Synlett 2025; 36(05): 445-451 DOI: 10.1055/a-2442-1796
Visible-Light-Mediated Strain-Release Radical Spirocyclizations: Access to Functionalized Spirocyclobutanes
,
Financial support from the Science and Engineering Research Board (SERB), Government of India (File CRG/2022/007372), is greatly acknowledged. T.S. thanks the Ministry of Education, Government of India, for a PMRF fellowship.
Abstract
Spirocyclobutanes have gained significant attention in medicinal chemistry discovery programs due to their broad spectrum of biological activities and clinical applications. Utilizing ring strain in small molecules to drive organic transformations is one of the most powerful tools in chemical synthesis. Our research group has focused on developing new synthetic strategies enabled by ring strain to construct complex molecules selectively and efficiently. This account summarizes our recent efforts toward the synthesis of a library of functionalized spirocyclobutanes by harnessing the ring strain of bicyclo[1.1.0]butanes. Three spicrocyclization cascades have been developed to incorporate a diverse range of radical precursors into spirocycobutanes.
1 Introduction
2 Synthesis of Spirocyclobutyl Lactones and -Lactams using Bifunctional Reagents
3 Dual Photoredox/Nickel Catalysis for the Synthesis of Spirocyclobutyl Lactams
4 Synthesis of Spirocyclobutyl Oxindoles under Photoredox Catalysis
5 DFT Studies
6 Conclusion
Key words
bicyclo[1.1.0]butane -
strain-release -
photoredox catalysis -
radicals -
spirocyclobutanes -
dual catalysis -
bifunctional reagents
Publication History
Received: 23 September 2024
Accepted after revision: 15 October 2024
Accepted Manuscript online: 15 October 2024
Article published online: 05 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
References
1a
Lovering F.
MedChemComm 2013; 4: 515
1b
Lovering F,
Bikker J,
Humblet C.
J. Med. Chem. 2009; 52: 6752
2
Prosser KE,
Stokes RW,
Cohen SM.
ACS Med. Chem. Lett. 2020; 11: 1292
3a
Rice MA,
Malhotra SV,
Stoyanova T.
Front. Oncol. 2019; 9: 477083
3b
van der Kolk MR,
Janssen MA. C. H,
Rutjes FP. J. T,
Blanco-Ania D.
ChemMedChem 2022; 17: e202200020
4
Canney DJ,
Blass BE,
Gao R,
Abou-Gharbia M.
WO2016040554, 2016
5
Wei W,
Cherukupalli S,
Jing L,
Liu X,
Zhan P.
Drug Discovery Today 2020; 25: 1839
6a
Reisman SE,
Ready JM,
Hasuoka A,
Smith CJ,
Wood JL.
J. Am. Chem. Soc. 2006; 128: 1448
6b
Yoshikawa M,
Kamisaki H,
Kunitomo J,
Oki H,
Kokubo H,
Suzuki A,
Ikemoto T,
Nakashima K,
Kamiguchi N,
Harada A,
Kimura H,
Taniguchi T.
Bioorg. Med. Chem. 2015; 23: 7138
7a
Zheng Y,
Tice CM,
Singh SB.
Bioorg. Med. Chem. Lett. 2014; 24: 3673
7b
Boddy AJ,
Bull JA.
Org. Chem. Front. 2021; 8: 1026
8a
Turkowska J,
Durka J,
Gryko D.
Chem. Commun. 2020; 56: 5718
8b
Kelly CB,
Milligan JA,
Tilley LJ,
Sodano TM.
Chem. Sci. 2022; 13: 11721
8c
Bellotti P,
Glorius F.
J. Am. Chem. Soc. 2023; 145: 20716
9
Golfmann M,
Walker JC. L.
Commun. Chem. 2023; 6: 9
10a
Gianatassio R,
Lopchuk JM,
Wang J,
Pan C.-M,
Malins LR,
Prieto L,
Brandt TA,
Collins MR,
Gallego GM,
Sach NW,
Spangler JE,
Zhu H,
Zhu J,
Baran PS.
Science 2016; 351: 241
10b
Silvi M,
Aggarwal VK.
J. Am. Chem. Soc. 2019; 141: 9511
10c
Ernouf G,
Chirkin E,
Rhyman L,
Ramasami P,
Cintrat J.-C.
Angew. Chem. Int. Ed. 2020; 59: 2618
10d
Majhi J,
Dhungana RK,
Rentería-Gómez Á,
Sharique M,
Li L,
Dong W,
Gutierrez O,
Molander GA.
J. Am. Chem. Soc. 2022; 144: 15871
10e
Wang H,
Erchinger JE,
Lenz M,
Dutta S,
Daniliuc CG,
Glorius F.
J. Am. Chem. Soc. 2023; 145: 23771
10f
Guin A,
Bhattacharjee S,
Harariya MS,
Biju AT.
Chem. Sci. 2023; 14: 6585
10g
Pickford HD,
Ripenko V,
McNamee RE,
Holovchuk S,
Thompson AL,
Smith RC,
Mykhailiuk PK,
Anderson EA.
Angew. Chem. Int. Ed. 2023; 62: e202213508
11a
Kleinmans R,
Dutta S,
Ozols K,
Shao H,
Schäfer F,
Thielemann RE,
Chan HT,
Daniliuc CG,
Houk KN,
Glorius F.
J. Am. Chem. Soc. 2023; 145: 12324
11b
Kleinmans R,
Pinkert T,
Dutta S,
Paulisch TO,
Keum H,
Daniliuc CG,
Glorius F.
Nature 2022; 605: 477
11c
Liang Y,
Kleinmans R,
Daniliuc CG,
Glorius F.
J. Am. Chem. Soc. 2022; 144: 20207
11d
Liang Y,
Paulus F,
Daniliuc CG,
Glorius F.
Angew. Chem. Int. Ed. 2023; 62: e202305043
11e
Zheng Y,
Huang W,
Dhungana RK,
Granados A,
Keess S,
Makvandi M,
Molander GA.
J. Am. Chem. Soc. 2022; 144: 23685
11f
Nguyen TV. T,
Bossonnet A,
Wodrich MD,
Waser J.
J. Am. Chem. Soc. 2023; 145: 25411
12a
Dasgupta A,
Bhattacharjee S,
Tong Z,
Guin A,
McNamee RE,
Christensen KE,
Biju AT,
Anderson EA.
J. Am. Chem. Soc. 2024; 146: 1196
12b
Lin S.-L,
Chen Y.-H,
Liu H.-H,
Xiang S.-H,
Tan B.
J. Am. Chem. Soc. 2023; 145: 21152
13a
Bychek R,
Mykhailiuk PK.
Angew. Chem. Int. Ed. 2022; 61: e202205103
13b
Bychek RM,
Hutskalova V,
Bas YP,
Zaporozhets OA,
Zozulya S,
Levterov VV,
Mykhailiuk PK.
J. Org. Chem. 2019; 84: 15106
14
Huang H.-M,
Bellotti P,
Ma J,
Dalton T,
Glorius F.
Nat. Rev. Chem. 2021; 5: 301
15a
Bär RM,
Heinrich G,
Nieger M,
Fuhr O,
Bräse S.
Beilstein J. Org. Chem. 2019; 15: 1172
15b
Teders M,
Henkel C,
Anhäuser L,
Strieth-Kalthoff F,
Gómez-Suárez A,
Kleinmans R,
Kahnt A,
Rentmeister A,
Guldi D,
Glorius F.
Nat. Chem. 2018; 10: 981
16
Das K,
Pedada A,
Singha T,
Hari DP.
Chem. Sci. 2024; 15: 3182
17
Zhu C,
Yue H,
Chu L,
Rueping M.
Chem. Sci. 2020; 11: 4051
18
Singha T,
Bapat NA,
Mishra SK,
Hari DP.
Org. Lett. 2024; 26: 6396
19a
Ardito F,
Giuliani M,
Perrone D,
Troiano G,
Lo Muzio L.
Int. J. Mol. Med. 2017; 40: 271
19b
Knowles JR.
Annu. Rev. Biochem. 1980; 49: 877
20
Shah P,
Westwell AD.
J. Enzyme Inhib. Med. Chem. 2007; 22: 527