2015; 23 (07) 1429-1439
- 34 Lee JY, Ye J, Gao Z. et al. Reciprocal modulation of toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 2003; 278 (39) 37041-37051
- 35 Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016; 244: 211-215
- 36 Yu LC-H. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 2018; 25 (01) 79
- 37 Maccioni L, Gao B, Leclercq S. et al. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes 2020; 12 (01) 1782157
- 38 Ram AK, Pottakat B, Vairappan B. Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma. BMC Cancer 2018; 18 (01) 572
- 39 Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182 (02) 375-387
- 40 Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol 2015; 195 (10) 4999-5010
- 41 Stephens M, von der Weid P-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020; 11 (03) 421-432
- 42 Nighot M, Al-Sadi R, Guo S. et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression. Am J Pathol 2017; 187 (12) 2698-2710
- 43 Clayburgh DR, Rosen S, Witkowski ED. et al. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem 2004; 279 (53) 55506-55513
- 44 Kessoku T. et al. Endotoxins and non-alcoholic fatty liver disease. Front Endocrinol 2021; 12: 55506
- 45 Carpino G, Del Ben M, Pastori D. et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 2020; 72 (02) 470-485
- 46 Xue L, He J, Gao N. et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 2017; 7 (01) 45176
- 47 Douhara A, Moriya K, Yoshiji H. et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep 2015; 11 (03) 1693-1700
- 48 Mouries J, Brescia P, Silvestri A. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71 (06) 1216-1228
- 49 Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017; 65 (01) 350-362
- 50 Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016; 24 (01) 41-50
- 51 Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137-174
- 52 Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7 (08) 678-693
- 53 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3 (05) 543-553
- 54 Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368 (1-2): 17-29
- 55 Lu TT, Makishima M, Repa JJ. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6 (03) 507-515
- 56 Parks DJ, Blanchard SG, Bledsoe RK. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418): 1365-1368
- 57 Yu J, Lo JL, Huang L. et al. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 2002; 277 (35) 31441-31447
- 58 Mueller M, Thorell A, Claudel T. et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 2015; 62 (06) 1398-1404
- 59 Sayin SI, Wahlström A, Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (02) 225-235
- 60 Aranha MM, Cortez-Pinto H, Costa A. et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 2008; 20 (06) 519-525
- 61 Parséus A, Sommer N, Sommer F. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017; 66 (03) 429-437
- 62 Jiang C, Xie C, Li F. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125 (01) 386-402
- 63 Jiao N, Baker SS, Chapa-Rodriguez A. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018; 67 (10) 1881-1891
- 64 Ferslew BC, Xie G, Johnston CK. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 2015; 60 (11) 3318-3328
- 65 Puri P, Daita K, Joyce A. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 2018; 67 (02) 534-548
- 66 Smirnova E, Muthiah MD, Narayan N. et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD. Hepatology 2022; 76 (06) 1811-1824
- 67 Blaak EE, Canfora EE, Theis S. et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11 (05) 411-455
- 68 Zhang D, Jian YP, Zhang YN. et al. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21 (01) 212
- 69 Song Q, Zhang X, Liu W. et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol 2023; 79 (06) 1352-1365
- 70 Aoki R, Onuki M, Hattori K. et al. Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice. Microbiome 2021; 9 (01) 188
- 71 Zhou D, Chen YW, Zhao ZH. et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med 2018; 50 (12) 1-12
- 72 Cao X. et al. Low short-chain-fatty-acid-producing activity of the gut microbiota is associated with hypercholesterolemia and liver fibrosis in patients with metabolic-associated (non-alcoholic) fatty liver disease. Gastrointest Disord (Basel) 2023; 5 (04) 464-473
- 73 Wang Y, Wang H, Howard AG. et al. Circulating short-chain fatty acids are positively associated with adiposity measures in Chinese adults. Nutrients 2020; 12 (07) 2127
- 74 Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4 (06) e121-e121
- 75 Teixeira TFS, Grześkowiak Ł, Franceschini SC, Bressan J, Ferreira CL, Peluzio MC. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br J Nutr 2013; 109 (05) 914-919
- 76 Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes (Lond) 2014; 38 (12) 1525-1531
- 77 de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R. et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 2018; 11 (01) 51
- 78 Behary J, Amorim N, Jiang XT. et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun 2021; 12 (01) 187
- 79 Rau M, Rehman A, Dittrich M. et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol J 2018; 6 (10) 1496-1507
- 80 Chambers ES, Byrne CS, Rugyendo A. et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes Metab 2019; 21 (02) 372-376
- 81 Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: a retrospective study. Exp Ther Med 2022; 24 (03) 598
- 82 Elshaghabee FMF, Bockelmann W, Meske D. et al. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front Microbiol 2016; 7: 47
- 83 Li N-N, Li W, Feng JX. et al. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes 2021; 13 (01) 1979883
- 84 Meijnikman AS, Davids M, Herrema H. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat Med 2022; 28 (10) 2100-2106
- 85 Volynets V, Küper MA, Strahl S. et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 2012; 57 (07) 1932-1941
- 86 Mbaye B, Magdy Wasfy R, Borentain P. et al. Increased fecal ethanol and enriched ethanol-producing gut bacteria Limosilactobacillus fermentum, Enterocloster bolteae, Mediterraneibacter gnavus and Streptococcus mutans in nonalcoholic steatohepatitis. Front Cell Infect Microbiol 2023; 13: 1279354
- 87 Zhu L, Baker SS, Gill C. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57 (02) 601-609
- 88 Mbaye B, Borentain P, Magdy Wasfy R. et al. Endogenous ethanol and triglyceride production by gut Pichia kudriavzevii, Candida albicans and Candida glabrata yeasts in non-alcoholic steatohepatitis. Cells 2022; 11 (21) 3390
- 89 Yuan J, Chen C, Cui J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae . Cell Metab 2019; 30 (04) 675-688.e7
- 90 Chen X, Zhang Z, Li H. et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2020; 35 (11) 2009-2019
- 91 Gan L, Feng Y, Du B. et al. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae . Nat Commun 2023; 14 (01) 3215
- 92 Li X, Zhang W, Cao Q. et al. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6 (01) 80
- 93 Xu Y, Chu C, Shi Z, Zhang J. The role of hepatocyte mitochondrial DNA in liver injury. Biomed Pharmacother 2023; 168: 115692
- 94 Carr RM, Li Y, Chau L. et al. An integrated analysis of fecal microbiome and metabolomic features distinguish non-cirrhotic NASH from healthy control populations. Hepatology 2023; 78 (06) 1843-1857
- 95 Caussy C, Tripathi A, Humphrey G. et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019; 10 (01) 1406
- 96 Loomba R, Seguritan V, Li W. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25 (05) 1054-1062.e5
- 97 Oh TG, Kim SM, Caussy C. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab 2020; 32 (05) 878-888.e6
- 98 Sharpton SR, Oh TG, Madamba E. et al. Gut metagenome-derived signature predicts hepatic decompensation and mortality in NAFLD-related cirrhosis. Aliment Pharmacol Ther 2022; 56 (10) 1475-1485
- 99 Lang S, Farowski F, Martin A. et al. Prediction of advanced fibrosis in non-alcoholic fatty liver disease using gut microbiota-based approaches compared with simple non-invasive tools. Sci Rep 2020; 10 (01) 9385
- 100 Tacke F. et al; European Association for the Study of the Liver (EASL). Electronic address: easloffice@easloffice.eu, European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO), European Association for the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81 (03) 492-542
- 101 Park CC, Nguyen P, Hernandez C. et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 2017; 152 (03) 598-607.e2
- 102 Imajo K, Honda Y, Kobayashi T. et al. Direct comparison of US and MR elastography for staging liver fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2022; 20 (04) 908-917.e11
- 103 Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 2016; 13 (09) 508-516
- 104 Lee DH, Jee JJ, Lee YS. et al. Fecal microbiota transplantation improves hepatic fibro-inflammation via regulating oxidative stress in experimental NASH. Dig Liver Dis 2023; 55 (11) 1521-1532
- 105 Shou D, Luo Q, Tang W. et al. Hepatobiliary and pancreatic: multi-donor fecal microbiota transplantation attenuated high-fat diet-induced hepatic steatosis in mice by remodeling the gut microbiota. J Gastroenterol Hepatol 2023; 38 (12) 2195-2205
- 106 Zhou D, Pan Q, Shen F. et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017; 7 (01) 1529
- 107 García-Lezana T, Raurell I, Bravo M. et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology 2018; 67 (04) 1485-1498
- 108 Craven L, Rahman A, Nair Parvathy S. et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol 2020; 115 (07) 1055-1065
- 109 Witjes JJ, Smits LP, Pekmez CT. et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun 2020; 4 (11) 1578-1590
- 110 Xue L, Deng Z, Luo W, He X, Chen Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front Cell Infect Microbiol 2022; 12: 759306
- 111 Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17 (02) 259-275
- 112 Rau S, Gregg A, Yaceczko S, Limketkai B. Prebiotics and probiotics for gastrointestinal disorders. Nutrients 2024; 16 (06) 778
- 113 Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28 (10) 1221-1227
- 114 Dobranowski PA, Stintzi A. Resistant starch, microbiome, and precision modulation. Gut Microbes 2021; 13 (01) 1926842
- 115 Ni Y, Qian L, Siliceo SL. et al. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab 2023; 35 (09) 1530-1547.e8
- 116 Huang X, Chen Q, Fan Y. et al. Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159: 114300
- 117 Malaguarnera M, Vacante M, Antic T. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci 2012; 57 (02) 545-553
- 118 Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Am J Clin Nutr 2019; 110 (01) 139-149
- 119 Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 2014; 99 (03) 535-542
- 120 Manzhalii E, Virchenko O, Falalyeyeva T, Beregova T, Stremmel W. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: a pilot trial. J Dig Dis 2017; 18 (12) 698-703
- 121 Mofidi F, Poustchi H, Yari Z. et al. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr 2017; 117 (05) 662-668
- 122 Bomhof MR, Parnell JA, Ramay HR. et al. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur J Nutr 2019; 58 (04) 1735-1745
- 123 Scorletti E, Afolabi PR, Miles EA. et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 2020; 158 (06) 1597-1610.e7
- 124 Yang Z, Su H, Lv Y. et al. Inulin intervention attenuates hepatic steatosis in rats via modulating gut microbiota and maintaining intestinal barrier function. Food Res Int 2023; 163: 112309
- 125 Wang X, Shi L, Wang X, Feng Y, Wang Y. MDG-1, an ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Int J Biol Macromol 2019; 141: 1013-1021
- 126 Wei W, Wong CC, Jia Z. et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat Microbiol 2023; 8 (08) 1534-1548
- 127 Gauffin Cano P, Santacruz A, Moya Á, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 2012; 7 (07) e41079
- 128 Wang K, Liao M, Zhou N. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 2019; 26 (01) 222-235.e5
- 129 Yang JY, Lee YS, Kim Y. et al. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 2017; 10 (01) 104-116
- 130 Hill C, Guarner F, Reid G. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11 (08) 506-514
- 131 Sepideh A, Karim P, Hossein A. et al. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial. J Am Coll Nutr 2016; 35 (06) 500-505
- 132 Behrouz V, Aryaeian N, Zahedi MJ, Jazayeri S. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J Food Sci 2020; 85 (10) 3611-3617
- 133 Aller R, De Luis DA, Izaola O. et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 2011; 15 (09) 1090-1095
- 134 Escouto GS, Port GZ, Tovo CV. et al. Probiotic supplementation, hepatic fibrosis, and the microbiota profile in patients with nonalcoholic steatohepatitis: a randomized controlled trial. J Nutr 2023; 153 (07) 1984-1993
- 135 Ahn SB, Jun DW, Kang BK, Lim JH, Lim S, Chung MJ. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep 2019; 9 (01) 5688
- 136 Chong PL, Laight D, Aspinall RJ, Higginson A, Cummings MH. A randomised placebo controlled trial of VSL#3 probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol 2021; 21 (01) 144
- 137 Kobyliak N, Abenavoli L, Mykhalchyshyn G. et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial. J Gastrointestin Liver Dis 2018; 27 (01) 41-49
- 138 Mohamad Nor MH, Ayob N, Mokhtar NM. et al. The effect of probiotics (MCP BCMC Strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease. Nutrients 2021; 13 (09) 3192
- 139 Duseja A, Acharya SK, Mehta M. et al; Shalimar. High potency multistrain probiotic improves liver histology in non-alcoholic fatty liver disease (NAFLD): a randomised, double-blind, proof of concept study. BMJ Open Gastroenterol 2019; 6 (01) e000315
- 140 Pan Y, Yang Y, Wu J, Zhou H, Yang C. Efficacy of probiotics, prebiotics, and synbiotics on liver enzymes, lipid profiles, and inflammation in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol 2024; 24 (01) 283
- 141 Patidar KR, Bajaj JS. Antibiotics for the treatment of hepatic encephalopathy. Metab Brain Dis 2013; 28 (02) 307-312
- 142 Gangarapu V, Ince AT, Baysal B. et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27 (07) 840-845
- 143 Jian J, Nie MT, Xiang B. et al. Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids. Front Pharmacol 2022; 13: 841132
- 144 Fujinaga Y, Kawaratani H, Kaya D. et al. Effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci 2020; 21 (15) 5589
- 145 Enomoto M, Kaji K, Nishimura N. et al. Rifaximin and lubiprostone mitigate liver fibrosis development by repairing gut barrier function in diet-induced rat steatohepatitis. Dig Liver Dis 2022; 54 (10) 1392-1402
- 146 Abdel-Razik A, Mousa N, Shabana W. et al. Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot. Eur J Gastroenterol Hepatol 2018; 30 (10) 1237-1246
- 147 Cobbold JFL, Atkinson S, Marchesi JR. et al. Rifaximin in non-alcoholic steatohepatitis: an open-label pilot study. Hepatol Res 2018; 48 (01) 69-77
- 148 Matsui M, Fukunishi S, Nakano T, Ueno T, Higuchi K, Asai A. Ileal bile acid transporter inhibitor improves hepatic steatosis by ameliorating gut microbiota dysbiosis in NAFLD model mice. MBio 2021; 12 (04) e0115521
- 149 Newsome PN, Palmer M, Freilich B. et al; Volixibat in Adults study group. Volixibat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomized, phase II study. J Hepatol 2020; 73 (02) 231-240
- 150 Neuschwander-Tetri BA, Loomba R, Sanyal AJ. et al; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972): 956-965
- 151 Harrison SA, Bashir MR, Lee KJ. et al. A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis. J Hepatol 2021; 75 (01) 25-33
- 152 Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 2020; 15 (09) 2867-2890
- 153 Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: principles, practices, and prospects. Front Microbiol 2022; 13: 997587
- 154 Bajaj JS, Ng SC, Schnabl B. Promises of microbiome-based therapies. J Hepatol 2022; 76 (06) 1379-1391
- 155 Hendrikx T, Duan Y, Wang Y. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 2019; 68 (08) 1504-1515
- 156 Fakhry TK, Mhaskar R, Schwitalla T, Muradova E, Gonzalvo JP, Murr MM. Bariatric surgery improves nonalcoholic fatty liver disease: a contemporary systematic review and meta-analysis. Surg Obes Relat Dis 2019; 15 (03) 502-511
- 157 Lassailly G, Caiazzo R, Ntandja-Wandji LC. et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology 2020; 159 (04) 1290-1301.e5
- 158 Tremaroli V, Karlsson F, Werling M. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 2015; 22 (02) 228-238
- 159 Dong TS, Katzka W, Yang JC. et al. Microbial changes from bariatric surgery alters glucose-dependent insulinotropic polypeptide and prevents fatty liver disease. Gut Microbes 2023; 15 (01) 2167170