Subscribe to RSS
DOI: 10.1055/a-2456-9789
Lewis Acid Catalyzed Cycloaddition Reaction of Bicyclo[1.1.0]butanes
We thank the Natural Science Basic Research Program of Shaanxi Province (2024JC-ZDXM-10), and the Shaanxi Fundamental Science Research Project for Chemistry & Biology (22JHQ007) for financial support.
Abstract
In recent years, formal cycloaddition reactions involving bicyclo[1.1.0]butanes (BCBs) have furnished an array of innovative methodologies and strategies for the efficient synthesis of bicyclo[2.1.1]hexanes (BCHs). Most methods can be broadly classified into two main modes: the radical pathway and the two-electron pathway. This Synpacts article will summarize the recent advancements in Lewis acid catalyzed formal cycloaddition reactions involving BCBs with alkenes, dipolar molecules, and alkynes, spanning the period from 2022 to 2024. Additionally, we introduce the formal cycloaddition reaction of BCBs with ynamides, catalyzed by Sc(OTf)3, which has been recently developed by our group. This approach offers a novel and efficient method for the synthesis of polysubstituted 2-amino-bicyclo[2.1.1]hexenes.
1 Introduction
2 Lewis Acid Catalyzed Formal Cycloaddition of BCBs with Alkenes and Dipoles
3 Lewis Acid Catalyzed Formal Cycloaddition of BCBs with Alkynes
4 Conclusion
Publication History
Received: 16 September 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
27 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Baeyer A. Ber. Dtsch. Chem. Ges. 1885; 18: 2269
- 2a Walczak MA. A, Krainz T, Wipf P. Acc. Chem. Res. 2015; 48: 1149
- 2b Fawcett A. Pure Appl. Chem. 2020; 92: 751
- 2c Turkowska J, Durka J, Gryko D. Chem. Commun. 2020; 56: 5718
- 2d Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Chem. Sci. 2022; 13: 11721
- 2e Bellotti P, Glorius F. J. Am. Chem. Soc. 2023; 145: 20716
- 2f Golfmann M, Walker JC. L. Commun. Chem. 2023; 6: 9
- 2g Hu Q.-Q, Chen J, Yang Y, Yang H, Zhou L. Tetrahedron Chem. 2024; 9: 100070
- 2h Sujansky SJ, Ma X. Asian J. Org. Chem. 2024; 13: e202400045
- 3a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 3b Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 3c Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
- 3d Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 2839
- 3e Denisenko A, Garbuz P, Shishkina SV, Voloshchuk NM, Mykhailiuk PK. Angew. Chem. Int. Ed. 2020; 59: 20515
- 3f Levterov VV, Panasyuk Y, Pivnytska VO, Mykhailiuk PK. Angew. Chem. Int. Ed. 2020; 59: 7161
- 3g Subbaiah MA. M, Meanwell NA. J. Med. Chem. 2021; 64: 14046
- 3h Tsien J, Hu C, Merchant RR, Qin T. Nat. Rev. Chem. 2024; 8: 605
- 4a Kleinnijenhuis RA, Timmer BJ. J, Lutteke G, Smits JM. M, de Gelder R, van Maarseveen JH, Hiemstra H. Chem. Eur. J. 2016; 22: 1266
- 4b Takao K.-i, Kai H, Yamada A, Fukushima Y, Komatsu D, Ogura A, Yoshida K. Angew. Chem. Int. Ed. 2019; 58: 9851
- 4c Herter L, Koutsopetras I, Turelli L, Fessard T, Salomé C. Org. Biomol. Chem. 2022; 20: 9108
- 4d Rigotti T, Bach T. Org. Lett. 2022; 24: 8821
- 4e Denisenko A, Garbuz P, Makovetska Y, Shablykin O, Lesyk D, Al-Maali G, Korzh R, Sadkova IV, Mykhailiuk PK. Chem. Sci. 2023; 14: 14092
- 4f Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. Nat. Chem. 2023; 15: 1155
- 4g Paul S, Adelfinsky D, Salome C, Fessard T, Brown MK. Chem. Sci. 2023; 14: 8070
- 4h Reinhold M, Steinebach J, Golz C, Walker JC. L. Chem. Sci. 2023; 14: 9885
- 4i Posz JM, Sharma N, Royalty PA, Liu Y, Salome C, Fessard TC, Brown MK. J. Am. Chem. Soc. 2024; 146: 10142
- 5 Wipf P, Walczak MA. A. Angew. Chem. Int. Ed. 2006; 45: 4172
- 6a Cairncross A, Blanchard EP. Jr. J. Am. Chem. Soc. 1966; 88: 496
- 6b Meijere AD, Wenck H, Seyed-Mahdavi F, Viehe HG, Gallez V, Erden I. Tetrahedron 1986; 42: 1291
- 7a Guo R, Chang Y.-C, Herter L, Salome C, Braley SE, Fessard TC, Brown MK. J. Am. Chem. Soc. 2022; 144: 7988
- 7b Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Nature 2022; 605: 477
- 7c Liang Y, Kleinmans R, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2022; 144: 20207
- 7d Xu M, Wang Z, Sun Z, Ouyang Y, Ding Z, Yu T, Xu L, Li P. Angew. Chem. Int. Ed. 2022; 61: e202214507
- 7e Agasti S, Beltran F, Pye E, Kaltsoyannis N, Crisenza GE. M, Procter DJ. Nat. Chem. 2023; 15: 535
- 7f de Robichon M, Kratz T, Beyer F, Zuber J, Merten C, Bach T. J. Am. Chem. Soc. 2023; 145: 24466
- 7g Kleinmans R, Dutta S, Ozols K, Shao H, Schäfer F, Thielemann RE, Chan HT, Daniliuc CG, Houk KN, Glorius F. J. Am. Chem. Soc. 2023; 145: 12324
- 7h Liu Y, Lin S, Li Y, Xue J.-H, Li Q, Wang H. ACS Catal. 2023; 13: 5096
- 7i Nguyen TV. T, Bossonnet A, Wodrich MD, Waser J. J. Am. Chem. Soc. 2023; 145: 25411
- 7j Yan H, Liu Y, Feng X, Shi L. Org. Lett. 2023; 25: 8116
- 7k Dutta S, Lee D, Ozols K, Daniliuc CG, Shintani R, Glorius F. J. Am. Chem. Soc. 2024; 146: 2789
- 7l Dutta S, Lu Y.-L, Erchinger JE, Shao H, Studer E, Schäfer F, Wang H, Rana D, Daniliuc CG, Houk KN, Glorius F. J. Am. Chem. Soc. 2024; 146: 5232
- 7m Fu Q, Cao S, Wang J, Lv X, Wang H, Zhao X, Jiang Z. J. Am. Chem. Soc. 2024; 146: 8372
- 7n Ren H, Li T, Xing J, Li Z, Zhang Y, Yu X, Zheng J. Org. Lett. 2024; 26: 1745
- 7o Tyler JL, Schäfer F, Shao H, Stein C, Wong A, Daniliuc CG, Houk KN, Glorius F. J. Am. Chem. Soc. 2024; 146: 16237
- 8 Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Angew. Chem. Int. Ed. 2022; 61: e202204719
- 9 Radhoff N, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2023; 62: e202304771
- 10 Liang Y, Paulus F, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2023; 62: e202305043
- 11a Huck CJ, Sarlah D. Chem 2020; 6: 1589
- 11b Cheng Y.-Z, Feng Z, Zhang X, You S.-L. Chem. Soc. Rev. 2022; 51: 2145
- 12 Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Angew. Chem. Int. Ed. 2023; 62: e202308606
- 13 Tang L, Xiao Y, Wu F, Zhou J.-L, Xu T.-T, Feng J.-J. Angew. Chem. Int. Ed. 2023; 62: e202310066
- 14 Zhang K, Tian S, Li W, Yang X, Duan X.-H, Guo L.-N, Li P. Org. Lett. 2024; 26: 5482
- 15 Wang J.-J, Tang L, Xiao Y, Wu W.-B, Wang G, Feng J.-J. Angew. Chem. Int. Ed. 2024; 63: e202405222
- 16 Su J.-Y, Zhang J, Xin Z.-Y, Li H, Zheng H, Deng W.-P. Org. Chem. Front. 2024; 11: 4539
- 17 Nicolai S, Waser J. Chem. Sci. 2024; 15: 10823
- 18 Zhang J, Su J.-Y, Zheng H, Li H, Deng W.-P. Angew. Chem. Int. Ed. 2024; 63: e202318476
- 19 Liang Y, Nematswerani R, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2024; 63: e202402730
- 20 Hu S, Pan Y, Ni D, Deng L. Nat. Commun. 2024; 15: 6128
- 21 Zhu S, Tian X, Li S.-W. Org. Lett. 2024; 26: 6309
- 22 Lin Z, Ren H, Lin X, Yu X, Zheng J. J. Am. Chem. Soc. 2024; 146: 18565
- 23 Yang L, Wang H, Lang M, Wang J, Peng S. Org. Lett. 2024; 26: 4104
- 24 Wang X, Gao R, Li X. J. Am. Chem. Soc. 2024; 146: 21069
- 25 Wu F, Wu W.-B, Xiao Y, Li Z, Tang L, He H.-X, Yang X.-C, Wang J.-J, Cai Y, Xu T.-T, Tao J.-H, Wang G, Feng J.-J. Angew. Chem. Int. Ed. 2024; 63: e202406548
- 26a Yang H, Sun H.-R, He R.-Q, Yu L, Hu W, Chen J, Yang S, Zhang G.-G, Zhou L. Nat. Commun. 2022; 13: 632
- 26b Gou B.-B, Tang Y, Lin Y.-H, Yu L, Jian Q.-S, Sun H.-R, Chen J, Zhou L. Angew. Chem. Int. Ed. 2022; 61: e202208174
- 26c Sun H.-R, Yang L, Li Y, Yu L, Gou B.-B, Sharif A, Jian Q.-S, Chen J, Zhou L. Sci. China Chem. 2023; 66: 2292
- 26d Wang L.-Y, Yang L, Chen J, Zhou L. Synlett 2023; 34: 1200
- 27 Sodano TM, Combee LA, Stephenson CR. J. ACS Med. Chem. Lett. 2020; 11: 1785
- 28 Hu Q.-Q, Wang L.-Y, Chen X.-H, Geng Z.-X, Chen J, Zhou L. Angew. Chem. Int. Ed. 2024; 63: e202405781
- 29a Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626
- 29b Liu D, Guo X, Zhou S, Guo L, Zhang X. J. Org. Chem. 2024; 89: 1241
- 29c McNamee RE, Frank N, Christensen KE, Duarte F, Anderson EA. Sci. Adv. 2024; 10: eadj9695
- 30 While this manuscript was under preparation, Biju and co-workers reported a similar Sc(OTf)3-catalyzed cycloaddition of BCBs with ynamides, see: Sarkar D, Deswal S, Das RC, Biju AT. Chem. Sci. 2024; 15: 16243
For selected reviews, see: