Subscribe to RSS
DOI: 10.1055/a-2449-3360
CFTR Modulator Treatment in Children<12 Years of Age – Status Quo and Challenges
CFTR Modulator Therapie für Kinder unter 12 Jahren – Status quo und Herausforderungen![](https://www.thieme-connect.de/media/klinpaed/EFirst/lookinside/thumbnails/kp-2024-07-2022-rev_10-1055-a-2449-3360-1.jpg)
Abstract
Cystic fibrosis (CF) is a genetic disease that results from mutations in the CFTR gene. It primarily affects the lungs and digestive system. Recent advancements in the treatment of CF have been driven by highly effective therapies that modulate the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which target the underlying molecular defects in CFTR function. These modulators have been demonstrated to significantly improve lung function, weight gain, and quality of life for 90% of individuals with CF, particularly those with the F508del mutation. HEMT has also demonstrated potential benefits for pancreatic and liver function, and its early use in young children may delay or prevent disease progression. However, challenges remain in optimizing biomarkers and outcome measures for younger children, addressing side effects, and developing novel therapies for mutations not responsive to current treatments. This review focuses on the efficacy, safety, and future perspectives of HEMT in children under 12 years of age, emphasizing the importance of early intervention to improve long-term outcomes in CF patients.
Zusammenfassung
Mukoviszidose (CF) ist die häufigste genetisch bedingte Stoffwechselerkrankung durch Mutationen im CFTR-Gen. Sie betrifft insbesondere die Lunge und das Verdauungssystem. Die jüngsten Fortschritte in der Behandlung der CF sind das Resultat von hochwirksamen Therapien (HEMT), welche die Funktion des CFTR-Proteins (Cystic Fibrosis Transmembrane Conductance Regulator) modulieren und damit eine kausale Therapie ermöglichen. Diese führt nachweislich zu einer Verbesserung der Lungenfunktion und Gewichtszunahme, sowie einer Steigerung der Lebensqualität bei 90% der Menschen mit Mukoviszidose, insbesondere bei denen, die mindestens eine F508del-Mutation aufweisen. Zusätzlich besteht ein potenzieller Nutzen für die Funktion der Bauchspeicheldrüse und der Leber. Eine frühzeitige Anwendung von HEMT bei Kleinkindern kann das Fortschreiten der Krankheit voraussichtlich weiter verzögern oder gar verhindern. Herausforderungen bestehen in der Etablierung valider Biomarker - insbesondere für jüngere Kinder, unerwünschten Arzneimittelwirkungen und der Entwicklung neuartiger Therapien für Mutationen, die auf die HEMT nicht ansprechen. Die vorliegende Übersichtsarbeit beschreibt die Effektivität und Sicherheit bei Kindern unter 12 Jahren, sowie das zukünftige therapeutische Potential der HEMT. Ein besonderes Augenmerk wird dabei auf die Notwendigkeit eines frühzeitigen Therapiebeginns zur Verbesserung des langfristigen Verlaufs gelegt.
Keywords
cystic fibrosis - cystic fibrosis transmembrane regulator - modulator therapy - highly effective CFTR modulator therapySchlüsselwörter
Mukoviszidose - Cystische Fibrose - Cystische Fibrose Transmembran Regulator - CFTR Modulator TherapiePublication History
Article published online:
10 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Graeber SY, Hug MJ, Sommerburg O. et al Intestinal Current Measurements Detect Activation of Mutant CFTR in Patients with Cystic Fibrosis with the G551D Mutation Treated with Ivacaftor. Am J Respir Crit Care Med 2015; 192: 1252-1255
- 2 Graeber SY, Vitzthum C, Pallenberg ST. et al Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on CFTR Function in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am J Respir Crit Care Med 2022; 205: 540-549
- 3 Graeber SY, Dopfer C, Naehrlich L. et al Effects of Lumacaftor-Ivacaftor Therapy on Cystic Fibrosis Transmembrane Conductance Regulator Function in Phe508del Homozygous Patients with Cystic Fibrosis. Am J Respir Crit Care Med 2018; 197: 1433-1442
- 4 Fang X, Yeh JT, Hwang TC. Pharmacological Responses of the G542X-CFTR to CFTR Modulators. Front Mol Biosci. 2022 9. 921680
- 5 Dagan A, Cohen-Cymberknoh M, Shteinberg M. et al Ivacaftor for the p.Ser549Arg (S549R) gating mutation – The Israeli experience. Respir Med 2017; 131: 225-228
- 6 Lopez A, Daly C, Vega-Hernandez G. et al Elexacaftor/tezacaftor/ivacaftor projected survival and long-term health outcomes in people with cystic fibrosis homozygous for F508del. J Cyst Fibros. 2023 22. 607-614
- 7 Middleton PG, Mall MA, Dřevínek P. et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019 381. 1809-1819
- 8 Heijerman HGM, McKone EF, Downey DG. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019 394. 1940-1948
- 9 Stahl M, Dohna M, Graeber SY. et al. Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy on Lung Clearance Index and Magnetic Resonance Imaging in Children with Cystic Fibrosis and One or Two F508del Alleles. Eur Respir J. 2024: 2400004
- 10 Schütz K, Kontsendorn J, Janzen N. et al. The First 4 Years – Outcome of Children Identified by Newborn Screening for CF in Germany. Klin Padiatr. 2022 234. 284-292
- 11 Goralski JL, Hoppe JE, Mall MA. et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2–5 Years with Cystic Fibrosis and at Least One F508del Allele. Am J Respir Crit Care Med. 2023 208. 59-67
- 12 Ramsey ML, Li SS, Lara LF. et al. Cystic fibrosis transmembrane conductance regulator modulators and the exocrine pancreas: A scoping review. Journal of Cystic Fibrosis 2023; 22: 193-200
- 13 Ramsey ML, Wellner MR, Porter K. et al. Cystic fibrosis patients on cystic fibrosis transmembrane conductance regulator modulators have a reduced incidence of cirrhosis. World J Hepatol. 2022 14. 411-419
- 14 Dittrich AM, Sieber S, Naehrlich L. et al Use of elexacaftor/tezacaftor/ivacaftor leads to changes in detection frequencies of Staphylococcus aureus and Pseudomonas aeruginosa dependent on age and lung function in people with cystic fibrosis. Int J Infect Dis. 2023 139. 124-31
- 15 Morgan SJ, Nichols DP, Ni W. et al. Elexacaftor/Tezacaftor/Ivacaftor Markedly Reduces Aspergillus fumigatus in Cystic Fibrosi. Am J Respir Crit Care Med. 2024 210. 1155-1158
- 16 Nichols DP, Morgan SJ, Skalland M. et al Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133: e167957
- 17 Dijk FN, McKay K, Barzi F. et al Improved survival in cystic fibrosis patients diagnosed by newborn screening compared to a historical cohort from the same centre. Arch Dis Child. 2011 96. 1118-1123
- 18 Mayer-Hamblett N, Ratjen F, Russell R. et al. Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. Lancet Respir Med. 2023 11. 329-340
- 19 Bodewes FAJA, Verkade HJ, Taminiau JAJM. et al Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation. J Cyst Fibros. 2015 14. 169-177
- 20 Kramer EL, Clancy JP. CFTR Modulator Therapies in Pediatric Cystic Fibrosis: Focus on Ivacaftor. Expert Opin Orphan Drugs. 2016 4. 1033-1042
- 21 Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015 16. 45-56
- 22 Davies JC, Wainwright CE, Canny GJ. et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013 187. 1219-1225
- 23 Munck A, Kerem E, Ellemunter H. et al. Tezacaftor/ivacaftor in people with cystic fibrosis heterozygous for minimal function CFTR mutations. J Cyst Fibros. 2020 19. 962-968
- 24 Burgel PR, Durieu I, Chiron R. et al. Clinical response to lumacaftor-ivacaftor in patients with cystic fibrosis according to baseline lung function. J Cyst Fibros. 2021 20. 220-227
- 25 Barry PJ, Mall MA, Álvarez A. et al. Triple Therapy for Cystic Fibrosis Phe508del-Gating and -Residual Function Genotypes. N Engl J Med. 2021 385. 815-825
- 26 Burgel PR, Sermet-Gaudelus I, Durieu I. et al. The French Compassionate Program of elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis with advanced lung disease and no F508del CFTR variant. Eur Respir J. 2023 61. 2202437
- 27 Uluer AZ, MacGregor G, Azevedo P. et al. Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials. Lancet Respir Med. 2023 11. 550-562
- 28 Davies JC, Cunningham S, Harris WT. et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016 4. 107-115
- 29 Wainwright C, McColley SA, McNally P. et al. Long-Term Safety and Efficacy of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged ≥6 Years with Cystic Fibrosis and at Least One F508del Allele: A Phase 3, Open-Label Clinical Trial. Am J Respir Crit Care Med. 2023 208. 68-78
- 30 Davies JC, Wainwright CE, Sawicki GS. et al. Ivacaftor in infants aged 4 to < 12 months with cystic fibrosis and a gating mutation results of a two-part phase 3 clinical trial. Am J Respir Crit Care Med. 2021 203. 585-593
- 31 Mall MA, Brugha R, Gartner S. et al. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study. Am J Respir Crit Care Med. 2022 206. 1361-1369
- 32 Ranganathan SC, Hall GL, Sly PD. et al Early Lung Disease in Infants and Preschool Children with Cystic Fibrosis. What Have We Learned and What Should We Do about It?. Am J Respir Crit Care Med. 2017 195. 1567-1575
- 33 Bass R, Brownell JN, Stallings VA. The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients. 2021 13. 2907
- 34 Megalaa R, Gopalareddy V, Champion E. et al Time for a gut check: Pancreatic sufficiency resulting from CFTR modulator use. Pediatr Pulmonol. 2019 54. E16-E18
- 35 Munce D, Lim M, Akong K. Persistent recovery of pancreatic function in patients with cystic fibrosis after ivacaftor. Pediatr Pulmonol 2020; 55: 3381-3383
- 36 Rosenfeld M, Cunningham S, Harris WT. et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2–5 years (KLIMB). J Cyst Fibros. 2019 18. 838-843
- 37 McKone EF, Borowitz D, Drevinek P. et al. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label extension study (PERSIST). Lancet Respir Med. 2014 2. 902-910
- 38 Loukou I, Moustaki M, Plyta M. et al Longitudinal changes in lung function following initiation of lumacaftor/ivacaftor combination. J Cyst Fibros. 2020 19. 534-539
- 39 Duckers J, Lesher B, Thorat T. et al. Real-world outcomes of ivacaftor treatment in people with cystic fibrosis: A systematic review. J Clin Med. 2021 10. 1527
- 40 Li Q, Liu S, Ma X. et al Effectiveness and Safety of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Children With Cystic Fibrosis: A Meta-Analysis. Front Pediatr. 2022 10. 937250
- 41 Sermet-Gaudelus I, Benaboud S, Bui S. et al. Behavioural and sleep issues after initiation of elexacaftor-tezacaftor-ivacaftor in preschool-age children with cystic fibrosis. Lancet. 2024 404. 117-120
- 42 Ramsey B, Correll CU, DeMaso DR. et al. Elexacaftor/Tezacaftor/Ivacaftor Treatment and Depression-related Events. Am J Respir Crit Care Med. 2023 209. 299-306
- 43 Huang EN, Quach H, Lee JA. et al A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol. 2021 9. 742891
- 44 Meyerholz DK, Stoltz DA, Namati E. et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med. 2010 182. 1251-1261
- 45 Szentpetery S, Foil K, Hendrix S. et al. A case report of CFTR modulator administration via carrier mother to treat meconium ileus in a F508del homozygous fetus. Journal of Cystic Fibrosis 2022; 21: 721-724
- 46 Gómez-Montes E, Salcedo Lobato E, Galindo Izquierdo A. et al. Prenatal Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy: A Promising Way to Change the Impact of Cystic Fibrosis. Fetal Diagn Ther. 2023 50. 136-142
- 47 Jain R, Magaret A, Vu PT. et al. Prospectively evaluating maternal and fetal outcomes in the era of CFTR modulators: the MAYFLOWERS observational clinical trial study design. BMJ Open Respir Res. 2022 9. e001289
- 48 Qiu F, Habgood M, Schneider-Futschik EK. The Balance between the Safety of Mother, Fetus, and Newborn Undergoing Cystic Fibrosis Transmembrane Conductance Regulator Treatments during Pregnancy. ACS Pharmacol Transl Sci. 2020 3. 835
- 49 Zhu Y, Li D, Reyes-Ortega F. et al Ocular development after highly effective modulator treatment early in life. Front Pharmacol 2023; 14: 1265138
- 50 Kramer EL, Clancy JP. CFTR Modulator Therapies in Pediatric Cystic Fibrosis: Focus on Ivacaftor. Expert Opin Orphan Drugs. 2016 4. 1033
- 51 Clarke LA, Luz VCC, Targowski S. et al Integrity and Stability of PTC Bearing CFTR mRNA and Relevance to Future Modulator Therapies in Cystic Fibrosis. Genes (Basel). 2021 12. 1810
- 52 Leubitz A, Vanhoutte F, Hu Myi. et al. A Randomized, Double-Blind, Placebo-Controlled, Multiple Dose Escalation Study to Evaluate the Safety and Pharmacokinetics of ELX-02 in Healthy Subjects. Clin Pharmacol Drug Dev. 2021 10. 859-869
- 53 Premchandar A, Ming R, Baiad A. et al Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15: 1389586
- 54 Hurlbut G, Altmann S, Barrague M. et al. Novel Modulator Combinations Address the NBD1 Stability Defect Central to ΔF508-CFTR Dysfunction and Enable Full Correction NACFC 2022 | Enhanced Reader. 2022
- 55 Sionna Therapeutics Announces Phase 1 Initiation for SION-109 in Cystic Fibrosis – Sionna Therapeutics. [cited 2024 May 30]. Available from https://www.sionnatx.com/press-releases/sionna-therapeutics-announces-phase-1-initiation-for-sion-109-in-cystic-fibrosis/
- 56 Sionna Therapeutics Presents Preclinical Data at 2023 North American Cystic Fibrosis Conference Demonstrating Series 2 NBD1 Stabilizers Normalize ΔF508-CFTR Function – Sionna Therapeutics. [cited 2024 May 30]. Available from https://www.sionnatx.com/press-releases/sionna-therapeutics-presents-preclinical-data-at-2023-north-american-cystic-fibrosis-conference-demonstrating-series-2-nbd1-stabilizers-normalize-%ce%b4f508-cftr-function/
- 57 Giuliano KA, Wachi S, Drew L. et al. Use of a High-Throughput Phenotypic Screening Strategy to Identify Amplifiers, a Novel Pharmacological Class of Small Molecules That Exhibit Functional Synergy with Potentiators and Correctors. SLAS Discov. 2018 23. 111-121
- 58 Veit G, Velkov T, Xu H. et al. A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J Pers Med. 2021 11. 643