Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2456-9530
DOI: 10.1055/a-2456-9530
feature
Nickel-Catalyzed Enantioselective Reductive Spirocyclization of 1,6-Enynes with o-Bromobenzaldehydes
This project was supported by the National Natural Science Foundation of China (22171215 and 22471203) and Hubei Provincial Outstanding Youth Fund (2022CFA092).

Abstract
We developed a Ni-catalyzed asymmetric reductive spirocyclization of 1,6-enynes with o-haloaryl aldehydes. This approach provides an efficient method for the construction of chiral spiroindanone pyrrolidine derivatives in good yields with excellent enantio- and diastereoselectivity (up to 99% ee, >20:1 dr). This reaction does not require pre-prepared organometallic reagents and exhibits excellent substrate compatibility.
Key words
nickel catalysis - enantioselectivity - reductive spirocyclization - 1,6-enynes - spiroindanonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2456-9530.
- Supporting Information
Publication History
Received: 07 September 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
21 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 2 Meazza M. In Spiro Compounds: Synthesis and Applications . Torres RR. Wiley-VCH; Weinheim: 2022
- 3a Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 3b Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
- 3c Ding A, Meazza M, Guo H, Yang JW, Rios R. Chem. Soc. Rev. 2018; 47: 5946
- 3d Xu PW, Yu JS, Chen C, Cao ZY, Zhou F, Zhou J. ACS Catal. 2019; 9: 1820
- 3e Ding K, Han Z, Wang Z. Chem. Asian J. 2009; 4: 32
- 3f Xie J, Zhou Q. Acta Chim. Sin. 2014; 72: 778
- 4a Simmons HE, Fukunaga T. J. Am. Chem. Soc. 1967; 89: 5208
- 4b Saragi TP, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev. 2007; 107: 1011
- 4c Kortekaas L, Browne WR. Chem. Soc. Rev. 2019; 48: 3406
- 4d Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 4e Zheng YJ, Tice CM. Expert Opin. Drug Discov. 2016; 11: 831
- 5a Hatano M, Mikami K. J. Am. Chem. Soc. 2003; 125: 4704
- 5b Hatano M, Mikami K. J. Mol. Catal. A: Chem. 2003; 196: 165
- 6 Yamaura Y, Hyakutake M, Mori M. J. Am. Chem. Soc. 1997; 119: 7615
- 7 Ding Z, Wang Y, Liu W, Chen Y, Kong W. J. Am. Chem. Soc. 2020; 143: 53
- 8a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 8b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 8c Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 8d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 8e Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 8f Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 8g Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 8h Richmond E, Moran J. Synthesis 2018; 50: 499
- 8i Liu J, Ye Y, Sessler JL, Gong H. Acc. Chem. Res. 2020; 53: 1833
- 9a Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
- 9b Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
- 9c Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
- 9d Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
- 9e Woods BP, Orlandi M, Huang C, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
- 9f Guan H, Zhang Q, Walsh PJ, Mao J. Angew. Chem. Int. Ed. 2020; 59: 5172
- 9g Sanford AB, Thane TA, McGinnis TM, Chen P, Hong X, Jarvo ER. J. Am. Chem. Soc. 2020; 142: 5017
- 10a Qin X, Lee MW. Y, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 12723
- 10b Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
- 10c Tian Z, Qiao J, Xu G, Pang X, Qi L, Ma W, Zhao Z, Duan J, Du Y, Su P, Liu X, Shu X. J. Am. Chem. Soc. 2019; 141: 7637
- 10d Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
- 10e Ping Y, Wang K, Pan Q, Ding Z, Zhou Z, Guo Y, Kong W. ACS Catal. 2019; 9: 7335
- 10f Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127
- 10g Chen X, Yue J, Wang K, Gui K, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Angew. Chem. Int. Ed. 2021; 60: 14068
- 10h Pan Q, Ping Y, Wang Y, Guo Y, Kong W. J. Am. Chem. Soc. 2021; 143: 10282
- 10i Lin Z, Jin Y, Hu W, Wang C. Chem. Sci. 2021; 12: 6712
- 10j Jin Y, Wen H, Yang F, Ding D, Wang C. ACS Catal. 2021; 11: 13355
- 10k Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
- 10l Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515
- 10m Qiao J, Zhang Y, Yao Q, Zhao Z, Peng X, Shu X. J. Am. Chem. Soc. 2021; 143: 12961
- 10n Liu W, Li W, Xu W, Wang M, Kong W. Nat. Commun. 2024; 15: 2914
- 10o Zhou Z, Liu W, Kong W. Org. Lett. 2020; 22: 6982
- 10p Pan Q, Ping Y, Kong W. Acc. Chem. Res. 2023; 56: 515
- 10q Liu W, Xing Y, Yan D, Kong W, Shen K. Nat. Commun. 2024; 15: 1787
- 10r Pan Q, Wang K, Xu W, Ai Y, Ping Y, Liu C, Wang M, Zhang J, Kong W. J. Am. Chem. Soc. 2024; 146: 15453
- 11 Chen Y, Ding Z, Wang Y, Liu W, Kong W. Angew. Chem. Int. Ed. 2021; 60: 5273
For selected reviews of nickel-catalyzed reductive cross-coupling reactions, see: