Subscribe to RSS
DOI: 10.1055/a-2456-9333
BMIDA-Directed Catalytic Asymmetric Transfer Hydrogenation for Enantioselective Access to α-Boryl Alcohols
This work was supported by the National Natural Science Foundation of China (No. 22071242 and 21871260), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the Natural Science Foundation of Fujian Province (No. 2021J01522), and the Self-deployment Project Research Program of Haixi Institutes, Chinese Academy of Sciences (CXZX-2022-GH03).
Abstract
The quest for general and highly efficient and enantioselective catalytic route to chiral alcohols remains a formidable challenge in asymmetric synthesis. Here, we highlight our recent work of asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates, showcasing a versatile platform for the efficient synthesis of enantiomerically enriched secondary alcohols. Acyl-MIDA-boronates harboring diverse (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents can be hydrogenated, yielding various α-borylated alcohols with high ee values. Crucially, the boron moiety can be easily transformed into other groups, allowing access to previously unattainable carbinols adorned with two structurally similar substituents. The enantioselectivity-directing role of BMIDA is elucidated by computational analyses, which stems from the CH–O electrostatic attraction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms within BMIDA. This work represents the first asymmetric transformation on acylboronates and expands the domain of asymmetric transfer hydrogenation.
Key words
asymmetric transfer hydrogenation - BMIDA - acylboronate - dicarbonyl boronate - α-boryl alcoholPublication History
Received: 23 September 2024
Accepted: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
05 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Tan M, Peters BB. C, Andersson PG, Zhou T. Org. Chem. Front. 2024; 11: 2934
- 2 Nie Y, Yuan Q, Zhang W. Chem. Rec. 2023; 23: e202300133
- 3 Chu Y, Han Z, Ding K. Chin. J. Org. Chem. 2023; 43: 1934
- 4 Cabre A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
- 5 Parker PD, Hou X, Dong VM. J. Am. Chem. Soc. 2021; 143: 6724
- 6 Stoffels MA, Klauck FJ. R, Hamadi T, Glorius F, Leker J. Adv. Synth. Catal. 2020; 362: 1258
- 7 Zhao Q, Chen C, Wen J, Dong X.-Q, Zhang X. Acc. Chem. Res. 2020; 53: 1905
- 8 Agbossou-Niedercorn F, Michon C. Coord. Chem. Rev. 2020; 425: 213523
- 9 Xie X, Lu B, Li W, Zhang Z. Coord. Chem. Rev. 2018; 355: 39
- 10 Margarita C, Andersson PG. J. Am. Chem. Soc. 2017; 139: 1346
- 11 Zhang Z, Butt NA, Zhang W. Chem. Rev. 2016; 116: 14769
- 12 Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2015; 47: 460
- 13 Ager DJ, de Vries AH. M, de Vries JG. Chem. Soc. Rev. 2012; 41: 3340
- 14 Noyori R. Adv. Synth. Catal. 2003; 345: 15
- 15 Yang S, Fang X. Tetrahedron 2023; 145: 133609
- 16 Yang H, Yu H, Stolarzewicz IA, Tang W. Chem. Rev. 2023; 123: 9397
- 17 Zhang Y, Xu L, Lu Y, Zhang Z. Chin. J. Org. Chem. 2022; 42: 3221
- 18 Molina Betancourt R, Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2021; 53: 30
- 19 Seo CS. G, Morris RH. Organometallics 2019; 38: 47
- 20 Dub PA, Gordon JC. Nat. Rev. Chem. 2018; 2: 396
- 21 Bartlett SL, Johnson JS. Acc. Chem. Res. 2017; 50: 2284
- 22 Wu X, Wang C, Xiao J. Chem. Rec. 2016; 16: 2772
- 23 Štefane B, Požgan F. Top. Curr. Chem. 2016; 374: 18
- 24 Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2016; 48: 2523
- 25 Foubelo F, Najera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769
- 26 Cotarca L, Verzini M, Volpicelli R. Chim. Oggi 2014; 32: 36
- 27 Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
- 28 Ager DJ, de Vries AH. M, de Vries JG. Chem. Soc. Rev. 2012; 41: 3340
- 29 Ikariya T. Top. Organomet. Chem. 2011; 37: 31
- 30 Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
- 31 Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
- 32 Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
- 33 Cotman AE. Chem. Eur. J. 2021; 27: 39
- 34 Nedden HG, Zanotti-Gerosa A, Wills M. Chem. Rec. 2016; 16: 2619
- 35 Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. ACS Catal. 2023; 13: 6242
- 36 Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajek Ž, Zega A, Tomašič T, Cahard D. ACS Org. Inorg. Au 2022; 2: 396
- 37 Cotman AE, Lozinšek M, Wang B, Stephan M, Mohar B. Org. Lett. 2019; 21: 3644
- 38 Wang L, Xiao R, Song J, Zheng L.-S, Lang Q, Chen G.-Q, Zhang X. Chin. J. Chem. 2024; 42: 43
- 39 Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen G.-Q, Zhang X. Nat. Commun. 2022; 13: 7794
- 40 Xie Q.-X, Liu L.-X, Zhu Z.-H, Yu C.-B, Zhou Y.-G. J. Org. Chem. 2022; 87: 7521
- 41 Betancourt RM, Phansavath P, Ratovelomanana-Vidal V. J. Org. Chem. 2021; 86: 12054
- 42 Touge T, Nara H, Kida M, Matsumura K, Kayaki Y. Org. Lett. 2021; 23: 3070
- 43 Betancourt RM, Phansavath P, Ratovelomanana-Vidal V. Org. Lett. 2021; 23: 1621
- 44 Wang F, Yang T, Wu T, Zheng L.-S, Yin C, Shi Y, Ye X.-Y, Chen G.-Q, Zhang X. J. Am. Chem. Soc. 2021; 143: 2477
- 45 Ding Y.-X, Zhu Z.-H, Wang H, Yu C.-B, Zhou Y.-G. Sci. China Chem. 2021; 64: 232
- 46 Vyas VK, Clarkson GJ, Wills M. Angew. Chem. Int. Ed. 2020; 59: 14265
- 47 Gediya SK, Clarkson GJ, Wills M. J. Org. Chem. 2020; 85: 11309
- 48 Ciesielski P, Metz P. Nat. Commun. 2020; 11: 3091
- 49 He B, Phansavath P, Ratovelomanana-Vidal V. Org. Lett. 2019; 21: 3276
- 50 Dub PA, Matsunami A, Kuwata S, Kayaki Y. J. Am. Chem. Soc. 2019; 141: 2661
- 51 Chen F, He D, Chen L, Chang X, Wang DZ, Xu C, Xing X. ACS Catal. 2019; 9: 5562
- 52 Cotman AE, Cahard D, Mohar B. Angew. Chem. Int. Ed. 2016; 55: 5294
- 53 Touge T, Sakaguchi K, Tamaki N, Nara H, Yokozawa T, Matsumura K, Kayaki Y. J. Am. Chem. Soc. 2019; 141: 16354
- 54 Corbett MT, Johnson JS. J. Am. Chem. Soc. 2013; 135: 594
- 55 Steward KM, Gentry EC, Johnson JS. J. Am. Chem. Soc. 2012; 134: 7329
- 56 Steward KM, Corbett MT, Goodman CG, Johnson JS. J. Am. Chem. Soc. 2012; 134: 20197
- 57 Zheng Y, Clarkson GJ, Wills M. Org. Lett. 2020; 22: 3717
- 58 Soni R, Jolley KE, Gosiewska S, Clarkson GJ, Fang Z, Hall TH, Treloar BN, Knighton RC, Wills M. Organometallics 2018; 37: 48
- 59 Vyas VK, Knighton RC, Bhanage BM, Wills M. Org. Lett. 2018; 20: 975
- 60 Forshaw S, Matthews AJ, Brown TJ, Diorazio LJ, Williams L, Wills M. Org. Lett. 2017; 19: 2789
- 61 Zheng L, Llopis Q, Echeverria P.-G, Ferard C, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. J. Org. Chem. 2017; 82: 5607
- 62 Demidoff FC, Caleffi GS, Figueiredo M, Costa PR. R. R. J. Org. Chem. 2022; 87: 14208
- 63 Hall TH, Adams H, Vyas VK, Chu KL. M, Wills M. Tetrahedron 2021; 77: 131771
- 64 Caleffi GS, de O C Brum J, Costa AT, Domingos JL. O, Costa PR. R. J. Org. Chem. 2021; 86: 4849
- 65 Son S.-M, Lee H.-K. J. Org. Chem. 2014; 79: 2666
- 66 Jolley KE, Zanotti-Gerosa A, Hancock F, Dyke A, Grainger DM, Medlock JA, Nedden HG, Le Paih JJ. M, Roseblade SJ, Seger A, Sivakumar V, Prokes I, Morris DJ, Wills M. Adv. Synth. Catal. 2012; 354: 2545
- 67 Meyer N, Lough AJ, Morris RH. Chem. Eur. J. 2009; 15: 5605
- 68 Sui-Seng C, Freutel F, Lough AJ, Morris RH. Angew. Chem. Int. Ed. 2008; 47: 940
- 69 Peach P, Cross DJ, Kenny JA, Mann I, Houson I, Campbell L, Walsgrove T, Wills M. Tetrahedron 2006; 62: 1864
- 70 Cheung FK. K, Hayes AM, Hannedouche J, Yim AS. Y, Wills M. J. Org. Chem. 2005; 70: 3188
- 71 Xue D, Chen Y.-C, Cui X, Wang Q.-W, Zhu J, Deng J.-G. J. Org. Chem. 2005; 70: 3584
- 72 Hannedouche J, Kenny JA, Walsgrove T, Wills M. Synlett 2002; 263
- 73 Touge T, Nara H, Fujiwhara M, Kayaki Y, Ikariya T. J. Am. Chem. Soc. 2016; 138: 10084
- 74 Zheng Y, Martinez-Acosta JA, Khimji M, Barbosa LC. A, Clarkson GJ, Wills M. ChemCatChem 2021; 13: 4384
- 75 Qian J, Liu L.-C, Chen Z.-H, Liu Y, Li Y, Li Q, Wang H. Sci. China Chem. 2024; 67: 568
- 76 Qiao H, Michalland J, Huang Q, Zard SZ. Chem. Eur. J. 2023; 29: e202302235
- 77 Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Angew. Chem. Int. Ed. 2022; 67: e202114513
- 78 Deng X, Zhou G, Han X, Ullah K, Srinivasan R. Org. Lett. 2021; 23: 1886
- 79 Trofimova A, Holownia A, Tien C.-H, Širvinskas MJ, Yudin AK. Org. Lett. 2021; 23: 3294
- 80 Lai S, Takaesu N, Lin WX, Perrin DM. Tetrahedron Lett. 2021; 74: 153147
- 81 Lin S, Wang L, Sharma A. Chem. Sci. 2021; 12: 7924
- 82 Lee CF, Tien C.-H, Adachi S, Yudin AK. Org. Synth. 2020; 97: 157
- 83 Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Angew. Chem. Int. Ed. 2020; 59: 18016
- 84 Tan D.-H, Tan D.-H, Cai Y.-H, Zeng Y.-F, Lv W.-X, Yang L, Li Q. Angew. Chem. Int. Ed. 2019; 58: 13784
- 85 Lee CF, Diaz DB, Holownia A, Kaldas SJ, Liew SK, Garrett GE, Dudding T, Yudin AK. Nat. Chem. 2018; 10: 1062
- 86 Lee CF, Holownia A, Bennett JM, Elkins JM, St Denis JD, Adachi S, Yudin AK. Angew. Chem. Int. Ed. 2017; 56: 6264
- 87 Taguchi J, Ikeda T, Takahashi R, Sasaki I, Ogasawara Y, Dairi T, Kato N, Yamamoto Y, Bode JW, Ito H. Angew. Chem. Int. Ed. 2017; 56: 13847
- 88 Lepage ML, Lai S, Peressin NL, Hadjerci R, Patrick BO, Perrin D. Angew. Chem. Int. Ed. 2017; 56: 15257
- 89 Adachi S, Liew SK, Lee CF, Lough A, He Z, St Denis JD, Poda G, Yudin AK. Org. Lett. 2015; 17: 5594
- 90 Noda H, Bode JW. Chem. Sci. 2014; 5: 4328
- 91 He Z, Trinchera P, Adachi S, St Denis JD, Yudin AK. Angew. Chem. Int. Ed. 2012; 51: 11092
- 92 Molander GA, Wisniewski SR. J. Am. Chem. Soc. 2012; 134: 16856
- 93 Carmès L, Carreaux F, Carboni B. J. Org. Chem. 2000; 65: 5403
- 94 Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2015; 137: 420
- 95 Vyas VK, Clarkson GJ, Wills M. Org. Lett. 2021; 23: 3179
- 96 Yin L, Jia X, Li X, Chan AS. C. Tetrahedron: Asymmetry 2009; 20: 2033
- 97 Krajnc A, Brem J, Hinchliffe P, Calvopina K, Panduwawala T, Lang PA, Kamps JJ. A. G, Tyrell JM, Widlake E, Saward BG, Walsh TR, Spencer J, Schofield CJ. J. Med. Chem. 2019; 62: 8544