Subscribe to RSS
DOI: 10.1055/a-2460-6347
S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Langversion
Version 5.1 – August 2024 – AWMF-Registernummer: 032-053OL- Wesentliche Neuerungen
- 1 Informationen zu dieser Leitlinie
- 2 Einführung
- 3 Diagnostik und Therapie der biliären Karzinome
- 3.4 Operative und interventionelle Therapieverfahren
- 4 Supportivtherapie des Hepatozellulären Karzinoms und der biliären Karzinome
- 5 Forschungsfragen
- 6 Qualitätsindikatoren
- 7 Anhang
- 8 Tabellenverzeichnis
- 9 Abbildungsverzeichnis
- Literatur
Inhalt |
Seite |
|
Wesentliche Neuerungen |
e84 |
|
1 |
Informationen zu dieser Leitlinie |
e85 |
1.1 |
Herausgeber |
e85 |
1.2 |
Federführende Fachgesellschaft(en) |
e85 |
1.3 |
Finanzierung der Leitlinie |
e85 |
1.4 |
Kontakt |
e85 |
1.5 |
Zitierweise |
e85 |
1.6 |
Besonderer Hinweis |
e85 |
1.7 |
Ziele des Leitlinienprogramms Onkologie |
e85 |
1.8 |
Weitere Dokumente zu dieser Leitlinie |
e86 |
1.9 |
Zusammensetzung der Leitliniengruppe |
e86 |
1.9.1 |
Koordination |
e86 |
1.9.2 |
Beteiligte Fachgesellschaften und Organisationen |
e86 |
1.9.3 |
Arbeitsgruppen |
e88 |
1.9.4 |
Patientenbeteiligung |
e88 |
1.9.5 |
Methodische Begleitung |
e88 |
1.10 |
Abkürzungsverzeichnis |
e88 |
2 |
Einführung |
e91 |
2.1 |
Geltungsbereich und Zweck |
e91 |
2.1.1 |
Zielsetzung und Fragestellung |
e91 |
2.1.2 |
Adressaten |
e91 |
2.1.3 |
Gültigkeitsdauer und Aktualisierungsverfahren |
e92 |
2.2 |
Grundlagen der Methodik |
e92 |
2.2.1 |
Schema der Evidenzgraduierung |
e92 |
2.2.2 |
Schema der Empfehlungsgraduierung |
e92 |
2.2.3 |
Statements |
e92 |
2.2.4 |
Expertenkonsens (EK) |
e92 |
2.2.5 |
Unabhängigkeit und Darlegung möglicher Interessenkonflikte |
e94 |
3 |
Diagnostik und Therapie der biliären Karzinome |
e95 |
3.1 |
Risikofaktoren, Prävention und Früherkennung |
e95 |
3.1.1 |
Risikofaktoren |
e95 |
3.1.2 |
Prophylaktische und therapeutische Maßnahmen zur Risikoreduktion der Entstehung von biliären Karzinomen |
e96 |
3.1.3 |
Früherkennung |
e97 |
3.2 |
Histopathologische und molekulare Diagnostik |
e97 |
3.2.1 |
Typisierung und Staging von biliären Karzinomen |
e97 |
3.2.2 |
Zytologische und histopathologische Untersuchungen zur Diagnostik eines CCA, eines Gallenblasenkarzinoms |
e99 |
3.2.3 |
Molekulare Diagnostik |
e100 |
3.3 |
Bildgebende und endoskopische Diagnostik |
e101 |
3.3.1 |
Bildgebende und/oder endoskopische Untersuchungen zum Staging und zur Diagnosestellung eines biliären Karzinoms |
e101 |
3.3.2 |
Untersuchungsmethoden zur Darstellung der maximalen Ausbreitung des Tumors |
e102 |
3.3.3 |
Diagnostikalgorithmus |
e103 |
3.3.4 |
Endoskopische Diagnostik |
e104 |
3.4 |
Operative und interventionelle Therapieverfahren |
e105 |
3.4.1 |
Resektion |
e105 |
3.4.2 |
Lebertransplantation |
e107 |
3.4.3 |
Interventionelle Therapieverfahren |
e108 |
3.4.4 |
Endoskopische Therapieverfahren |
e109 |
3.4.5 |
Stereotaxie |
e111 |
3.4.6 |
Nachsorge |
e112 |
3.5 |
Systemtherapie |
e112 |
3.5.1 |
Adjuvante Therapie |
e112 |
3.5.2 |
Neoadjuvante Therapie primär resektabler Tumoren |
e113 |
3.5.3 |
Systemtherapie lokal fortgeschrittener Tumoren |
e113 |
3.5.4 |
Palliative Systemtherapie |
e113 |
3.5.5 |
Therapie nach Versagen der Erstlinientherapie |
e114 |
3.5.6 |
Verlaufskontrollen unter Systemtherapie |
e117 |
4 |
Supportivtherapie des Hepatozellulären Karzinoms und der biliären Karzinome |
e117 |
4.1 |
Ernährung |
e117 |
4.2 |
Palliativmedizinische Behandlung beim HCC/CCA |
e117 |
4.3 |
Integration von Palliativversorgung |
e118 |
4.3.1 |
Zeitpunkt der Integration von Palliativversorgung beim HCC/CCA |
e118 |
4.4 |
Palliative Symptomkontrolle bei Patienten mit HCC/CCA |
e118 |
4.5 |
Rehabilitation, Sport- und Bewegungstherapie |
e119 |
4.6 |
Psychoonkologie |
e120 |
4.6.1 |
Patientenzentrierte Kommunikation, Information und Aufklärung |
e120 |
5 |
Forschungsfragen |
e121 |
6 |
Qualitätsindikatoren |
e121 |
7 |
Anhang |
e125 |
7.1 |
Literaturübersichten |
e125 |
7.1.1 |
Kapitel 4.4. Operative und Interventionelle Therapie der biliären Karzinome |
e125 |
7.2 |
Übersicht der Änderungen von Version 4 zur Version 5 |
e127 |
8 |
Tabellenverzeichnis |
e128 |
9 |
Abbildungsverzeichnis |
e128 |
10 |
Literaturverzeichnis |
e128 |
Wesentliche Neuerungen
Die S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms und der biliären Karzinome“ umfasst zwei Tumorentitäten. Die letzte Version der Leitlinie wurde im August 2023 veröffentlicht.
Folgende wesentliche Änderungen ergeben sich bei den biliären Karzinomen zur S3-Leitlinie von 2023:
-
Risikofaktoren (Kapitel 3.1):
-
Das Lynch-Syndrom und BRCA-Keimbahnmutationen werden neu als Risikofaktoren benannt.
-
-
Systemtherapie (Kapitel 3.5):
-
Pembrolizumab wird als Alternative zu Durvalumab in der Kombination mit der Chemotherapie Gemcitabin/Cisplatin in der Erstlinie empfohlen.
-
Eine molekulare Charakterisierung des Tumors und eine Vorstellung im molekularen Tumorboard sollte spätestens bis zur Entscheidung über die Zeitlinientherapie erfolgen.
-
Patienten deren Tumoren eine Fibroblasten-Wachstumsfaktor-Rezeptor-2 (FGFR2) Fusion oder ein FGFR2-Rearrangement aufweisen wird ab der Zweitlinie alternativ zu Pemigatinib der FGFR-Inhibitor Futibatinib empfohlen.
-
Eine detaillierte Übersicht der Änderungen befindet sich im Kapitel 8.2.
#
1 Informationen zu dieser Leitlinie
1.1 Herausgeber
Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Deutschen Krebsgesellschaft e. V. (DKG) und der Stiftung Deutsche Krebshilfe (DKH).
#
1.2 Federführende Fachgesellschaft(en)


#
1.3 Finanzierung der Leitlinie
Diese Leitlinie wurde von der Deutschen Krebshilfe im Rahmen des Leitlinienprogramms Onkologie gefördert.
#
1.4 Kontakt
Office Leitlinienprogramm Onkologie
c/o Deutsche Krebsgesellschaft e. V.
Kuno-Fischer-Straße 8
14 057 Berlin
leitlinienprogramm@krebsgesellschaft.de
www.leitlinienprogramm-onkologie.de
#
1.5 Zitierweise
Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome, Langversion 5.1, 2024, AWMF-Registernummer: 032–053OL https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/; Zugriff am [tt.mm.jjj]
#
1.6 Besonderer Hinweis
Die Medizin unterliegt einem fortwährenden Entwicklungsprozess, sodass alle Angaben, insbesondere zu diagnostischen und therapeutischen Verfahren, immer nur dem Wissensstand zur Zeit der Drucklegung der Leitlinie entsprechen können. Hinsichtlich der angegebenen Empfehlungen zur Therapie und der Auswahl sowie Dosierung von Medikamenten wurde die größtmögliche Sorgfalt beachtet. Gleichwohl werden die Benutzer aufgefordert, die Beipackzettel und Fachinformationen der Hersteller zur Kontrolle heranzuziehen und im Zweifelsfall einen Spezialisten zu konsultieren. Fragliche Unstimmigkeiten sollen bitte im allgemeinen Interesse der OL-Redaktion mitgeteilt werden.
Der Benutzer selbst bleibt verantwortlich für jede diagnostische und therapeutische Applikation, Medikation und Dosierung.
In dieser Leitlinie sind eingetragene Warenzeichen (geschützte Warennamen) nicht besonders kenntlich gemacht. Es kann also aus dem Fehlen eines entsprechenden Hinweises nicht geschlossen werden, dass es sich um einen freien Warennamen handelt.
Das Werk ist in allen seinen Teilen urheberrechtlich geschützt. Jede Verwertung außerhalb der Bestimmung des Urhebergesetzes ist ohne schriftliche Zustimmung der OL-Redaktion unzulässig und strafbar. Kein Teil des Werkes darf in irgendeiner Form ohne schriftliche Genehmigung der OL-Redaktion reproduziert werden. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung, Nutzung und Verwertung in elektronischen Systemen, Intranets und dem Internet.
Redaktioneller Hinweis
In dieser Leitlinie wird aus Gründen der Lesbarkeit die männliche Form verwendet, nichtsdestoweniger beziehen sich die Angaben auf Angehörige aller Geschlechter.
#
1.7 Ziele des Leitlinienprogramms Onkologie
Die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V., die Deutsche Krebsgesellschaft e. V. und die Stiftung Deutsche Krebshilfe haben sich mit dem Leitlinienprogramm Onkologie (OL) das Ziel gesetzt, gemeinsam die Entwicklung und Fortschreibung und den Einsatz wissenschaftlich begründeter und praktikabler Leitlinien in der Onkologie zu fördern und zu unterstützen. Die Basis dieses Programms beruht auf den medizinisch-wissenschaftlichen Erkenntnissen der Fachgesellschaften und der DKG, dem Konsens der medizinischen Fachexperten, Anwender und Patienten sowie auf dem Regelwerk für die Leitlinienerstellung der AWMF und der fachlichen Unterstützung und Finanzierung durch die Deutsche Krebshilfe. Um den aktuellen Stand des medizinischen Wissens abzubilden und den medizinischen Fortschritt zu berücksichtigen, müssen Leitlinien regelmäßig überprüft und fortgeschrieben werden. Die Anwendung des AWMF-Regelwerks soll hierbei Grundlage zur Entwicklung qualitativ hochwertiger onkologischer Leitlinien sein. Da Leitlinien ein wichtiges Instrument der Qualitätssicherung und des Qualitätsmanagements in der Onkologie darstellen, sollten sie gezielt und nachhaltig in den Versorgungsalltag eingebracht werden. So sind aktive Implementierungsmaßnahmen und auch Evaluationsprogramme ein wichtiger Bestandteil der Förderung des Leitlinienprogramms Onkologie. Ziel des Programms ist es, in Deutschland professionelle und mittelfristig finanziell gesicherte Voraussetzungen für die Entwicklung und Bereitstellung hochwertiger Leitlinien zu schaffen. Denn diese hochwertigen Leitlinien dienen nicht nur dem strukturierten Wissenstransfer, sondern können auch in der Gestaltung der Strukturen des Gesundheitssystems ihren Platz finden. Zu erwähnen sind hier evidenzbasierte Leitlinien als Grundlage zum Erstellen und Aktualisieren von Disease-Management-Programmen oder die Verwendung von aus Leitlinien extrahierten Qualitätsindikatoren im Rahmen der Zertifizierung von Organtumorzentren.
#
1.8 Weitere Dokumente zu dieser Leitlinie
Bei diesem Dokument handelt es sich um die Langversion der S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome“. Neben der Langversion wird es folgende ergänzende Dokumente zu dieser Leitlinie geben:
-
Kurzversion der Leitlinie
-
Laienversion (Patientenleitlinie)
-
Leitlinienreport zum Aktualisierungsprozess der Leitlinie
-
Evidenzberichte zu Literaturrecherchen und Evidenztabellen
Diese Leitlinie und alle Zusatzdokumente sind über die folgenden Seiten zugänglich.
-
Leitlinienprogramm Onkologie (https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/)
-
Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (https://register.awmf.org/de/leitlinien/detail/032–053OL)
-
Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (https://www.dgvs.de/wissen/leitlinien/leitlinien-dgvs/)
-
Guidelines International Network (https://g-i-n.net/)
Dokumente zu den Vorgängerversionen der Leitlinie sind im Leitlinienarchiv des Leitlinienprogramms Onkologie unter: https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/und im Leitlinienarchiv der DGVS unter: https://www.dgvs.de/leitlinien/onkologie/hepatozellulaeres-karzinom-und-biliaere-karzinome/?archiv = true abrufbar.
Die Leitlinie ist außerdem in der App des Leitlinienprogramms Onkologie enthalten.
Weitere Informationen unter: https://www.leitlinienprogramm-onkologie.de/app


#
1.9 Zusammensetzung der Leitliniengruppe
1.9.1 Koordination
Prof. Dr. Nisar P. Malek
Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen
Prof. Dr. Michael Bitzer
Stellvertretender Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen
Prof. Dr. Peter R. Galle
Ärztlicher Direktor Universitätsmedizin der Johannes-Gutenberg-Universität Mainz
Dr. Sabrina Groß
Fachärztin für Innere Medizin und Gastroenterologie Medizinische Klinik Universitätsklinikum Tübingen
#
1.9.2 Beteiligte Fachgesellschaften und Organisationen
In der folgenden Tabelle sind die an der Leitlinienerstellung beteiligten medizinischen Fachgesellschaften und sonstigen Organisationen sowie deren mandatierte Vertreter aufgeführt.
Außerdem wurden folgende Fachgesellschaften für den Leitlinienprozess angeschrieben, diese haben jedoch keinen Mandatsträger benannt:
-
Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin (DEGAM)
-
Arbeitsgemeinschaft Pädiatrische Onkologie (APO)
-
Deutsche Gesellschaft für Ernährung (DGE)
#
1.9.3 Arbeitsgruppen
#
1.9.4 Patientenbeteiligung
Die Leitlinie wurde unter direkter Beteiligung von zwei Patientenvertretern erstellt.
Herr Ingo van Thiel und Frau Jutta Riemer waren von Beginn an in die Erstellung der Leitlinie eingebunden und nahmen mit eigenem Stimmrecht an der Konsensuskonferenz teil.
#
1.9.5 Methodische Begleitung
Durch das Leitlinienprogramm Onkologie:
-
Dr. Markus Follmann, MPH, MSc
-
Thomas Langer, Dipl. Soz. Wiss.
-
Gregor Wenzel, Dipl. Biologe
Durch die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften:
-
Dr. Susanne Blödt, MScPH (AWMF-IMWI)
-
Dr. Monika Nothacker, MPH (AWMF-IMWI)
Durch die Firma Clinical Guideline Service – User Group:
-
Dr. Nadine Steubesand
-
Dr. Paul Freudenberger (bis 31.12.2023)
Durch die Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten:
-
PD Dr. Petra Lynen Jansen,
-
Nadine Fischer, M.Sc.
-
Pia Lorenz, M.Sc.
#
#
1.10 Abkürzungsverzeichnis
#
#
2 Einführung
2.1 Geltungsbereich und Zweck
2.1.1 Zielsetzung und Fragestellung
Die interdisziplinäre S3-Leitlinie ist ein Instrument, um die Diagnostik und Therapie des Hepatozellulären Karzinoms (HCC), des Cholangiokarzinoms (CCA) und des Gallenblasenkarzinoms zu verbessern. Fachgruppen aller Disziplinen, die Patienten mit chronischen Lebererkrankungen, Verdacht auf oder bereits diagnostizierten hepatobiliären Tumoren ambulant und/oder stationär behandeln, sollen durch die Leitlinie unterstützt werden. Die Leitlinie soll dazu beitragen, eine angemessene Gesundheitsversorgung dieser Patientengruppen sicherzustellen. Es ist weiterhin die Aufgabe der Leitlinie, betroffenen Patienten angemessene, wissenschaftlich begründete und aktuelle Verfahren in der Diagnostik, Therapie und Rehabilitation anzubieten. Dies gilt sowohl für lokal begrenzte oder lokal fortgeschrittene Erkrankungen als auch bei Vorliegen eines Rezidivs oder von Fernmetastasen. Die Leitlinie soll neben dem Beitrag für eine angemessene Gesundheitsversorgung auch die Basis für eine individuell zugeschnittene, qualitativ hochwertige und kosteneffiziente Therapie bieten. Mittel- und langfristig sollen so die Morbidität und Mortalität von Patienten mit hepatobiliären Tumoren gesenkt und die Lebensqualität erhöht werden.
#
2.1.2 Adressaten
Die Leitlinie richtet sich an Internisten, Gastroenterologen und Hepatologen, Onkologen, Radiologen, Chirurgen, Palliativmediziner, Pathologen, Nuklearmediziner und Strahlentherapeuten, Psychoonkologen, onkologisch tätige Pflegekräfte und Physiotherapeuten sowie alle an einem HCC oder biliärem Karzinom erkrankten Patienten und deren Angehörige. Sie soll außerdem Allgemeinmedizinern und übergeordneten Organisationen (z. B. Krankenkassen) des Gesundheitswesens zur Information dienen.
Sie soll entsprechend der Definition einer Leitlinie Entscheidungshilfen geben, jedoch keine Richtlinie sein. Der behandelnde Arzt ist weiterhin verpflichtet, unter Würdigung der Gesamtsituation des Patienten und mit diesem gemeinsam, die für die individuelle Situation angemessene Vorgehensweise zu finden.
#
2.1.3 Gültigkeitsdauer und Aktualisierungsverfahren
Die S3-Leitlinie ist bis zur nächsten Aktualisierung, maximal aber 12 Monate gültig (August 2025). Bei dringendem Änderungsbedarf zwischen den jährlichen Updates werden diese im Rahmen von Amendments durchgeführt. Kommentare und Hinweise für den Aktualisierungsprozess sind ausdrücklich erwünscht und können an die folgende Adresse gesendet werden: hcc-und-biliaere-karzinome@leitlinienprogramm-onkologie.de
#
#
2.2 Grundlagen der Methodik
Die methodische Vorgehensweise bei der Erstellung der Leitlinie ist im Leitlinienreport dargelegt. Dieser ist im Internet z. B. auf den Seiten des Leitlinienprogramms Onkologie (https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/), den Seiten der AWMF (http://www.awmf.org/) und den Seiten der DGVS (https://www.dgvs.de/leitlinien/onkologie/hepatozellulaeres-karzinom-und-biliaere-karzinome/) frei verfügbar.
2.2.1 Schema der Evidenzgraduierung
Zur Klassifikation des Verzerrungsrisikos der identifizierten Studien wurde in dieser Leitlinie das in der folgenden Tabelle aufgeführte System des Oxford Center for Evidence-based Medicine in der Version von 2011 verwendet. Dieses System sieht die Klassifikation der Studien für verschiedene klinische Fragestellungen (Nutzen von Therapie, prognostische Aussagekraft, diagnostische Wertigkeit) vor.
#
2.2.2 Schema der Empfehlungsgraduierung
Die Methodik des Leitlinienprogramms Onkologie sieht eine Vergabe von Empfehlungsgraden durch die Leitlinienautoren im Rahmen eines formalen Konsensusverfahrens vor. Dementsprechend wurde ein durch die AWMF und DKG moderierter, nominaler Gruppenprozess bzw. strukturierte Konsensuskonferenz durchgeführt. Im Rahmen dieser Prozesse wurden die Empfehlungen von den stimmberechtigten Mandatsträgern (siehe Kapitel 1.9.2) formal abgestimmt. Die Ergebnisse der jeweiligen Abstimmungen (Konsensstärke) sind entsprechend den Kategorien in der Tabelle zur Konsensstärke den Empfehlungen zugeordnet.
In der Leitlinie werden zu allen evidenzbasierten Statements (siehe Kapitel 2.2.3) und Empfehlungen das Evidenzlevel der zugrunde liegenden Studien sowie bei Empfehlungen zusätzlich die Stärke der Empfehlung (Empfehlungsgrad) ausgewiesen. Hinsichtlich der Stärke der Empfehlung werden in dieser Leitlinie drei Empfehlungsgrade unterschieden (siehe Tabelle Schema der Empfehlungsgraduierung), die sich auch in der Formulierung der Empfehlungen jeweils widerspiegeln.
Frage |
Level 1[*] |
Level 2[*] |
Level 3[*] |
Level 4[*] |
Level 5 |
Wie verbreitet ist das Problem? |
Lokale und aktuelle Zufallsstichprobe oder Zählung (Vollerhebung) |
Systematische Übersichtsarbeit von Erhebungen, die auf die lokalen Umstände übertragen werden können[**] |
Lokale Erhebung, die nicht auf einer Zufallsstichprobe basiert[**] |
Fallserie[**] |
Nicht anwendbar |
Ist dieser diagnostische oder kontrollierende Test genau? (Diagnose) |
Systematische Übersichtsarbeit von Querschnitt-studien mit durchgehend angewandtem Referenzstandard und Verblindung |
Einzelne Querschnittsstudie mit durchgehend angewandtem Referenzstandard und Verblindung |
Nicht konsekutive[***] Studie oder Studie ohne angewandten Referenz-standard[**] |
Fall-Kontroll-Studie oder Studie mit ungeeignetem oder nicht unabhängigem Referenz-standard[**] |
Expertenmeinung basierend auf pathophysiologischen Überlegungen |
Was würde passieren, wenn wir keine Therapie anwenden würden? (Prognose) |
Systematische Übersichtsarbeit von Kohorten-studien, die Patienten im Anfangsstadium der Erkrankung beobachten (Inception cohort study) |
Einzelne Kohortenstudie von Patienten im Anfangsstadium der Erkrankung (Inception cohort study) |
Kohortenstudie oder Kontrollarm einer randomisierten Studie[*] |
Fallserie oder Fall-Kontroll-Studie oder eine prognostische Kohortenstudie mit niedriger methodischer Qualität[1] [**] |
Nicht anwendbar |
Hilft dieses Vorgehen? (Nutzen der Intervention) |
Systematische Übersichtsarbeit von randomisierten Studien oder N-von-1-Studien[2] |
Randomisierte Studie oder Beobachtungs-studie mit dramatischen Effekten |
Fallserien oder Fall-Kontroll-Studien oder Studien mit historischen Kontrollen[**] |
Expertenmeinung basierend auf pathophysiologischen Überlegungen |
|
Was sind häufige Neben-wirkungen? (Schaden der Intervention) |
Systematische Übersichtarbeit von entweder randomisierten Studien oder eingebetteten Fall-Kontroll-Studien[4] oder N-von-1-Studie mit zur Fragestellung passenden Patienten oder beobachtende Studie mit dramatischen Effekten |
Randomisierte Studie oder (ausnahmsweise) Beobachtungsstudie mit dramatischen Effekten |
Kontrollierte Kohortenstudie/Follow-up-Studie (Post-Marketing-Überwachung), mit ausreichender Fallzahl, um eine häufige Nebenwirkung zu identifizieren. Sollen Langzeitneben-wirkungen erfasst werden, muss das Follow-up ausreichend sein[**] |
||
Was sind seltene Neben-wirkungen? (Schaden der Intervention) |
Systematischer Überblick über randomisierte Studien oder N-von-1-Studien |
Randomisierte Studie oder (ausnahmsweise) Beobachtungsstudie mit dramatischen Effekten |
|||
Ist dieser Früherkennungs-Test sinnvoll? (Screening) |
Systematische Übersichtsarbeit von randomisierten Studien |
Randomisierte Studie |
Kontrollierte Kohortenstudie/Follow-up-Studie[**] |
Übersetzung des englischen Originaltextes von Dr. M. Nothacker, MPH (AWMF); Dr. M. Follmann, MPH, MSc (OL) und Dipl.-Soz.Wiss. T. Langer (OL)
* Level kann ggf. wegen der Studienqualität, wegen ausgedehnter Konfidenzintervalle (unpräzise Effektschätzer), Inkonsistenzen zwischen Studien, oder weil der absolute Effektwert sehr klein ist, sowie wegen mangelnder Übertragbarkeit (Fragestellung der Studie entspricht nicht der klinischen relevanten Frage) abgewertet werden. Eine Aufwertung des Evidenzlevels ist möglich bei großen oder sehr großen Effekten.
** Grundsätzlich gilt: Ein systematischer Überblick ist immer besser als eine Einzelstudie.
*** Konsekutiver Einschluss = Patienten werden fortlaufend rekrutiert.
1 Zur Qualitätsbeurteilung kann u. a. das STROBE-Statement verwendet werden: http://www.strobe-statement.org/index.php?id = strobe-aims.
2 Einzelpatientenstudien, bei denen die Patienten abwechselnd Intervention und Kontrollintervention erhalten.
3 Nachbeobachtungsstudie einer Population aus einem abgeschlossenen RCT.
4 Studie, bei der aus einer laufenden Kohortenstudie Fälle und Kontrollen gezogen werden.
Strukturierte Konsensfindung
Bei diesem jährlichen Update im Rahmen des Living Guideline-Prozesses wurden zunächst durch die Arbeitsgruppen die bestehenden Empfehlungen und Hintergrundtexte auf Änderungen überprüft. Zusätzlich wurden die Rückmeldungen aus der Konsultationsphase der Leitlinie in diese Bearbeitung mit einbezogen. Anschließend wurden die Vorschläge, die durch die Arbeitsgruppen erarbeitet worden waren, mittels DELPHI-Verfahren abgestimmt. Dieses erfolgte online und enthielt die Abstimmmöglichkeiten „Zustimmung“, „Ablehnung“ und „Enthaltung“, zusätzlich wurde um einen Alternativvorschlag gebeten. Empfehlungen, die hierbei eine Zustimmung > 95 % erhalten haben und bei denen keine inhaltlichen Kommentare vorlagen, wurden als konsentiert betrachtet und nicht im Rahmen der Konsensuskonferenz erneut abgestimmt. Alle anderen Empfehlungen wurden unter Einbeziehung der Ergebnisse des DELPHI-Verfahrens auf der Video-Konsensuskonferenz unter neutraler Moderation am 28.02.2024 konsentiert. Die neutrale Moderation wurde von Frau Dr. Monika Nothacker und Herrn Thomas Langer übernommen. Der Ablauf war wie folgt:
-
Präsentation der zu konsentierenden Statements und Empfehlung
-
Stille Notiz: Welcher Empfehlung/Empfehlungsgrad stimmen Sie nicht zu? Ergänzung, Alternative?
-
Registrierung der Stellungnahmen im Umlaufverfahren und Zusammenfassung von Kommentaren durch die Moderatoren
-
Vorabstimmung über Diskussion der einzelnen Kommentare – Erstellung einer Rangfolge
-
Debattieren/Diskussion der Diskussionspunkte
-
Endgültige Abstimmung über jede Empfehlung und ggf. Alternativen
Im Rahmen der Konsensuskonferenz konnte zu allen Empfehlungen ein Konsens erreicht werden. Bei allen Konsensusverfahren (DELPHI, Videokonsensuskonferenz) wurde darauf geachtet, dass mindestens 75 % der stimmberechtigten Mandatsträger teilgenommen haben.
Empfehlungsgrad |
Beschreibung |
Ausdrucksweise |
A |
Starke Empfehlung |
soll |
B |
Empfehlung |
sollte |
0 |
Empfehlung offen |
kann |
Die Entscheidungskriterien für die Festlegung der Empfehlungsgrade werden im Leitlinienreport zu dieser Leitlinie erläutert.
#
#
2.2.3 Statements
Als Statements werden Darlegungen oder Erläuterungen von spezifischen Sachverhalten oder Fragestellungen ohne unmittelbare Handlungsaufforderung bezeichnet. Sie werden entsprechend der Vorgehensweise bei den Empfehlungen im Rahmen eines formalen Konsensusverfahrens verabschiedet und können entweder auf Studienergebnissen oder auf Expertenmeinungen beruhen.
#
2.2.4 Expertenkonsens (EK)
Statements/Empfehlungen, für die eine Bearbeitung auf der Grundlage von Expertenkonsens der Leitliniengruppe beschlossen wurde, sind als Expertenkonsens ausgewiesen. Für diese Empfehlungen wurde keine systematische Literaturrecherche durchgeführt (die in den Hintergrundtexten ggf. angeführten Studien wurden von den beteiligten Fachexperten ausgewählt). Bei Empfehlungen, die auf einem Expertenkonsens basieren, werden keine Symbole bzw. Buchstaben verwendet, um die Empfehlungsstärke und die Qualität der Evidenz darzustellen. Die Stärke der Empfehlung ergibt sich hier allein aus der verwendeten Formulierung (soll/sollte/kann) entsprechend der Abstufung in Tabelle „Schema der Empfehlungsgraduierung“.
#
2.2.5 Unabhängigkeit und Darlegung möglicher Interessenkonflikte
Die Deutsche Krebshilfe stellte die finanziellen Mittel über das Leitlinienprogramm Onkologie (OL) zur Verfügung. Diese Mittel wurden eingesetzt für Personalkosten, Büromaterial, Literaturbeschaffung und die Konsensuskonferenzen (Raummieten, Technik, Verpflegung, Moderatorenhonorare, Reisekosten der Teilnehmer). Die Erarbeitung der Leitlinie erfolgte in redaktioneller Unabhängigkeit von der finanzierenden Organisation. Alle Beteiligten legten zu Beginn des Updates mittels des AWMF-Formblatts eine schriftliche Erklärung zu eventuell bestehenden Interessenkonflikten (zu Beginn, Aktualisierung vor der Konsensuskonferenz) vor. Die Interessenerklärungen sind im Leitlinienreport zu dieser Leitlinie (https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome) aufgeführt.
Der Umgang mit Interessenkonflikten wurde gemeinsam in unserem Steuergruppentreffen vom 23.05.2023 konsentiert. Zusätzlich wurde dieses Vorgehen mit Vertretern der DKG und der AWMF besprochen. Hier wurde folgendes Vorgehen festgehalten:
-
Es wurden alle direkten finanziellen und indirekten sekundären Interessen der letzten drei Jahre im Formular der Interessenkonflikte oder online über das AWMF-Portal „Interessenerklärung online“ angegeben. Unmittelbar vor der Konsensuskonferenz erfolgt eine Aktualisierung der Erklärung.
-
Entscheidend für die Bewertung war der thematische Bezug zur Leitlinie.
-
Die Interessenkonflikte sind im Leitlinienreport im Kapitel 12.1 aufgeführt.
Umgang mit direkten finanziellen Interessenkonflikten:
-
Vortragstätigkeiten, Autoren-/oder Coautorenschaften und Forschungsvorhaben wurden als geringer Interessenkonflikt bewertet.
-
Wurde ein geringer Interessenkonflikt auf einem Themenfeld festgestellt, konnte der Mandatsträger nicht allein eine AG-Leitung übernehmen, sondern erhielt einen weiteren Mandatsträger ohne Interessenkonflikte zur Seite gestellt.
-
Es kam bei finanziellen Vergütungen durch Ad-Board, Beratertätigkeit und Industriedrittmittel in verantwortlicher Position unabhängig von der Höhe der monetären Zuwendung zur Feststellung eines moderaten Interessenkonfliktes.
-
Wurde ein moderater Interessenkonflikt festgestellt, enthielt sich der Mandatsträger bei einzelnen Fragen oder Themenbereichen, je nach festgestelltem Interessenkonflikt. Bei einem moderaten Interessenkonflikt konnte keine Leitungsfunktion in diesem Bereich übernommen werden.
-
Eigentümerinteressen wurden als hoher Interessenkonflikt eingestuft. Dies war jedoch bei keinem Mandatsträger der Fall.
-
Bei zwei Mandatsträgern wurden Patente festgestellt. Diese haben jedoch keinen thematischen Bezug zur Leitlinie, noch sind diese kommerzialisiert. Es erfolgte daher kein Ausschluss von der Leitlinienarbeit.
-
Ein Aktienbesitz lag bei keinem Mandatsträger vor.
Umgang mit indirekten sekundären Interessenkonflikten:
-
Mitgliedschaften in Fachgesellschaften und Beteiligung an Fortbildungen und Ausbildungsinstituten wurden nicht als Interessenkonflikt für diese Leitlinie bewertet, da dies ein essentieller Teil der wissenschaftlichen und klinischen Arbeit ist.
-
Ebenso wurde der Schwerpunkt der wissenschaftlichen und klinischen Tätigkeit in diesem Feld erwartet, um eine wissenschaftliche und praktikable Leitlinie zu erstellen.
-
Eine persönliche Beziehung (Partner oder Verwandter 1. Grades) zu einem Vertretungsberechtigten eines Unternehmens der Gesundheitswirtschaft lag bei keinem Mandatsträger vor.
Die Angaben wurden durch die Koordinatoren der Leitlinie (Prof. Nisar Malek, Prof. Michael Bitzer, Dr. Sabina Groß, Julia Ott und Dr. Jamila Gebert) im Team diskutiert und bewertet. Die Angaben der Koordinierenden wurden zusätzlich durch das OL-Office (Thomas Langer) bewertet.
Bei unklaren Angaben erfolgte die Rückfrage bei dem Mandatsträger. Der Vorschlag der Koordination zum Management wurde zu Beginn der Konsensuskonferenz diskutiert und umgesetzt. Bei allen Empfehlungen, bei denen Enthaltungen aufgrund von Interessenkonflikten vorlagen, wurden die Ergebnisse mit und ohne Enthaltungen publiziert. Für die Festlegung der Konsensusstärke war das Ergebnis mit Enthaltung entscheidend. In der Sensitivitätsanalyse der elektronischen Abstimmung ergab sich jedoch bei keiner Empfehlung ein relevanter Unterschied im Ergebnis mit und ohne Enthaltungen.
Als protektive Faktoren gegen eine Verzerrung durch Interessenkonflikte kann die systematische Evidenzaufbereitung, die pluralistische Zusammensetzung der Leitliniengruppe, die neutrale Moderation, die Diskussion der Bewertung der Interessen und des Umgangs mit Interessenkonflikten zu Beginn der Konsensuskonferenz sowie die öffentliche Konsultation gewertet werden.
An dieser Stelle möchten wir allen Mitarbeitern für ihre ausschließlich ehrenamtliche Mitarbeit an dem Projekt danken.
#
#
#
3 Diagnostik und Therapie der biliären Karzinome
3.1 Risikofaktoren, Prävention und Früherkennung
3.1.1 Risikofaktoren
4.1 |
Evidenzbasiertes Statement |
geprüft 2024 |
Level of Evidence |
Risikofaktoren für die Entwicklung eines intra- oder extrahepatischen Cholangiokarzinoms sind:
Die Risikofaktoren sind in alphabetischer Reihenfolge aufgelistet. |
|
[485] [486] [487] [488] [489] [490] [491] 2: – 3 (Oxford 2011) |
||
Starker Konsens |
4.2 |
Evidenzbasiertes Statement |
geprüft 2024 |
Level of Evidence |
Risikofaktoren für die Entwicklung eines Gallenblasenkarzinoms sind:
Die Risikofaktoren sind in alphabetischer Reihenfolge aufgelistet. |
|
[485] [486] [487] [488] [489] [490] [491] [492] [493] 2: – 3 (Oxford 2011) |
||
Starker Konsens |
4.3 |
Konsensbasiertes Statement |
neu 2024 |
EK |
Sowohl das Lynch-Syndrom als auch eine BRCA-Keimbahnmutationen stellen Risikofaktoren für die Entwicklung eines biliären Karzinoms dar. |
|
Starker Konsens |
Cholangiokarzinome (CCA, synonym: maligne biliäre Tumoren) sind eine heterogene Gruppe epithelialer Neoplasien, die meistens eine cholangiozytentypische Differenzierung aufweisen [494]. Je nach anatomischer Lokalisation des Primärtumors werden intrahepatische (iCCA) von extrahepatischen (eCCA) CCA und vom Gallenblasenkarzinom unterschieden. Extrahepatische Tumoren werden weiter in perihiläre (synonym Klatskin-Tumor, pCCA) und distale CCA (dCCA) aufgeteilt. Diese Unterscheidung ist aufgrund unterschiedlicher Risikofaktoren, Unterschiede in Bezug auf molekulare und klinische Charakteristika und unterschiedlicher Therapieansätze relevant [495] [496].
In Deutschland wurde im Jahr 2016 bei etwa 5290 Menschen mit einem eCCA (etwa 68 %; darunter etwa 11 % pCCA) oder einem Gallenblasenkarzinom (etwa 32 %) diagnostiziert. Hinzu kommen etwa 2000 Patienten mit einem iCCA, die aufgrund der ICD-Kodierung als primäre maligne Lebertumoren erfasst werden. Somit liegt die Gesamtinzidenz in Deutschland bei mehr als 7000 Neuerkrankungen/Jahr (http://krebsdaten.de). Die Inzidenz in Deutschland ist in den letzten 20 Jahren aufgrund der Zunahme des iCCA angestiegen. Mit zunehmendem Lebensalter steigt das Risiko kontinuierlich an. In den letzten 20 Jahren ist die Inzidenz des CCA bei Frauen, insbesondere durch die sinkende Gallenblasenkarzinom-Inzidenz, leicht rückläufig.
Die Inzidenz der verschiedenen anatomischen Tumorlokalisationen variiert weltweit erheblich, vermutlich aufgrund unterschiedlicher Prävalenzen von Risikofaktoren [497]. In Südostasien ist die CCA-Inzidenz höher als in anderen Ländern. Ein wichtiger Risikofaktor dort sind parasitäre Infektionen mit Leberegeln wie Opisthorchis viverrini oder Clonorchis sinensis, die zu chronischen Cholangitiden führen [498] [499]. Infektionen mit Opisthorchis viverrini oder Clonorchis sinensis sind endemisch in Südostasien und sind mutmaßlich jährlich für mehr als 7000 CCA-Neuerkrankungen in dieser Region verantwortlich [500]. In westlichen Ländern spielen Leberegel-Infektionen als CCA-Risikofaktor keine nennenswerte Rolle. Weitere etablierte Risikofaktoren mit deutlich höherer Inzidenz in Südostasien sind eine Cholelithiasis, Choledochus-Zysten, ein Caroli-Syndrom und rezidivierende pyogene Cholangitiden [497], [501]. Kongenitale Anomalien, wie z. B. Choledochuszysten oder ein Caroli-Syndrom, weisen ein hohes CCA-Risiko mit einer Prävalenz von bis zu 11 % auf [502] [503].
Die primär sklerosierende Cholangitis (PSC) ist in westlichen Ländern ein relevanter Risikofaktor sowohl für intra- und extrahepatische Cholangiokarzinome als auch für Gallenblasenkarzinome. Das kumulative 10-Jahresrisiko für ein Cholangiokarzinom bei PSC liegt bei 9 % und ist damit deutlich höher als in der Allgemeinbevölkerung [504]. Ob bei PSC-Patienten Alkoholkonsum und Nikotin weitere Ko-Risikofaktoren darstellen, ist weiter unklar. Ebenso bleibt unklar, ob eine chronisch entzündliche Darmerkrankung ohne Vorhandensein einer PSC einen relevanten Risikofaktor darstellt [505]. Eine Leberzirrhose, eine chronische Hepatitis-C-oder Hepatitis-B-Virusinfektion, Alkoholkonsum und Diabetes sind in westlichen Ländern wichtige Risikofaktoren für die Entwicklung eines iCCA [490] [497] [506]. Insbesondere ist das Risiko für das iCCA bei Diabetes und/oder Adipositas erhöht [101]. Bei metabolische Dysfunktion-assoziierter steatotischer Lebererkrankung (MASLD) ist das iCCA-Risiko leicht erhöht [491]. Ebenso weisen Raucher ein gering erhöhtes Risiko für die Entwicklung eines intra- und extrahepatischen CCAs, jedoch nicht für ein Gallenblasenkarzinom auf [506]. Weitere etablierte Risikofaktoren sind eine Cholelithiasis und biliäre Zysten. Das höchste Risiko sowohl für die Entwicklung eines iCCA als auch eines eCCA weisen Patienten mit Choledochuszysten auf (relatives Risiko 26,7 bzw. 34,9) [507].
Frauen erkranken häufiger als Männer an einem Gallenblasenkarzinom. Der wichtigste Risikofaktor für die Entwicklung eines Gallenblasenkarzinoms jedoch sind Gallensteine. Etwa 70–90 % aller Patienten mit einem Gallenblasenkarzinom weisen eine Cholelithiasis auf. Insbesondere findet sich eine hohe Gallblasenkarzinom-Inzidenz in der indigenen Bevölkerung Nord- und Lateinamerikas und Neuseelands. Weitere wichtige Risikofaktoren für die Entwicklung eines Gallenblasenkarzinoms sind ein höheres Alter, Adipositas, eine familiäre Häufung und Gallenblasenpolypen [508] [509]. Gallenblasenpolypen können eine Wachstumstendenz aufweisen und so schließlich entarten. Genaue Daten hierzu sind jedoch aufgrund des langsamen Wachstums – oftmals über Dekaden – schwer zu interpretieren [509]. In einer großen Kohortenstudie mit Langzeitverlauf zeigte sich eine Detektionsrate neoplastischer Polypen (Adenom oder Gallenblasenkarzinom) von 1,7 % nach einem Jahr, von 2,8 % nach 5 Jahren und von 4 % nach 8 Jahren nach erstmaliger Diagnosestellung eines Gallenblasenpolypen [492]. Die Prävalenz von Gallenblasenpolypen in Deutschland beträgt bis zu 6 %. Die Adenom-Prävalenz liegt unter 5 % [510]. Als Risikofaktoren für einen neoplastischen Polypen zeigten sich das gleichzeitige Vorhandensein einer Cholelithiasis und die Polypengröße. Polypen mit ≥ 10 mm weisen ein 24-fach erhöhtes Risiko für eine Malignität auf [492].
Ein weiterer Risikofaktor für ein Gallenblasenkarzinom ist eine chronische Entzündung, verursacht durch Salmonella typhi bzw. parathyphi oder Helicobacter bilis [493]. Eine Besiedelung der Gallenblase mit Salmonella typhi bei Dauerausscheidern ist mit einem 12-fach erhöhten Risiko für die Entwicklung eines Gallenblasenkarzinoms assoziiert [509].
Die als klassische Präkanzerose angesehene Kalzifizierung der Gallenblasenwand, die sogenannte Porzellangallenblase, wird in der jüngeren Literatur als Risikofaktor für ein Gallenblasenkarzinom differenzierter betrachtet [511] [512]. Das relative Risiko für ein Gallenblasenkarzinom liegt bei 4,6 [513] und ist niedriger als in älteren Arbeiten angegeben [514].
#
3.1.2 Prophylaktische und therapeutische Maßnahmen zur Risikoreduktion der Entstehung von biliären Karzinomen
4.4 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Gallenblasenpolypen bei Patienten mit PSC sollten regelmäßig sonographisch überwacht werden. In allen Fällen sollte die Indikation zur Cholezystektomie diskutiert werden, bei Polypen über 8 mm oder Größenprogredienz sollte aufgrund des erhöhten Karzinomrisikos unter Berücksichtigung der Leberfunktion eine Cholezystektomie erfolgen. |
|
Starker Konsens |
Für die asymptomatische Bevölkerung ist eine CCA-Früherkennung aufgrund der niedrigen Inzidenz nicht sinnvoll.
Gallenblasenpolypen treten bei bis zu 13,7 % der PSC-Patienten auf, das Risiko für ein Gallenblasenkarzinom ist hoch und steigt mit zunehmender Größe. Die Empfehlung zur Cholezystektomie ab einer Größe von 8 mm basiert auf einer retrospektiven Kohortenstudie mit 57 PSC-Patienten [515]. Eine frühzeitige Cholezystektomie kann auch bei kleineren Polypen diskutiert werden. Für detaillierte Empfehlungen zum Management von Patienten mit PSC wird auf die aktuelle S2-Leitlinie „Autoimmune Lebererkrankungen“ verwiesen [516].
4.5 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Patienten mit Gallenblasenpolypen ≥ 10 mm sollte unabhängig von der Symptomatik eine Cholezystektomie angeboten werden. |
|
Starker Konsens |
Die Indikationsstellung zur Therapie bei Cholezystolithiasis und Gallenblasenpolypen erfolgt gemäß der aktuellen S3-Leitlinie zur Prävention, Diagnostik und Behandlung von Gallensteinen [514]. Aufgrund des deutlich erhöhten Malignitätsrisikos bei Polypen ≥ 1 cm Durchmesser bei gleichzeitig vorhandener Cholezystolithiasis als weiteren Risikofaktor wird eine Cholezystektomie unabhängig von der Symptomatik empfohlen. Bei fehlender Indikation für eine Cholezystektomie wird ein individuelles Vorgehen, basierend auf dem Vorhandensein von Risikofaktoren für neoplastische Gallenblasenpolypen (Alter > 50 Jahre, bekannte PSC, Zugehörigkeit zu einer indigenen Population oder Vorhandensein eines sessilen Polypen) in Analogie zu einem Delphi-Methode-basierten Expertenkonsens empfohlen [517].
4.6 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei Patienten ohne Risikofaktoren* für ein Gallenblasenkarzinom mit Nachweis eines Gallenblasenpolypen von < 9 mm sollte eine sonographische Kontrolle in 6 Monaten (Polyp 6–9 mm) bzw. 12 Monaten (Polyp < 6 mm) erfolgen. *Risikofaktoren für neoplastische Polypen: Alter > 50 Jahre, bekannte PSC, Zugehörigkeit zu einer indigenen Population oder Vorhandensein eines sessilen Polypen |
|
Konsens |
#
3.1.3 Früherkennung
4.7 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei Patienten mit PSC sollte halbjährlich eine Bildgebung im Rahmen der Cholangiokarzinom-Früherkennung durchgeführt werden. |
|
Starker Konsens |
Im Gegensatz dazu besteht aufgrund des deutlich erhöhten CCA-Risikos bei Patienten mit einer PSC ein hoher Bedarf für eine effektive Früherkennung. Daten, die einen Überlebensvorteil einer CCA-Früherkennung bei Patienten mit PSC aufzeigen, fehlen jedoch [516]. In vielen Zentren erfolgt heute bei Patienten mit gesicherter PSC eine CCA-Früherkennung mittels Magnetresonanztomographie (MRT) und Magnetresonanzcholangiopankreatikographie (MRCP) in 6- bis 12-monatlichem Abstand und zusätzlich die serielle Bestimmung des Tumormarkers CA19–9 [518]. Für eine MRT/MRCP-basierte Früherkennung spricht eine hohe Sensitivität von 89 % bei einer Spezifität von 75 %. Die Sensitivität des Ultraschalls ist niedriger, aufgrund der Verfügbarkeit, der niedrigeren Kosten und der hohen Akzeptanz findet die Sonographie jedoch breite Anwendung bei der Überwachung von PSC-Patienten [519].
Im Rahmen der Konsensuskonferenz wurde festgehalten, dass aufgrund der höheren Sensitivität eine Abdomensonographie im Wechsel mit einem nativen MRT inklusive MRCP erfolgen sollte. Hierbei sollen sowohl die Leber als auch die Gallenblase mitbeurteilt werden.
#
#
3.2 Histopathologische und molekulare Diagnostik
3.2.1 Typisierung und Staging von biliären Karzinomen
4.8 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Vor oder im Rahmen einer Tumortherapie sollen Tumoren der Gallenwege und Gallenblase histologisch oder ggf. zytologisch gesichert werden. |
|
Konsens |
Aufgrund des Fehlens beweisender positiver bildgebender diagnostischer Kriterien ist die histologische Sicherung der intrahepatischen Cholangiokarzinome grundsätzlich erforderlich ([Abb. 1]). Intrahepatische Cholangiokarzinome treten – wenn auch in geringerem Maß als das HCC- auch bei den zum HCC prädisponierenden chronischen Lebererkrankungen und der Zirrhose vermehrt auf, sodass die Möglichkeit eines intrahepatischen Cholangiokarzinoms auch bei bildgebendem Verdacht auf ein HCC, differenzialdiagnostisch zu berücksichtigen ist. Grund hierfür sind v. a. Fälle intrahepatischer Cholangiokarzinome, welche die bildgebenden Kriterien eines HCC zeigen können. Umgekehrt können bei einzelnen HCC, insbesondere vom sklerotischen Subtyp, die bildgebenden Kriterien eines HCC fehlen und zum Verdacht auf ein iCCA führen.


Bei Tumoren der extrahepatischen Gallenwege kann die Sicherung eines invasiven Karzinoms in Abgrenzung von entzündlich bedingten Veränderungen und nichtinvasiven prämalignen Veränderungen problematisch sein. Dies gilt besonders auch für die Abklärung dominanter Stenosen bei der PSC. Die Sensitivität histologischer und zytologischer Verfahren in der Detektion invasiver Karzinome der distalen Gallenwege ist derzeit noch begrenzt und überschreitet auch im kombinierten Einsatz gemäß der meisten Untersuchungen nicht 60–70 % [520] [521]. Zusätzliche Verfahren, wie FISH-Analysen und auch molekulare Analysen am Gallesekret mögen in Einzelfällen unterstützende Informationen liefern, können aber weder die histologische oder zytologische Diagnostik ersetzen, noch kann mangels entsprechender Validierung ihr diagnostischer Einsatz derzeit generell empfohlen werden.
In Fällen einer anstehenden Resektion bei hochgradigem Verdacht auf ein Karzinom der extrahepatischen Gallenwege kann angesichts der eingeschränkten Sensitivität zytologischer und bioptischer Nachweise auf eine präoperative bioptische Sicherung zugunsten einer umfassenden Aufarbeitung des Resektionspräparates verzichtet werden, wenn die Abwägung der möglichen Vor- und Nachteile keine Verbesserung für den Patienten erwarten lässt. Die Entscheidungsfindung sollte durch ein interdisziplinäres Tumorboard abgesichert sein.
Bei nichtoperablen intra- und extrahepatischen Cholangiokarzinomen und Karzinomen der Gallenblase soll vor Einleitung einer Therapie eine histologische Sicherung erfolgen, wobei das hierbei gewonnene Gewebe in der Regel zusätzlich auch für eventuelle weiterführende, z. B. molekularpathologische Untersuchungen ausreichen sollte und hierfür bei Bedarf einzusetzen ist.
4.9 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Typisierung der Karzinome der Gallenwege und der Gallenblase soll nach der anatomischen Lokalisation (intrahepatisch, perihilär, distale Gallenwege, Gallenblase) und gemäß der histologischen Differenzierung nach der aktuellen WHO-Klassifikation erfolgen. Bei intrahepatischen Cholangiokarzinomen sollte eine Unterscheidung von „small duct“ und „large duct“ Typ erfolgen. |
|
Starker Konsens |
Klinisch, bildgebend und beim Staging werden die Karzinome der Gallenwege und der Gallenblase gemäß der anatomischen Lokalisation des Ausgangstumors beschrieben [110] [522]. Karzinome des distalen extrahepatischen Gallengangs liegen distal der Mündung des D. cysticus in den D. choledochus. Karzinome der Gallenblase umfassen die Tumoren der Gallenblase und des D. cysticus. Karzinome der perihilären Gallenwege umfassen Tumoren des D. hepaticus dexter und sinister sowie des D. hepaticus communis. Intrahepatische Cholangiokarzinome (iCCA) haben ihren Ausgang von den intrahepatischen Gallenwegen proximal des D. hepaticus dexter bzw. sinister.
Gemäß der WHO-Klassifikation (5. Auflage) ist bei iCCA ein phänotypisch den kleinen Gallengängen ähnlicher „small duct“ Typ von einem den Karzinomen der extrahepatischen Gallengänge vergleichbaren, „large duct“ Typ zu unterscheiden [110]. Beide Tumortypen sind ätiologisch, molekular, histologisch, bildgebend und klinisch in ihrer typischen Ausprägung verschieden, sodass ihre Unterscheidung von prognostischer und zunehmend auch therapeutischer Bedeutung ist ([Tab. 7], [110] [519] [520] [521]). Diagnostisch können beide Tumortypen histologisch und ggf. immunhistologisch oder aufgrund ihrer molekularen Eigenschaften unterschieden werden.
Differenzialdiagnostisch müssen iCCAs vor allem von Metastasen extrahepatischer Karzinome in der Leber unterschieden werden. Metastasen sind in der Summe erheblich häufiger als iCCAs, so dass die möglichst sichere Unterscheidung wichtig ist. Vor allem Metastasen eines Pankreaskarzinoms aber auch anderer Karzinome (besonders Lunge, Magen, Mamma) und seltener Metastasen neuroendokriner Neoplasien sind zu berücksichtigen. Eine definitive Unterscheidung einer Lebermetastase eines exokrinen Pankreaskarzinoms (oder eines Karzinoms der extrahepatischen Gallenwege oder Gallenblase) von einem iCCA (v. a. „large duct“-Typ) ist an der Biopsie in den meisten Fällen weder histologisch noch immunhistologisch sicher möglich, so dass die Diagnose im Kontext des klinisch-bildgebenden Befundes zu stellen ist.
Ferner sollten bei gesicherter intrahepatischer Tumorlokalisation seltenere gemischte Tumorformen (gemischt neuroendokrine/nichtneuroendokrine Neoplasien (MINEN) und kombinierte Hepato-Cholangiokarzinome (c(ombined) HCC/CCA)) vom iCCA unterschieden werden. Das früher dem cHCC/CCA zugeschlagene Cholangiolokarzinom wird aufgrund neuer molekularer Befunde [523] heute als Sonderform des iCCA klassifiziert. Solide wachsende iCCA sind insbesondere vom sklerosierten Subtyp des HCC zu unterscheiden; hierfür sind in der Regel zusätzliche immunhistologische Untersuchungen erforderlich (s. u.). Diese Unterscheidung ist auch deshalb wichtig, da HCCs vom sklerosierten Subtyp auch bildgebend meist nicht als HCCs erkannt werden. Seltener stellen die meist als Zufallsbefunde bei Laparotomien erfassten Gallengangsadenome eine Differenzialdiagnose zu kleinen hochdifferenzierten iCCA dar.
Karzinommetastasen in die distalen Gallenwege oder die Gallenblase sind extrem selten und treten nicht isoliert und nur im terminalen Krankheitsstadium auf, so dass sich diagnostisch bei gesicherter Lokalisation diese differenzialdiagnostische Frage nicht stellt. Hier müssen die Karzinome ggf. von seltenen neuroendokrinen Neoplasien, mesenchymalen und neuroektodermalen Tumoren unterschieden werden [524].
#
3.2.2 Zytologische und histopathologische Untersuchungen zur Diagnostik eines CCA, eines Gallenblasenkarzinoms
4.10 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Bearbeitung und Befundung eines Resektats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resektatrandes (R-Klassifikation) sowie bei intrahepatischen Cholangiokarzinomen den Status der nichttumorösen Leber ermitteln. Bei Präparaten mit prämalignen Läsionen soll durch genaue Aufarbeitung ein möglicher Übergang in ein invasives Karzinom abgeklärt werden. |
|
Starker Konsens |
Das pathohistologische Staging eines Karzinoms der Gallenwege hat unabhängige prognostische Bedeutung und erfolgt gemäß der geltenden TNM-Klassifikation (derzeit 8. Auflage), wobei für alle vier anatomischen Lokalisationen (intrahepatisch, perihilär, distal, Gallenblase) eigene TNM-Klassifikationen existieren [525]. Zusätzlich zu den Hauptkriterien, sollten auch die Nebenkriterien Lymphgefäßeinbruch (L), Veneneinbruch (V) und vor allem bei perihilären und distalen Cholangiokarzinomen auch die Nervenscheideninfiltration (Pn) beurteilt werden. Bezüglich des Typings sollte die aktuelle WHO-Klassifikation Berücksichtigung finden [110] [522]. Das Typing hat prognostische und in einem Teil der Fälle (siehe z. B. molekulare Diagnostik und gezielte Therapieansätze) prädiktive Bedeutung. Die prognostische Bedeutung des Gradings ist nach bisherigen Daten gering; es existiert kein uniform akzeptiertes, spezifisches Gradingschema für die einzelnen Cholangiokarzinomtypen und -lokalisationen, sodass das allgemeine UICC-Gradingschema [525], ggf. gemäß der Anweisungen der Arbeitsgemeinschaft Deutscher Tumorzentren [526], angewandt werden sollte. Insbesondere extrahepatische Cholangiokarzinome neigen, vergleichbar zu exokrinen Pankreaskarzinomen zu periduktaler, lymphangischer, perineuraler und vereinzelt auch diskontinuierlich erscheinender Ausbreitung, sodass an eine in-sano-Resektion und die entsprechende histologische Aufarbeitung der gesamten Resektionsränder eine hohe Anforderung besteht. Es wird daher wegen der Bedeutung für die Tumorrekurrenz empfohlen, den genauen Abstand zum Resektionsrand (in mm) anzugeben und hierbei die „R0 wide“ Definition (1 mm) zu beachten.
Biliäre intraepitheliale Neoplasien (BilIN), intraduktale papilläre Neoplasien der Gallenwege (IPNB), Muzinös-zystische Neoplasien (MCN) und Adenofibrome sind benigne Läsionen, die ein unterschiedlich hohes, jedoch signifikantes, malignes Entartungspotenzial in ein Cholangiokarzinom aufweisen. Bei Vorliegen einer derartigen prämalignen Läsion ist der Dysplasiegrad (niedrig, hoch) anzugeben und durch eine entsprechend ausreichende makroskopische und histologische Aufarbeitung der Übergang in ein invasives Karzinom auszuschließen.
Auch wenn sich bei der Mehrzahl der Cholangiokarzinome keine prädisponierende Grunderkrankung eruieren lässt, bedingen chronische Lebererkrankungen und die Zirrhose, vergleichbar dem HCC, ein erhöhtes Risiko auch an einem iCCA zu erkranken. Ferner kann der Status der nichttumorösen Leber ggf. Prognose und Therapie beeinflussen und sollte daher, wenn immer er ausreichend beurteilbar ist, diagnostisch festgehalten werden.
4.11 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Diagnose eines Cholangiokarzinoms kann bei klarer Konstellation durch die konventionelle Histologie gestellt werden. In unklaren Fällen, insbesondere bei intrahepatischen Tumoren, soll die Diagnose durch geeignete immunhistologische und oder molekularpathologische Untersuchungen abgesichert werden. |
|
Starker Konsens |
In der Regel weisen Cholangiokarzinome ein duktales Wachstumsmuster und eine typischerweise ausgeprägte tumorassoziierte Stromareaktion auf, wobei letztere beim iCCA vom „small-duct“ Typ geringer ausgebildet ist. Sowohl beim intra- als auch beim extrahepatischen Cholangiokarzinom sind jedoch seltenere histologische Subtypen bekannt, die ein hiervon abweichendes histologisches oder zytologisches Erscheinungsbild aufweisen. Die sichere Einordnung dieser Sonderformen als Cholangiokarzinom und ggf. Unterscheidung von Tumoren anderer Primärlokalisation kann zusätzliche Untersuchungen einschließlich des klinisch-bildgebenden Ausschlusses eines extrabiliären Primärtumors erfordern.
Die Immunhistologie kann die Diagnose eines Cholangiokarzinoms unterstützen, wobei es keine beweisende (liniendefinierende) immunhistologische Markerkonstellation gibt. Die Positivität für K7, K19 und CA19–9 legt eine pankreato-biliäre (d. h. eine dem exokrinen Pankreas und den Gallenwegen entsprechende) Differenzierung in der Unterscheidung von Metastasen anderer extrahepatischer Primärtumoren nahe. Ansonsten sollten die entsprechenden immunhistologischen linientypischen Nachweise der in Frage kommenden Differentialdiagnosen (bei HCC z. B. HepPar1, Arginase 1; bei anderen Adenokarzinomen die für sie typischen immunhistologischen Marker) eingesetzt werden. Sollte bei einem iCCA die Unterscheidung eines „large duct“-Subtyps von einem „small duct“-Subtyp histologisch nicht mit der gebotenen Sicherheit möglich sein, können Spezialfärbungen (Muzin-Produktion), Immunhistologie und in Ausnahmefällen auch die Molekularpathologie eine definitive Zuordnung ermöglichen.
Eine relevante klinische Fragestellung ist das sog. Adenokarzinom-Carcinoma of Unknown Primary (Adeno-CUP) der Leber [524]; hierunter versteht man ein für eine Metastasenleber typisches Bild, ohne dass sich ein extrahepatischer Primärtumor definieren lässt. Tatsächlich kann sich neben verschiedenen, nichtdetektierten, extrahepatischen Primärtumoren (v. a. Pankreas, Gastrointestinaltrakt, Lunge, Mamma) hinter einem Adeno-CUP auch ein unerkanntes iCCA verbergen. Da CUPs, die sekundär einer definitiven Typisierung zugeführt werden können, wohl auch dank zunehmend erweiterter Therapieoptionen, gegenüber CUPs, die eine Standard-Chemotherapie erhalten, eine bessere Prognose aufweisen, sollte bei klinischer Relevanz die notwendige histologische, immunhistologische und ggf. molekularpathologische Differenzialdiagnostik durchgeführt werden.
#
3.2.3 Molekulare Diagnostik
4.12 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Cholangiokarzinome weisen potenzielle Zielstrukturen für eine molekular gesteuerte Systemtherapie auf, die im geeigneten Kontext getestet werden sollten. |
|
Starker Konsens |
Karzinome der Gallenwege und der Gallenblase können molekulare Veränderungen aufweisen, die Angriffspunkte für neue, teils zugelassene, teils in Zulassungsstudien befindliche, gezielte Therapeutika darstellen. Art und Häufigkeit der Veränderungen unterscheiden sich erheblich zwischen den verschiedenen Typen, so dass der präzisen morphologischen Typisierung auch Bedeutung für die Ausrichtung einer evtl. molekularen Testung und ggf. daraus abgeleiteten, therapeutischen Zielstruktur zukommt. Insbesondere das iCCA vom „small duct“ Subtyp zeigt derartige molekulare Veränderungen in besonders hoher Frequenz. Vor allem an spezialisierten Zentren wird zunehmend eine umfassende Testung eingesetzt, um primär therapeutisch angehbare und studiengängige Zielstrukturen zu erfassen. Die untenstehende Tabelle fasst die wichtigsten Zielstrukturen zusammen.
An dieser Stelle sei auf die detaillierte Aufarbeitung in der S1-Leitlinie „Tumorgenetik – Diagnostik im Kontext maligner Erkrankungen“ verwiesen.
#
#
3.3 Bildgebende und endoskopische Diagnostik
3.3.1 Bildgebende und/oder endoskopische Untersuchungen zum Staging und zur Diagnosestellung eines biliären Karzinoms
4.13 |
Konsensbasiertes Statement |
geprüft 2024 |
EK |
Die Sonographie wird häufig zur initialen Einschätzung bei V. a. auf ein biliäres Karzinom verwendet. |
|
Starker Konsens |
Die abdominelle Sonographie wird meist initial eingesetzt zur Abklärung erhöhter Leberwerte und ist in Endemiegebieten Südostasiens Methode der Wahl zum jährlichen Screening auf biliäre Karzinome [527]. Das intrahepatische CCA ist meist iso- bis hypoechogen, gelegentlich ist zusätzlich oder bei periduktal infiltrierendem Tumorwachstum als alleiniges Merkmal eine umschriebene Gangdilatation stromaufwärts des iCCA darstellbar. In der Kontrastmittelsonographie (CEUS) ist das Hyperenhancement uneinheitlich und abhängig von Tumorzelldichte und Fibrose des Tumors sowie Entzündung und Fibrose in der umgebenden Leber [528] [529]. In einer DEGUM-Multizenterstudie zeigte sich eine in der Tumorperipherie betonte initiale Kontrastmittelanflutung bei 75 % der iCCA, mit früh-portalvenöser Auswaschung vor allem im Tumorzentrum bei 85,8 % und Auswaschung in der Spätphase bei 92,9 % [530]. Das iCCA zeigt im Unterschied zum HCC häufig ein früh (< 60 Sekunden) beginnendes, deutlich ausgeprägtes Auswaschen. In älteren Studien war die Pfortaderinfiltration mit hoher Genauigkeit darstellbar [531]. Die Darstellung von Gallenblasenpolypen gelingt mit dem Ultraschall mit relativ hoher Genauigkeit, die Differenzierung von malignen und nichtmalignen Polypen wird in einem 2018 publiziertem Cochrane-Review mit einer Sensitivität von 79 % und Spezifität von 89 % angegeben [532].
Neben der mittels Ultraschalles geäußerten Verdachtsdiagnose auf ein iCCA handelt es sich auch oft um einen Zufallsbefund in aus anderen Gründen durchgeführten bildgebenden Untersuchungen. Die bildgebenden Merkmale der iCCA sind oft suggestiv für die Diagnose, aber nicht definitiv genug, um eine Biopsie überflüssig zu machen ([Abb. 1]).
Ein typisches kontrastverstärktes CT-Protokoll für die Diagnose und das initiale Staging eines Cholangiokarzinoms umfasst eine arterielle Phase (20–30 Sekunden nach der Injektion), eine portalvenöse Phase (60 Sekunden nach der Injektion) und eine Spätphase (mindestens 3 Minuten nach der Injektion) [533] [534] [535]. CT-morphologisch ist das typische Erscheinungsbild eine hypodense Leberraumforderung mit unregelmäßigen Rändern in der nativen Phase, einem hypervaskulären Saum in der arteriellen Phase und ein zunehmendes Enhancement in der venösen Phase und den Spätphasen [536]. Mittels CT kann auch der Grad der biliären Obstruktion, der Kapselretraktion oder der hepatischen Atrophie erkannt werden. Die dynamische CT-Untersuchung kann bei der Unterscheidung zwischen iCCA und HCC helfen. Bis zu 81 % der iCCA sind durch eine progressive Kontrastmittelaufnahme von der arteriellen zur venösen Phase und insbesondere in der Spätphase gekennzeichnet. Dieser Effekt kann auf eine Fibrose zurückzuführen sein, die das intravenöse Kontrastmittel zurückhält. Im Gegensatz dazu ist das HCC durch eine arterielle Hypervaskularisation während der arteriellen Phase und einem Auswaschen in der venösen Phase oder in der Spätphase charakterisiert. Einige kleine iCCA können aber auch eine arterielle Hypervaskularisation aufweisen und können hierdurch ein Hepatozelluläres Karzinom imitieren [537] [538]. Die arterielle Phase hilft nicht nur bei der diagnostischen Unterscheidung zwischen einem HCC und einem iCCA sondern auch bei der klareren Abgrenzung der vaskulären Anatomie vor der chirurgischen Resektion [533] [534] [535].
Im Vergleich zur MRT ist die kontrastverstärkte CT nur begrenzt in der Lage, die Ausbreitung des Tumors entlang der Gallengänge zu erkennen [539]. Die MRT zeichnet sich bei dieser Aufgabe durch ihren überlegenen Weichteilkontrast aus und gilt daher als das bildgebende Verfahren der Wahl für die Diagnose und das lokale Staging des Cholangiokarzinoms. Ihre Genauigkeit ist vergleichbar mit der Genauigkeit der kontrastverstärkten CT und der direkten Cholangiographie in Kombination [539]. Ein optimales Protokoll für die Beurteilung von Cholangiokarzinomen sollte MRCP, konventionelle T1- und T2-gewichtete abdominelle MRT-Sequenzen (einschließlich T1 „in- und out-of-phase“ Bildgebung), diffusionsgewichtete Bildgebung (DWI) und mehrphasige kontrastverstärkte Sequenzen in der arteriellen, portalen, venösen und verzögerten Phasen beinhalten [535] [539]. Die dynamischen Sequenzen können zu vorher festgelegten Zeitpunkten oder mittels Bolus-Tracking-Technik angefertigt werden [535]. In der MRT erscheinen iCCA in nativen T1-gewichteten Sequenzen hypointens und auf T2-gewichteten Sequenzen hyperintens [540] [541] [542]. In T2-gewichteten Bildern kann sich auch eine zentrale Hypointensität zeigen, die einem Fibrosegebiet entspricht. Dynamische kontrastverstärkte Sequenzen zeigen eine periphere Hyperintensität in der arteriellen Phase, gefolgt von einer progressiven und konzentrischen Auffüllung des Tumors mit Kontrastmittel. Das Kontrastmittelpooling in der Spätphase ist ein Hinweis auf eine Fibrose und deutet auf ein iCCA hin.
Die Magnetresonanztomographie mit Cholangio-Pankreatikographie (MRT/MRCP) ist hilfreich, um das Gallengangssystem und die Gefäßstrukturen zu visualisieren und dadurch die anatomische Ausdehnung des Tumors genauer zu bestimmen. Die MRCP ist eine kontrastfreie MR-Technik. Hierbei wird der T2-gewichtete Kontrast zwischen Galle (langes T2) und angrenzendem Gewebe (kurzes T2) durch die Verwendung stark T2-gewichteter Sequenzen akzentuiert. Die dünne Multi-Slice-MRCP ermöglicht eine hochauflösende Visualisierung über dreidimensionale Bilddatensätze [539]. Im Gegensatz zur endoskopischen retrograden Cholangiopankreatikographie ist die MRCP nichtinvasiv und erlaubt die Visualisierung der Gallenwege proximal einer Obstruktion [535]. In Vorbereitung auf die MRCP sollen die Patienten mindestens 4 Stunden lang fasten, um die Darmperistaltik und Magensekretion zu minimieren und die Gallenblasenauftreibung zu maximieren. Negative Kontrastmittel können hinzugefügt werden, um das Flüssigkeitssignal im Magen und Zwölffingerdarm zu reduzieren. Die DWI kann die MRCP bei der Erkennung von Tumoren in erweiterten oder verschlossenen Gallengängen unterstützen, wenn eine Kontrastmittelinjektion nicht möglich ist [539]. Es ist gut dokumentiert, dass die DWI die diagnostische Sensitivität der MRT für das Cholangiokarzinom erhöht. Frühere Studien haben eine Überlappung der dynamischen Kontrastverstärkungsmuster von kleinen raumfordernden intrahepatischen Cholangiokarzinomen (< 3 cm) und Hepatozellulären Karzinomen dokumentiert [521] [527] [543] [544]. In solchen Fällen kann eine diffusionsgewichtete Bildgebung, die bei einer Anzahl verschiedener b-Werte im Bereich von 0–800 s/mm² durchgeführt wird, helfen, das iCCA von HCC zu unterscheiden [545] [546] [547] [548]. In ähnlicher Weise kann die DW-MRT helfen, benigne von malignen Strikturen zu unterscheiden, was für die Diagnose periduktal infiltrierender Subtypen des iCCAs von entscheidender Bedeutung ist [535] [549]. Im Allgemeinen tendieren die ADC-Werte von iCCAs dazu, signifikant niedriger zu sein als die des benachbarten normalen Leberparenchyms, wie es bei den meisten bösartigen Lebertumoren der Fall ist. Die Dokumentation einer Reihe von ADC-Werten, die spezifisch für iCCAs sind, wurde durch die große Variabilität der berichteten ADC-Werte eingeschränkt. Diese Variabilität, die weitgehend auf technische Unterschiede der Bild-Akquirierung zurückzuführen ist, hat Forscher veranlasst, sich für die Verwendung normalisierter ADC-Werte zur optimalen quantitativen Charakterisierung von Leberläsionen, einschließlich des iCCA, einzusetzen. Studien haben dennoch gezeigt, dass die DW-MRI im Vergleich zu anderen MRT-Sequenzen trotz der hohen Varianz der b-Werte eine hohe diagnostische Genauigkeit für iCCAs aufweist. In einer Studie waren alle Cholangiokarzinome bei b = 0 s/mm² sichtbar, und die Mehrheit blieb bei der DW-MRT bei steigenden b-Werten hyperintens, was darauf hindeutet, dass die Verwendung des früheren b-Wertes in MR-Protokollen zur Erkennung von Cholangiokarzinomen in Betracht gezogen werden sollte. Dieselbe Studie legte nahe, dass die Normalisierung auf das Leber-Hintergrundparenchym zu einer minimalen Variabilität der ADC-Werte im Vergleich zu anderen Indexorganen wie der Milz führte [546] [547]. Der Grad der Diffusionsbeschränkung im DW-MRI kann als somit unabhängiger präoperativer prognostischer Marker bei Patienten mit iCCA dienen. In einer anderen Studie zeigten Patienten, bei denen weniger als ein Drittel des Tumors eine Diffusionsrestriktion aufwies, im Vergleich zu Patienten, bei denen mehr als ein Drittel des Tumors eine Diffusionsrestriktion aufwies, ein fortgeschritteneres baseline TNM-Stadium, eine häufigere lymphatische Invasion und Lymphknotenmetastasen sowie eine häufigere stromale Metaplasie. Sowohl das krankheitsfreie als auch das Gesamtüberleben waren in der ersten Patientengruppe im Vergleich zur zweiten Gruppe signifikant niedriger [535] [550] [551].
4.14 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Zur initialen Diagnostik und zum Staging bei kurativer Intention eines Cholangiokarzinoms sollen eine dynamische hepatische MRT-Untersuchung sowie ein mehrphasisches kontrastverstärktes CT des Thorax und des Abdomens* vorliegen. *Wenn komplettes MRT-Abdomen vorliegt, muss kein CT des Abdomens ergänzt werden. CT der Leber in spätaterieller Phase und zusätzlich Abdomen in portalvenöser Phase. |
|
Level of Evidence |
[552] |
|
Konsens |
Die Rolle der 18F-FDG-PET bei der Diagnose und dem Staging von Patienten von ICCAs wurde bis dato kontrovers diskutiert. In einer neuen Metaanalyse wurde die Rolle der 18F-FDG-PET für Staging und Re-Staging bei insgesamt 2125 Patienten aus 47 Studien untersucht [553]. Die Sensitivität und Spezifität der 18F-FDG-PET in der Initialdiagnose betrug je 91,7 % (95 % CI: 89,8; 93,2) bzw. 51,3 % (95 % CI: 46,4; 56,2); für einen Lymphknotenbefall lag die Sensitivität bei 88,4 % (95 % CI: 82,6; 92,8) und die Spezifität bei 69,1 % (95 % CI: 63,8; 74,1); für das Vorliegen von Fernmetastasen lag die Sensitivität bei 85,4 % (95 % CI: 79,5; 90,2) und die Spezifität bei 89,7 % (95 % CI: 86,0; 92,7). Bei einem Verdacht auf ein Rezidiv betrug die Sensitivität 90,1 % (95 % CI: 84,4; 94,3) und die Spezifität 83,5 % (95 % CI: 74,4; 90,4). Somit weisen diese aktualisierten Daten darauf hin, dass der Einsatz von 18F-FDG-PET für das Staging (Lymphknoten und Fernmetastasen) und die Identifizierung von Rezidiven bei selektierten Patienten mit CCA für die Therapiestratifizierung sinnvoll sein kann, insbesondere wenn die Identifizierung okkulter Krankheitsherde das therapeutische Vorgehen verändern würde oder wenn die Diagnose eines Rezidivs nach der Standard-Bildgebung weiterhin unklar bleibt. Insofern kann der Einsatz der 18F-FDG-PET bei CCA nach interdisziplinären Tumorboardempfehlung für Staging und Re-Staging indiziert sein.
#
3.3.2 Untersuchungsmethoden zur Darstellung der maximalen Ausbreitung des Tumors
4.15 |
Konsensbasiertes Statement |
geprüft 2024 |
EK |
Für die Erfassung der maximalen Ausbreitung des Tumors inklusive Gefäßinvasion soll, wenn eine kurative Behandlungsoption besteht, mindestens ein dynamisches kontrastverstärktes MRT eingesetzt werden. |
|
Starker Konsens |
Insbesondere vor kurativen Resektionen oder minimalinvasiven interventionellen Therapien sind eine exakte Erfassung der maximalen Ausbreitung des Tumors sowie der Bezug zu allen anatomisch wichtigen Strukturen unabdingbar.
Die MRT zeichnet sich bei dieser Aufgabe durch ihren überlegenen Weichteilkontrast aus und gilt daher als das bildgebende Verfahren der Wahl für die Diagnose der maximalen Ausdehnung des Cholangiokarzinoms [539]. Ein optimales Protokoll für die Beurteilung der maximalen Ausdehnung des Cholangiokarzinomen sollte MRCP, konventionelle T1- und T2-gewichtete abdominelle MRT-Sequenzen (einschließlich T1 „in- und out-of-phase“ Bildgebung), diffusionsgewichtete Bildgebung (DWI) und mehrphasige kontrastverstärkte Sequenzen in der arteriellen, portalen, venösen und verzögerten Phase beinhalten [535] [539]. Für die weiteren Details siehe bitte auch das Kapitel „Welche bildgebenden und/oder endoskopischen Untersuchungen müssen zum Staging und zur Diagnose eines biliären Karzinoms durchgeführt werden?“. Neben dem Einsatz der MRCP und diffusionsgewichteter MRT-Sequenzen kann die Nachkontrastdarstellung mit traditionellen, extrazellulären Kontrastmitteln auf Gadoliniumbasis (Gd-DTPA) oder Derivaten wie Gadoliniummethoxybenzyldiethylentriamin-Penta-Essigsäure (Gd-EOB-DTPA) genauere Informationen bezüglich der Tumorausdehnung liefern.
Gd-EOB-DTPA kombiniert die Eigenschaften eines herkömmlichen extrazellulären Kontrastmittels auf Gadoliniumbasis mit denen von hepatozytenspezifischen Kontrastmitteln. Frühere Studien haben die Überlegenheit von Gd-EOB-DTPA beim Nachweis und bei der Charakterisierung von Leberläsionen bei Patienten mit diffusen Lebererkrankungen dokumentiert. Da die Nachkontrastsignalintensität der Leber bei Verwendung hepatozytenspezifischer Kontrastmittel wie Gd-EOB-DTPA im Vergleich zu herkömmlichen extrazellulären Kontrastmitteln auf Gadoliniumbasis höher ist, werden Cholangiokarzinome sowohl bei frühen als auch bei verzögerten Phasensequenzen als hypointens sichtbar [554]. Dadurch entsteht ein scharfer Kontrast zwischen der Läsion und dem Leberhintergrund, was eine genauere Beurteilung der Tumorausdehnung sowie das Vorhandensein assoziierter Satellitenläsionen ermöglicht, die in 10–20n% der Fälle von metastasiertem CCA gesehen werden [554]. Die erhöhte Sichtbarkeit von Cholangiokarzinomen in dieser Umgebung ist besonders hilfreich für Patienten mit einem Hintergrund diffuser Lebererkrankungen, bei denen metastasierte CCA nach Verabreichung traditioneller extrazellulärer Kontrastmittel auf Gadoliniumbasis atypische Enhancement-Muster aufweisen können [535] [555]. Bei der Gd-EOB-DTPA können auch die relative Signalintensität der Leber und die Sichtbarkeit der Gallenwege auf der hepatobiliären Phase als quantifizierbare Surrogatmarker der Gallenfunktion dienen. Gd-EOB-DTPA wird von Hepatozyten aufgenommen und in das Gallensystem ausgeschieden. Eine verminderte Signalintensität der Hintergrundleber und eine verringerte Sichtbarkeit der Gallenwege in der hepatobiliären Phase weisen auf eine gestörte Gallenfunktion hin und korrelieren quantitativ mit dem Gesamtbilirubinspiegel und könnten somit ein ergänzender Leberfunktionsparameter vor ausgedehnten Resektionen sein [554].
#
3.3.3 Diagnostikalgorithmus
4.16 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Bei Verdachtsdiagnose auf ein Cholangiokarzinom soll eine Schnittbildgebung zur Beurteilung der Tumorausdehnung verwendet werden. |
|
Level of Evidence |
[552] |
|
Starker Konsens |
Die Diagnose eines Cholangiokarzinoms basiert auf kontrastverstärkten bildgebenden Untersuchungen und histologischen Analysen. Der Diagnosealgorithmus eines Patienten mit Verdacht auf ein Cholangiokarzinom ist in der [Abb. 1] dargestellt. Aufgrund der erhöhten Ansprüche bezüglich der lokalen Tumorausdehnung wird nach dem Staging des Thorax sowie Abdomens mittels CT ein je nach Subtyp spezifiziertes MRT präoperativ empfohlen.
4.17 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei unklaren Befunden in der Schnittbildgebung hinsichtlich der Tumorausbreitung präoperativ oder Rezidivverdacht kann ein FDG-PET/CT nach Empfehlung durch das interdisziplinäre Tumorboard durchgeführt werden. |
|
Konsens |
In ihrer 2019 publizierten Metaanalyse [553] hat Lamarca et al. den zusätzlichen Nutzen der Positronenemissionstomographie (PET) mit dem Glukoseanalogon [18F]FDG (FDG) bei Patienten mit Cholangiokarzinom untersucht. Insgesamt fasst diese Übersichtsarbeit 47 Studien mit 2125 Patienten zusammen. Hierbei betrug die Sensitivität/Spezifizität der FDG-PET für die richtige Diagnose des Primarius 91,7 %/51,3 %, für die Detektion einer Lymphknotenmetastasierung 88,4 %/69,1 % bzw. einer Fernmetastasierung 85,4 %/89,7 %. Im Falle eines Rezidivs lag die Sensitivität bei 90,1 % und die Spezifizität bei 83,5 %. Die Autoren berichteten, dass die Ergebnisse der zusätzlichen FDG-PET bei 15 % der Patienten zu einer Änderung der Behandlung führten, was vorwiegend auf ein Upstaging bei 78 % der Patienten zurückzuführen war. In einer kürzlich publizierten retrospektiven Analyse konnte Kiefer et al. [556] nachweisen, dass die FDG-PET/CT bei Patienten mit CCA in 35 von 43 (81,4 %) der Fälle zu einer Veränderung der geplanten Behandlung, in 27 von 43 (62,8 %) zu einer wesentliche Veränderung im therapeutischen Konzept (Nicht-Behandlung vs. Behandlung bzw. kurativer vs. palliativer Ansatz) führte. Insofern kann der Einsatz der FDG-PET als Entscheidungshilfe bei der weiteren Therapiestratifizierung (OP vs. palliative Behandlung) bzw. zur Bestätigung eines Krankheitsrückfalls dienen, wenn die Diagnose nach der Standardbildgebung mit Ultraschall, CT oder MRT unklar bleibt, so dass der Einsatz der FDG-PET nach entsprechender Beratung im interdisziplinären Tumorboard in ausgewählten Fällen empfohlen werden kann.
#
3.3.4 Endoskopische Diagnostik
4.18 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Der endoskopische Ultraschall kann zur Diagnose, lokalem Staging und Gewebegewinnung beim biliären Karzinom verwendet werden. |
|
Level of Evidence |
[557] |
|
Starker Konsens |
Die endosonographiegestützte Feinnadelaspirationszytologie (EUS-FNA) hatte in einer Metaanalyse von 6 Studien, die z. T. auch PSC-Patienten einschlossen, eine Sensitivität von 66 % und eine Spezifität von 100 % für die Diagnose eines CCA [547]. Auch bei Fehlen einer Läsion in der Schnittbildgebung konnte noch eine Sensitivität von 45 % erreicht werden. Bei Patienten mit negativer Bürstenzytologie konnte aus drei Studien eine Sensitivität von 59 % (Spezifität 100 %) errechnet werden. Damit ist die EUS-FNA eine valide Methode auch und insbesondere dann, wenn eine histologische Bestätigung erforderlich ist. Einschränkend sei eine Studie erwähnt, bei der von 191 Patienten i.R. eines neoadjuvanten Therapieprotokolls vor Lebertransplantation bei 16 eine perkutane (n = 13) oder EUS-gesteuerte (n = 3) Gewebegewinnung erfolgte [558]. Bei fünf von sechs Patienten mit definitiv maligner Histologie traten peritoneale (Stichkanal-)Metastasen auf (die Verteilung perkutan vs. EUS-FNA ist nicht aufgeführt, vs. 14/175 ohne Biopsie). Dies konnte in einer jüngeren Studie an 150 Patienten, von denen 61 präoperativ EUS-gesteuert biopsiert worden waren, nicht nachvollzogen werden [559].
4.19 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Wenn im Rahmen einer ERCP der V. a. ein extrahepatisches Cholangiokarzinom gestellt wird, sollte im Rahmen einer ERCP eine Zangenbiospie oder eine Bürstenzytologie entnommen werden. |
|
Starker Konsens |
Die endoskopische Bürstenzytologie während der ERC hat in verschiedenen Studien eine Sensitivität von 30–78 % [560] [561] [562] (Anm: Review, höchste und niedrigste Sensitivität, bei gleichen Werten jeweils neueste) und eine Spezifität von 90–100 % [563] [564]. Der positive Prädiktivwert lag bei 94–100 %, der negative Prädiktivwert jedoch nur bei 8–62 % [564] [565]. In einer Metaanalyse zu Studien, die die Bürstenzytologie und die transpapilläre Biopsie verglichen, betrug die kombinierte Sensitivität und Spezifität der Bürstenzytologie zur Diagnose einer malignen Gallengangsstenose 45 % (95 % CI: 40–50 %) und 99 % (98–100 %) [521]. Bei Patienten mit PSC war in einer Metaanalyse zu 11 retrospektiven und prospektiven Studien mit insgesamt 747 Patienten die Sensitivität der Bürstenzytologie für ein CCA 43 % (35–52 %), die Spezifität 97 % (95–98 %) [566]. Damit sichert die Bürstenzytologie im Falle eines Nachweises die Diagnose eines biliären Karzinoms, ist jedoch bei negativer Histologie nicht zum Ausschluss eines biliären Karzinoms geeignet.
Die endobiliäre, transpapilläre Zangenbiopsie während der ERC hat in verschiedenen Studien eine Sensitivität von 29–81 % [560] [567] [568] und eine Spezifität von 90–100 % [569] [570]. Der positive Prädiktivwert lag bei 94–100 % [569] [570], der negative Prädiktivwert jedoch nur bei 31–81 % [569] [570].
In der bereits oben aufgeführten Metaanalyse [521] war die kombinierte Sensitivität und Spezifität der transpapillären Biopsie zur Diagnose einer malignen Gallengangsstenose 48,1 % (95 % CI: 42,8–53,4 %) und 99,2 % (97,6–99,8 %), lag somit geringgradig höher als die der Bürstenzytologie. Die diagnostische Genauigkeit ist für CCAs etwas höher als für das Pankreaskarzinom, am ehesten aufgrund des oberflächlicheren, somit besser zugänglichen Tumorwachstums des CCA. Ähnlich wie für die Bürstenzytologie gilt für die Zangenbiopsie, dass bei positiver Histologie die Diagnose eines biliären Karzinoms zwar gesichert ist, bei negativer Histologie jedoch nicht ausgeschlossen werden kann. Gallengangsperforationen durch die Zangenbiopsien wurden beschrieben [571] [572], jedoch insgesamt nur selten berichtet.
Die Kombination von Bürstenzytologie und transpapillärer endobiliärer Zangenbiopsie wurde in 6 Studien untersucht [521]. Sie kann die Sensitivität der Diagnose einer malignen Striktur mit einer kombinierten Sensitivität von 59,4 % (53,7–64,8 %) erreichen, die Spezifität bleibt hoch (100 % (98,8–100,0 %)). Somit wird die diagnostische Genauigkeit durch die Kombination beider Verfahren zur Histologiegewinnung gesteigert, jedoch nicht in dem Maße, dass ein Ausschluss eines Karzinoms durch die Histologie in sicherer Weise möglich ist.
4.20 |
Evidenzbasiertes Statement |
geprüft 2024 |
Level of Evidence |
Bei V. a. ein extrahepatisches Cholangiokarzinom kann durch Einsatz der Cholangioskopie in Kombination mit visuell gezielter Biopsie die Sensitivität der Diagnose gesteigert werden. |
|
[573] |
||
Starker Konsens |
Die meisten Studien zum Einsatz der Cholangioskopie verwendeten die Single-Operator-Cholangioskopie (mit SpyGlass). In einer systematischen Übersicht [573] wurden insgesamt 10 Studien identifiziert, die die Cholangioskopie mit visuell-endoskopisch gezielter Biopsieentnahme bei Gallengangsstrikturen evaluierten. Die kombinierte Sensitivität der so gewonnenen Histologie zur Diagnose maligner Strikturen war 60,1 % (95 % CI: 54,9–65,2 %) bei einer Spezifität von 98,0 % (96,0–99,0 %). Etwas bessere Werte ergaben sich, wenn nur die Biopsien bei CCA ausgewertet wurden (Sensitivität 66,2 % (59,7–72,3 %), Spezifität 97,0 % (94,0–99,0 %)).
Die Hinzunahme des visuell-endoskopischen Eindrucks konnte die Sensitivität erheblich steigern (84,5 % (79,2–88,9 %)), allerdings zulasten der Spezifität (82,6 % (77,1–87,3 %)). Letztlich sind die endoskopischen Kriterien für Malignität nicht abschließend evaluiert, insbesondere vor dem Hintergrund entzündlicher Veränderungen (z. B. bei PSC). Interessant ist der Einsatz der Cholangioskopie bei Strikturen mit zuvor nicht eindeutiger Histologie durch Bürste u./o. Biopsie: Hier konnte dennoch mit einer Sensitivität von 67,3 % (52,5–80,1 %) und Spezifität von 93,3 % (83,1–98,7 %) ein CCA diagnostiziert werden. Bei direktem Vergleich zwischen Bürstenzytologie, Zangenbiopsie und Cholangioskopie mit Biopsieentnahme war die Cholangioskopie den beiden anderen Verfahren in Sensitivität, Genauigkeit und negativem Prädiktivwert signifikant überlegen [567].
Der Einsatz der nächsten Gerätegeneration oder die Verwendung der direkten peroralen Cholangioskopie könnte theoretisch sowohl die endoskopische Visualisierung als auch die Größe und Anzahl der Biopsien verbessern. Hierzu liegen noch keine vergleichenden Studien mit älteren Cholangioskopen vor. Eine 2019 publizierte Studie hat randomisiert die konventionelle Bürstenzytologie-Entnahme mit der digitalen Cholangioskopie mit visuell gestützter Biopsie verglichen. Hier war die Sensitivität der Cholangioskopie-gesteuerten Biopsie signifikant höher als die der Bürstenzytologie (68,2 % vs. 21,4 %), ebenfalls die Sensitivität der visuellen Einschätzung (95,5 % vs. 66,7 %) und die Genauigkeit insgesamt (87,1 % vs. 65,5 %) bei allerdings nicht gesteigertem PPV (positiv predictive value) und NPV (negativ predictive value) [574]. Zusätzliche Methoden zur Verbesserung der Visualisierung biliärer Veränderungen, wie die Chromoendoskopie, virtuelle Chromoendoskopie oder die Verwendung sondenbasierter Endomikroskopiesysteme, sind in Einzelstudien gut evaluiert, jedoch nicht in der Routinediagnostik verfügbar. Grundsätzlich sind all die genannten Verfahren der Bürstenzytologie, Biopsie und Cholangioskopie auch perkutan, z. B. über einen PTCD-Zugang, einsetzbar.
4.21 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Patienten mit primär sklerosierender Cholangitis und Erstmanifestation einer dominanten Stenose sollen mittels MRT/MRCP und ERCP/Histologie weiter abgeklärt werden. Bei weiterbestehendem Verdacht auf ein CCA trotz negativer Diagnostik sollte eine kurzfristige erneute Reevaluation, ggf. mit Wiederholung der Untersuchungen, oder bei therapeutischer Relevanz eine Klärung im Rahmen einer explorativen Laparotomie erfolgen. |
|
Konsens |
Zur Überwachung von Patienten mit PSC darf auf die „S2k-LL Autoimmune Lebererkrankungen“ [516] der DGVS verwiesen werden, die schreibt: „Die Unterscheidung der benignen von der malignen Stenose ist eines der klinisch relevantesten Probleme bei Patienten mit PSC. Es sollten möglichst verschiedene Verfahren angewendet werden, um den Verdacht eines CCA weitestgehend zu bestätigen oder auszuschließen. Eine Cholangioskopie wird von einigen Zentren insbesondere zur gezielten Gewebeentnahme favorisiert. Auch eine Wiederholung bereits erfolgter Untersuchungen erzielt in manchen Fällen eine Diagnosesicherung.“ Eine ausführliche Aufstellung zur Genauigkeit der Bürstenzytologie zur Diagnose des CCA bei Patienten mit PSC in Einzelstudien und in Reviews findet sich außerdem in der ESGE-Leitlinie „Role of Endoscopy in Primary Sclerosing Cholangitis“ [575], zusammenfassend s.unter Kapitel 4.3.4. Interessant ist, dass in einer deutschen Studie bei Patienten mit PSC diejenigen Patienten, die eine regelmäßige Dilatation dominanter Stenosen erhielten, mit 5,3 % (n = 7) zwar nicht signifikant (p = 0,1), aber möglicherweise doch relevant seltener ein CCA entwickelten als die Patienten, die nur bei Beschwerden dilatiert wurden, mit 9,8 % (n = 15) [551]. Ob dies ein Effekt der verminderten Anzahl von Cholangitis-Episoden ist (im Sinne einer Unterbrechung der Inflammations-Karzinom-Sequenz), muss abgewartet werden.
Bei hochgradigem Verdacht auf ein biliäres Karzinom (iCCA, pCCA, dCCA) und als resektabel eingeschätztem Befund muss eine histologische Sicherung nicht regelhaft präoperativ erfolgen, da ein fehlender Tumornachweis in der Histologie/Zytologie aufgrund der niedrigen Sensitivität das therapeutische Vorgehen nicht verändert. Häufig wird die Erstdiagnose eines pCCA oder dCCA bei der ERC zur Ableitung bei Cholestase gestellt, dann kann ggf. eine Bürstenzytologie u./o. Zangenbiopsie zur Histologiegewinnung eingesetzt werden. Sensitivität und Spezifität der Verfahren zur histologischen Sicherung in Studien war in hohem Maße abhängig von der Prätestwahrscheinlichkeit der Studienpopulation (z. B. PSC- vs. non-PSC-Patienten, Patienten mit unklarer Striktur vs. Patienten mit jeglicher Striktur, symptomatische vs. asymptomatische Striktur, nur dCCA vs. dCCA und Papillen- und Pankreaskarzinom). Bei unklaren Befunden kann die Cholangioskopie mit endoskopisch-visuell gezielter Biopsieentnahme eingesetzt werden, die die diagnostische Ausbeute erhöht (s. u.).
Bei Verdacht auf IgG4-assoziierte Cholangitis kann die bioptische Sicherung die probatorische Einleitung einer spezifischen Therapie begründen. Bei Patienten mit PSC empfiehlt die DGVS-Leitlinie „Autoimmune Lebererkrankungen“ bei dominanter Stenose eine histologische Sicherung, bei weiterhin bestehendem Verdacht auf ein CCA trotz negativer Histologie eine kurzfristige Reevaluation [516]. Vor Einleitung einer palliativen Chemotherapie ist die histologische Sicherung der Tumorentität erforderlich, die im Rahmen einer ERC oder durch perkutane oder endosonographische Punktion erfolgen kann (s. u.). Ob in Zukunft der Einsatz neoadjuvanter (Chemo-)Therapieansätze häufiger eine histologische Sicherung auch bei resektablem Befund erforderlich machen wird, bleibt aktuell ebenso spekulativ wie das Potenzial repetitiver Biopsien zur Identifikation eines molekular gestützten Therapieansatzes in der palliativen Situation.
Hinsichtlich der histopathologischen Sicherung s. auch das Kapitel „Histopathologische und molekulare Diagnostik“.
#
#
3.4 Operative und interventionelle Therapieverfahren
3.4.1 Resektion
4.22 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Eine Resektion eines pCCA, dCCA oder iCCA soll erfolgen, wenn eine komplette Resektion (R0-Resektion) möglich erscheint. |
|
Starker Konsens |
Die radikale chirurgische Entfernung allen Tumorgewebes stellt gegenwärtig die einzige kurative Behandlung des nicht fernmetastasierten iCCA und pCCA dar. Multifokalität (bei iCCA), Lymphknotenmetastasen (N1) und eine Gefäßinvasion sind die wichtigsten prognoserelevante Faktoren, stellen jedoch keine Kontraindikation dar, sofern eine R0-Resektion erreichbar scheint [576] [577] [578] [579] [580] [581] [582]. Häufig erfordert die chirurgische Behandlung von iCCA und pCCA ausgedehnte Leberresektionen [583] [584] [585]. Postoperativ sollte eine adjuvante Therapie erfolgen (siehe BILCAP-Studie (Capecitabine compared with observation in resected biliary tract cancer)) [586]. Bei initial irresektablem oder sogenanntem borderline-resektablem iCCA kann nach einer Downsizing Therapie eine Resektion erwogen werden [587].
4.23 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Eine Resektion eines Gallenblasenkarzinoms soll erfolgen, wenn klinisch keine Fernmetastasen vorliegen (cM0) und eine komplette Resektion (R0-Resektion) möglich erscheint. |
|
Starker Konsens |
Die langfristige Prognose des Galleblasenkarzinoms ist insgesamt sehr schlecht, mit einer 5-Jahre-Überlebensrate zwischen 5–15 %. Wenn der Krebs jedoch in einem frühen Stadium erkannt und angemessen behandelt wird, können 5-Jahres-Überlebensraten von 75 % erreicht werden [588] [589]. Es besteht ein internationaler Konsens darüber, dass die R0-Resektion der stärkste prognostische Faktor für das Langzeitergebnis und die Heilungschancen bei Patienten mit Gallenblasenkarzinom ist [589]. In diesem Zusammenhang bestimmt die Tiefe der Invasion durch die Gallenblasenwand die chirurgische Standardbehandlung des Gallenblasenkarzinoms [588] [589] [590].
Bei Tis- und T1a-Tumoren ist eine Cholezystektomie ohne weitere Resektion erforderlich [589]. Beim Gallenblasenkarzinom der Kategorie ab T1b ist eine zusätzliche Leberresektion mit systematischer Lymphadenektomie indiziert, sofern der Patient für die Operation geeignet ist. Sowohl die Gallenblasenbettresektion, als auch die Segmentresektion IVb und V sind ein onkologisch akzeptables Verfahren, vorausgesetzt, es wird eine R0-Resektion durchgeführt. Eine erweiterte Hepatektomie ist in der Regel bei Patienten mit lokal fortgeschrittenem Tumor mit biliärer und vaskulärer Beteiligung erforderlich, um eine R0-Resektion zu erreichen [588] [589].
Eine routinemäßige Resektion der Hauptgallengänge ist weder indiziert noch empfohlen, da sie die postoperative Morbidität erhöht, die Anzahl der entfernten Lymphknoten nicht erhöht und nicht mit einer Verbesserung des Gesamtüberlebens assoziiert ist. Eine Gallengangsresektion ist nur in Fällen indiziert, in denen ein positiver zystischer Ductusrand zum Zeitpunkt der ursprünglichen Resektion beseitigt werden muss, bei Gallenblasenkrebs mit direkter Infiltration des hepatoduodenalen Ligaments und in Fällen mit intensiver postoperativer Fibrose mit signifikanter Lymphadenopathie des hepatoduodenalen Ligaments, um eine adäquate Lymphadenektomie zu ermöglichen [589].
Beim Gallenblasenkarzinom der Kategorie ≥ 1b erfordert die „Standard“-Lymphknotendissektion die Entnahme von mindestens 6 Lymphknoten und umfasst N1 (zystische 12c, pericholedochale 12b, Hilusknoten 12 h, Knoten der eigentlichen Leberarterie 12a) und N2 (peripankreatische 13a, periportale 12 p, periduktale und gemeinsame Leberarterie). Eine Skelettierung der Leberarterie, der Pfortader und des Gallenganges wird empfohlen. Das Befallen von Lymphknoten aus Truncus coeliacus und para-aortal, sollte als M1-Krankheit betrachtet werden, und die Entnahme dieser Lymphknoten ist nicht mit einem verbesserten Überleben assoziiert [589].
4.24 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Wird bei einer Cholezystektomie intra- oder postoperativ ein Carcinoma in situ (Tis) oder ein Mukosakarzinom (T1a) festgestellt, sollte bei Vorliegen einer R0-Situation (D. cysticus) keine Nachresektion erfolgen. |
|
Starker Konsens |
Das inzidentelle Gallenblasenkarzinom ist definiert als ein Karzinom, das bei der histologischen Untersuchung der Probe nach Standard-Cholezystektomie entdeckt wird, da frühe Gallenblasenkarzinome keine spezifischen Symptome aufweisen. Das inzidentelle Gallenblasenkarzinom repräsentiert etwa 70 % der Gallenblasenkarzinome in nichtendemischen Gebieten und tritt zwischen 0,2 % und 3 % der Patienten auf, die sich einer Cholezystektomie unterziehen.
Ein Gallenblasenkarzinom der Kategorie T1a ist definiert als Karzinom, das auf die Schleimhaut beschränkt ist, und T1b als Karzinom, das auf die Muscularis-Schleimhaut beschränkt ist. Patienten mit einem auf die Schleimhaut beschränkten Karzinom (T1a oder weniger) zeigten 5-Jahres-Überlebensraten von bis zu 100 % nach alleiniger Cholezystektomie. Deshalb wird bei Patienten mit inzidentellem Gallenblasenkarzinom der Kategorie Tis und T1a eine einfache Cholezystektomie empfohlen. Eine erweiterte Resektion ist nicht erforderlich [588] [589] [591].
4.25 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei intra- oder postoperativem Nachweis eines Gallenblasenkarzinoms der Kategorie ≥ T1b, soll bei kurativem Ansatz eine onkologische Resektion oder Nachresektion erfolgen. |
|
Starker Konsens |
Aktuelle Leitlinien für die Behandlung von inzidentellen Gallenblasenkarzinomen empfehlen eine Nachresektion bei T1b-, T2- und T3-Läsionen, es sei denn, dies ist durch eine fortgeschrittene Erkrankung oder einem schlechten Allgemeinzustandes des Patienten kontraindiziert [589] [592].
Es besteht Konsens, dass die R0-Resektion der stärkste prognostische Faktor für das Langzeitergebnis und die Heilungschancen bei Patienten mit Gallenblasenkarzinom ist [589] [593]. Diesbezüglich zeigten Lee et al. in einer multivariaten Analyse bei Patienten mit einem T1b-Tumor, dass die R1 / R2-Resektion und die Lymphknotenmetastasierung eine schlechte Prognose signifikant vorhersagten, wobei die 1-Jahres-Überlebensrate bei T1b-Tumoren, die sich keiner radikalen Exzision unterziehen, auf 50 % sank [594].
Die Reoperation sollte so früh wie möglich durchgeführt werden, sobald das endgültige histopathologische Staging vorliegt, die Metastasenaufarbeitung abgeschlossen ist und der Patient für die Reoperation geeignet ist, die je nach Überweisungszeitpunkt und Krankheitsstadium 2–4 Wochen nach der Cholezystektomie erfolgen kann. Eine radikale Reoperation wird für Patienten mit der Krankheit ≥ pT1b empfohlen [589].
Eine radikale Cholezystektomie mit Lymphadenektomie sollte bei Patienten mit T1b-GBCA empfohlen werden, bei denen kein erhöhtes Risiko für postoperative Komplikationen besteht [591] [593].
Die Resektion der extrahepatischen Gallenwege ist die Standardoperation bei Gallenblasenkarzinomen, die (makroskopisch oder mikroskopisch) den Hals der Gallenblase und/oder den D. Cysticus betreffen [589].
4.26 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei einem isolierten intrahepatischen Rezidiv eines CCA kann eine erneute Resektion durchgeführt werden, wenn eine komplette Resektion (R0-Resektion) möglich erscheint. |
|
Konsens |
Nach Resektion eines iCCA kann bei einem auf die Leber beschränkten Tumorrezidiv ein erneuter Resektionsversuch unternommen werden. Die Überlebensraten sind denen nach Primäroperation vergleichbar [595] [596]. Isolierte Rezidive eines perihilären Cholangiokarzinoms sind nur selten einer chirurgischen Therapie zugänglich.
4.27 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Wenn Rezidive nach einer vorangegangenen Operation nicht erneut operativ versorgt werden können, können diese mit thermischer Ablation behandelt werden, wenn hierdurch eine komplette Ablation möglich erscheint. |
|
Starker Konsens |
Für die thermische Ablation bei iCCA Rezidiven nach Resektion konnten in mehreren Studien gute Ergebnisse gezeigt werden [597] [598] [599] [600] [601] [602] [603] [604] [605]. Hier konnte in 2 kontrollierten Studien bei insgesamt 230 Patienten [598] [599] bei vergleichbaren Patientencharakteristiken ein vergleichbares progressionsfreies Gesamtüberleben von 31,3 Monaten für die Resektion versus 29,4 Monaten für die Ablation [598] bei deutlich höherer Komplikationsrate für die Resektion im Vergleich zur Ablation (13,8 %, vs. 5, 3 % in [598] und 46,9 % vs. 3,9 % in [599] erreicht werden. In einer weiteren Studie von Kim JH et al. [606] wurden insgesamt 20 Patienten mit 29 rezidivierenden iCCAs einer perkutanen RFA unterzogen. Alle Patienten hatten sich einer kurativen Resektion des primären iCCA unterzogen. Die Tumorgröße lag zwischen 0,7 cm und 4,4 cm in der maximalen Größe (Mittelwert 1,9 cm; Median 1,5 cm). Die technische Effektivität von der Ablation betrug 97 % (28/29) der rezidivierenden iCCAs. Das mittlere progressionsfreie Überleben des lokalen Tumors betrug 39,8 Monate, und die kumulative progressionsfreie 6-Monate- und 1-, 2- und 4-Jahres-Überlebensrate betrug 93 %, 74 %, 74 % und 74 %. Das mediane Gesamtüberleben nach Ablation betrug 27,4 Monate und die kumulative Gesamtüberlebensrate von 6 Monaten und 1, 2 und 4 Jahren betrug 95 %, 70 %, 60 % und 21 %. Es gab in dieser Fallserie zwei Komplikationen (einen Leberabszess und eine biliäre Striktur, somit 7 % pro Behandlung) während des Follow-ups, aber keine Todesfälle.
#
3.4.2 Lebertransplantation
4.28 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Eine Lebertransplantation für das iCCA soll außerhalb von Studien nicht erfolgen. |
|
Starker Konsens |
Derzeitig stellt das iCCA eine Kontraindikation für eine Lebertransplantation in den meisten Ländern weltweit aufgrund früher Tumorrezidive und schlechten Überlebensraten (5-Jahres-Gesamtüberleben zwischen 35 % und 47 %) dar [494] [538] [607].
Zu beachten ist, dass dies nicht immer Intention-to-Treat Analysen sind, sondern die Diagnose eines iCCA vielfach erst nach der Lebertransplantation im finalen histologischen Befund der Explantatleber gestellt wird, die Lebertransplantation jedoch ursprünglich mit der Indikation eines HCCs durchgeführt wurde [608] [609].
Im Fall eines iCCA < 2 cm (d. h. „sehr frühes“ iCCA) scheint die Lebertransplantation jedoch mit ähnlichen Ergebnissen wie bei einem HCC innerhalb der Mailand-Kriterien einherzugehen [610]. Dieses Konzept wurde durch eine weitere Studie validiert [611].
Lunsford et al. haben vor kurzem ein Protokoll für die Lebertransplantation bei Patienten mit lokal fortgeschrittenem, inoperablem iCCA nach neoadjuvanter Chemotherapie erstellt. Voraussetzung war eine dauerhafte Regression oder zumindest kein Tumorprogress unter Chemotherapie. 6 von 21 rekrutierten Patienten wurden transplantiert und hatten eine Gesamtüberlebensrate nach 5 Jahren von 83 % (5 der 6 Patienten), 3 davon ohne Rezidiv [612].
4.29 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Bei irresektablem, nichtmetastasiertem pCCA, welches die Mayo-Kriterien erfüllt, kann eine Lebertransplantation unter Studienbedingungen erwogen werden. |
|
Level of Evidence |
||
Starker Konsens |
Mayo-Kriterien |
Irresektables pCCA oder pCCA in PSC-Zirrhose |
Tumor-Durchmesser < 3 cm |
keine LK-Metastasen (obligate chirurgische Exploration) |
keine extrahepatische Tumormanifestation |
histologisch/zytologisch bestätigtes pCCA oder CA19–9 > 1000 kU/L mit Vorliegen radiologischer Zeichen einer malignen Stenose |
Die Lebertransplantation scheint bei irresektablen, nichtmetastasierten pCCA eine valide Option mit vielversprechenden Ergebnissen (Gesamtüberlebensrate > 50 % nach 5 Jahren). Die Rolle der neoadjuvanten Therapie ist bislang nicht geklärt.
Die meisten Daten zur Lebertransplantation stammen aus den USA, u. a. aus dem Zentrum mit der größten Erfahrung, der Mayo Klinik in Rochester [615]. In diesem Zentrum wurde ein neoadjuvantes Protokoll etabliert, das auf einer Kombination aus Strahlentherapie (45 Gy external beam radiation mit ggf. intraluminaler Brachytherapie) und Chemotherapie (5-FU über 3 Wochen gefolgt von Capecitabin) basiert. Lymphknotenmetastasen stellen eine absolute Kontraindikation dar. Sie sollen im Rahmen einer explorativen Laparotomie vor Lebertransplantation ausgeschlossen werden. Bis dato wurden mehr als 160 Patienten gemäß diesem Protokoll transplantiert mit einem 5-Jahres-Gesamtüberleben zwischen 50 % bis 80 %, abhängig von verschiedenen Unter- und Risikogruppen [613] [614] [615] [616] [617]. Eine prospektiv-randomisierte Studie zum Vergleich Lebertransplantation versus palliative Therapie existiert bislang nicht.
In einer Analyse von Mantel et al. von ELTR-Daten (105 Patienten mit pCCA) konnte kein Nutzen durch eine neoadjuvante Therapie gefunden werden [618]. In einer Subgruppe von allerdings nur 28 Patienten, welche die Mayo-Auswahlkriterien erfüllten (d. h. Tumor-Durchmesser < 3 cm, keine LK-Metastasen, keine extrahepatische Erkrankung, histologisch bestätigtes pCCA oder CA19–9 > 100 kU/L mit Vorliegen radiologischer Zeichen einer malignen Stenose), wurde keine neoadjuvante Therapie durchgeführt. Dennoch wies diese Subgruppe eine 5-Jahres-Überlebensrate von 59 % auf. Die übrigen 77 Patienten, die die Mayo-Kriterien nicht erfüllten, zeigten schlechte Ergebnisse mit einem 5-Jahres-Gesamtüberleben < 20 % [618].
#
3.4.3 Interventionelle Therapieverfahren
3.4.3.1. Perkutane Ablation
4.30 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Lokale Verfahren (RFA/MWA) können nach Beschluss des Tumorboards durchgeführt werden, falls keine Resektion möglich ist. |
|
Starker Konsens |
Grundsätzlich ist die thermische Ablation beim iCCA bis 3 cm Durchmesser möglich und klinisch effektiv [619] [620] [621] [622] [623] [624] [625] [626] [627] [628]. Mit modernen, effektiveren Ablationstechniken und in Kombination mit selektiver Embolisation ist eine Ablation beim iCCA auch bis 5 cm Durchmesser in Analogie zum Vorgehen beim HCC möglich [629]. Die thermische Ablation wird in den EASL guidelines mit einer Empfehlung C2 als „kann Option“ für „kleine Läsionen, die nicht chirurgisch zugänglich sind“ aufgeführt [630]. Es wird empfohlen, weitere klinische Studien durchzuführen“. Auch in den NCCN guidelines V3–2019 ist die thermische Ablation als Therapie des irresektablen iCCA explizit genannt [631].
Mehrere retrospektive Studien liegen vor, die den Wert der thermischen Ablation im historischen Vergleich mit akzeptablen Überlebensraten zeigen. In der bisher größten single center Studie mit 107 Patienten und 171 Tumoren [628] zeigte die Ablation bei primärem iCCA ein PFS nach 6, 12, 18 und 24 Monaten von 67,4 %; 41,5 %; 18,2 % und 8,7 % und ein OS nach 1, 3 und 5 Jahren von 93,5 %, 39,6 % und 7,9 %. In einer Metaanalyse [621] betrugen die gepoolten 1-Jahres-, 3-Jahres- und 5-Jahres-Überlebensraten 82 % (95 % CI: 72 %; 90 %), 47 % (95 % CI: 28 %; 65 %) und 24 % (95 % CI: 11 %; 40 %).
#
3.4.3.2 Intraaterielle Therapieverfahren
4.31 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Beim fortgeschrittenen iCCA ohne extrahepatischen Befall, können intraarterielle Verfahren ab der Zweitlinie oder additiv zur Chemotherapie, nach Vorstellung im Tumorboard, erfolgen. |
|
Level of Evidence |
3: Aktuelle Recherche hierzu ist erfolgt, keine Änderung des Inhalts |
|
Starker Konsens |
Die arteriellen Verfahren sind in zahlreichen Studien evaluiert. Aufgrund der geringen Patientenzahl des seltenen Tumors gibt es bisher weder für eine primäre noch für eine sekundäre lokale Therapie randomisierte Studien, allerdings zahlreiche Kohortenstudien, Metaanalysen und systematische Reviews. Auch in einer systematischen Recherche 2021 ergaben sich hier keine prospektiven Daten [632] [633]. Die aktuellen Studien schließen hauptsächlich Patienten mit einem Befund der auf die Leber begrenzt ist ein. Einzelne Subgruppen zeigen jedoch auch ein Ansprechen, wenn ein extrahepatischer Befall vorliegt, der jedoch nicht Prognose bestimmend ist. Im Tumorboard kann daher in Einzelfällen beim inoperablem iCCA auch bei extrahepatischem Befall, der nicht Prognose bestimmend ist, eine intraarterielle Therapie in Erwägung gezogen werden.
Als primäre Therapie werden selektive transarterielle Verfahren erwogen, falls bei Patienten eine Kontraindikation für eine systemische Chemotherapie vorliegt, bzw. eine systemische Chemotherapie abgelehnt wird. Als sekundäre Therapie werden TACE, TARE/SIRT und HAI allein bei Nichtansprechen oder kombiniert mit systemischer Therapie in Einzelfällen diskutiert. In den von Bridgewater publizierten „Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma“ der International Liver Cancer Association (ILCA) aus dem Jahr 2014 [538] wurde folgende Einschätzung getroffen: TACE und TARE zeigen in Einzelfällen ein gutes Ansprechen mit vertretbarer Toxizität bei Patienten mit iCCA. Allerdings schließen die Autoren zum damaligen Zeitpunkt, dass aufgrund einer unzureichenden Studienlage noch keine allgemeine Empfehlung für diese Therapien ausgesprochen werden kann. Eine Phase-III-Studie zu dieser Fragestellung ist nach wie vor nicht berichtet worden, somit bleiben TACE und TARE/SIRT derzeit Einzelfällen vorbehalten nach Besprechung im interdisziplinären Tumorbord.
Die lokoregionäre Therapie wird in mehreren Metaanalysen als wirksam hervorgehoben. Die TACE erreicht beim irresektablen iCCA allein ein medianes Gesamtüberleben von 12–17 Monaten und in Kombination mit systemischer Therapie einen zusätzlichen Überlebensvorteil von 2–12 Monaten [588] [590] [591] [592] [593] [599]. Cuchetti et al. [627] konnten in einer Metaanalyse bei Patienten mit „mass-forming“ iCCA (OS: 19,9 Monate), bei TARE-naiven Patienten (OS: 24 Monate) und in Kombination mit systemischer Chemotherapie (OS: 19,5 Monate) die besten Überlebensraten erreichen. Solitäre Tumoren haben nach TARE ein höheres OS als multifokale Tumoren [628] (25 vs. 6,1 Monate [629]). Ähnliche Unterschiede zeigen sich zwischen gut und gering differenzierter Histologie [629] (18,6 vs. 9,7 Monate [597]).
Yang et al. fassen in einem systematischen Review 20 Arbeiten zusammen, allerdings konnte aufgrund der Datenheterogenität keine Metaanalyse durchgeführt werden. Dennoch zeigt diese Arbeit, dass transarterielle Verfahren sicher und effektiv sein können mit einem medianen Überleben von 12,4 Monaten nach TARE, interessanterweise trotz 33 % der Patienten mit extrahepatischen Manifestationen [631]. Aufgrund der Daten einer gepoolten Analyse von 12 Studien mit einem medianen Überleben von 15,5 Monaten und einer Ansprechrate von 28 % erwähnt die 2016 erschienene ESMO-Leitlinie [496] explizit auch die Möglichkeit einer TARE nach Versagen der Systemtherapie. In einer multizentrischen Auswertung [634] in 5 Krankenhäusern zeigte sich kein OS Unterschied zwischen cTACE (13,4 Monate), DEB TACE (10,5 Monate), alleiniger Embolisation (TAE; 14,3 Monate) oder TARE (11,3 Monate) (p = 0,46). Vergleichbare Daten zum OS bei TACE und TARE hat auch Boehm et al. [624] in einer Metaanalyse berichtet, wobei hier die HAI zwar eine höhere Toxizität aber auch ein signifikant längeres OS aufwies.
Ein interessantes neues interventionell-radiologisches Konzept stellt die Chemosaturation mit einer Erhöhung der lokalen Dosis und Reduktion der Toxizität dar. Dieser Ansatz wird derzeit in Studien evaluiert und könnte in Zukunft einen Fortschritt für Patienten mit iCCA zeigen [635].
Sowohl mit TARE als auch mit HAI wurde in Studien [629] [636] [637] über Downstaging berichtet, das bei einigen Patienten eine R0-Resektion ermöglichte. [638]. Dies bestätigt die Notwendigkeit der erneuten Beurteilung der Patienten nach intraarteriellen Therapien in einem multidisziplinären Team bei gutem Ansprechen.
#
#
3.4.4 Endoskopische Therapieverfahren
3.4.4.1 Präoperative biliäre Drainagen
4.32 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Indikation für eine präoperative biliäre Drainage sollte interdisziplinär getroffen werden. Bei Vorliegen einer Cholangitis sollte eine präoperative biliäre Drainage umgehend erfolgen. |
|
Starker Konsens |
Die Indikation zur biliären Drainage stellt sich entsprechend dem Behandlungsziel. Hierbei kann eine präoperative biliäre Drainage (PBD) bei kurativ intendierter Resektion oder eine palliative Drainage in Frage kommen. Darüber hinaus hängt die Behandlungsstrategie von der Lokalisation des Gallenwegverschlusses (intrahepatisch, hilär, extrahepatisch) ab. Ein weiterer Aspekt ist der Zugangsweg: Die biliäre Drainage kann grundsätzlich perkutan-transhepatisch, transpapillär oder transgastrisch/transduodenal erfolgen.
Wenn eine kurativ intendierte Resektion möglich ist, ist diese die bevorzugte Behandlung für Patienten mit hilärem oder extrahepatischem Cholangiokarzinom. Etwa 25 % bis 35 % dieser Patienten sind Kandidaten für eine PBD beim hilären CCA. Die Frage der Indikationsstellung zu einer PBD ist allerdings nicht abschließend beantwortet. Die Evidenz ist beschränkt und fußt überwiegend auf retrospektiven Analysen und nur vereinzelt auf prospektiven randomisierten Studien. Die Hyperbilirubinämie wurde in einer kürzlich veröffentlichte single center Studie als wichtigster modifizierbarer Risikofaktor für das negative, frühe postoperative Outcome des Patienten beobachtet [639]. Es werden hierbei unterschiedliche cut-off levels (orientierend an unterschiedlichen Resektionsausmaßen) angegeben, eine ausreichende Evidenz für einen entsprechenden Wert gibt es nicht. Andererseits kann eine PBD selbst das frühe postoperative Outcome des Patienten negativ beeinflussen, bspw. durch Komplikationen der interventionellen Therapie. Es wird zudem eine erhöhte Morbidität auch bei erfolgreicher Drainage gefunden und bspw. eine Ursache im möglichen Einschleppen von Keimen in das Gallenwegsystem durch die interventionelle Therapie vermutet. Unstrittig ist aber die Notwendigkeit einer PBD wenn eine Cholangitis primär vorliegt.
Die PBD muss für das intrahepatische Gallengangskarzinom und das perihiläre Gallengangskarzinom getrennt betrachtet werden. Intrahepatische Gallengangskarzinome gehen nur selten mit einer Kompression der zentralen Gallenwegsstrukturen und einem Ikterus einher. Eine präoperative Gallengangsdekompression ist in diesen Fällen daher nur vor ausgedehnten Resektionen und Beteiligung der Gallenwege des „Future Liver Remnant“ erforderlich. Auch die Frage nach dem technischen Vorgehen bei der präoperativen Drainage ist nicht abschließend geklärt. Abgesehen von der lokalen Expertise im endoskopischen oder perkutanen Vorgehen, liegen auch im Studiensetting widersprüchliche Ergebnisse vor. Dies betrifft sowohl das Auftreten von Komplikationen durch die jeweilige Prozedur als auch die Erfolgsraten, wobei diese bei der PTCD etwas höher zu sein scheint.
Es liegen zwei Metaanalysen mit bis zu vier retrospektiven nicht-randomisierten Studien vor [640] [641]. In diesen wird eine vergleichbare bzw. etwas höhere Morbidität nach ERCP im Vergleich zur PTCD gefunden. Eine randomisierte Studie (Einschlusskriterien: Bilirubin > 2,9 mg/dl, geplante erweiterte Leberresektion) wurde vorzeitig beendet, da in der PTCD-Gruppe eine signifikant höhere (Gesamt)-Mortalität (41 % von 27 Patienten) als in der endoskopisch gelegten Drainage-Gruppe (11 % von 27 Patienten) (p = 0,03) vorlag. Allerdings war bei 56 % der Patienten zusätzlich zur endoskopisch gelegten Drainage eine perkutan gelegte Drainage erforderlich. Zudem entwickelten 16 (59 %) Patienten nach PTCD eine Cholangitis vs. 10 (37 %) nach ERCP [642].
Wahrscheinlich hat auch die jeweilige Expertise im Zentrum einen Einfluss auf das Outcome bei PBD. In einer multizentrischen, retrospektiven Analyse aus China zeigte sich im Vergleich einer ERCP vs. PTCD eine höhere periinterventionelle Morbidität in der ERCP Gruppe [643]: Nach ERCP hatten 37 % der Patienten eine Cholangitis und 17 % eine Pankreatitis gegenüber von 22 % mit Cholangitis und 2 % mit Pankreatitis nach PTCD-Anlage.
Die in Japan bevorzugt gelegte nasobiliäre Drainage erscheint in westlichen Ländern wenig praktikabel [644], zudem scheint sie keinen Vorteil gegenüber einer Plastikstentanlage zu bieten [645].
Das Risiko einer Tumorzellverschleppung durch den Zugangsweg der Drainage ist zwar selten, wird nach PTCD aber beobachtet – nicht aber nach endoskopischer Therapie [646], [647].
Vor Augmentationsverfahren der Leber (z. B. Pfortaderembolisation) sollte zumindest eine biliäre Drainage des zukünftigen Restlebergewebes (Future Liver Remnant) erfolgen [648]. Die Drainage des zu entfernenden Lebergewebes hat nur einen geringen Einfluss auf die Hypertrophieinduktion [649].
Zusammenfassend sollte die Indikation zu einer PBD in einem hepatobiliären Zentrum erfolgen; hier ist eine interdisziplinäre Planung der Behandlung unter Einschluss des chirurgischen, des interventionellen/endoskopischen und radiologischen Behandlers möglich. Die interventionelle Therapie muss hierbei auch durch alternative Drainagewege möglich sein, da eine primär insuffiziente Drainage nicht selten ist und dann eine alternative Therapiestrategie ergriffen werden muss.
Ergänzende Literaturübersicht s. Anhang ([Tab. 12])
#
3.4.4.2 Palliative biliäre Drainage
4.33 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Eine palliative biliäre Drainage soll Patienten mit symptomatischem Gallenwegsverschluss angeboten werden. Eine palliative Drainage sollte in einem erfahrenen Zentrum durchgeführt werden, da hier auch alternative Drainageverfahren zur Verfügung stehen. |
|
Starker Konsens |
Die interventionelle Drainage des Gallenwegsystems bei malignem Gallenwegsverschluss ermöglicht eine Symptomverbesserung, eine Verbesserung der Leberfunktion und die Behandlung einer Cholangitis. Mit einem dieser Therapieziele ist eine palliative biliäre Drainage bei biliären Karzinomen angezeigt. Die interventionelle Vorgehensweise ist hierbei abhängig von der Lokalisation des Verschlusses bzw. dem vorliegenden biliären Tumor (intrahepatisches vs. perihiläres vs. distales Cholangiokarzinom). Das Vorgehen wird darüber hinaus von der verfügbaren Technik mitbeeinflusst (ERCP, PTCD, EUS-gesteuertes biliäres Drainageverfahren). Eine detaillierte präinterventionelle Behandlungsplanung auf der Basis aussagekräftiger Bildbefunde (in der Regel MRCP) ist dabei unabdingbar [650]. Die Behandlungsintention sollte vor der Intervention definiert und dokumentiert werden und muss das Ziel einer kompletten vs. inkompletten Drainage einschließen.
Grundsätzlich kann die Lebensqualität bei Hyperbilirubinämie durch eine erfolgreiche Drainage verbessert werden [651]. Für ein verlängertes Überleben durch eine erfolgreiche Drainage in der Palliation gibt es zahlreiche Hinweise [652]. Es wird eine 30-Tages-Mortalität bei der distalen biliären Stenose von 2 bis 20 % und von 9 bis 20 % in der perihilären Stenose berichtet [653] [654] [655].
Randomisierte Studien fokussieren überwiegend auf den distalen, periampullären malignen Gallenwegsverschluss [656] [657]. Hier kann eine primär retrograde endoskopische Drainage in der Regel empfohlen werden. Ein selbstexpandierender Metallstent (SEMS) sollte als primäre Drainageoption gewählt werden und scheint einer Plastikendoprothese überlegen [658]. Bei palliativer Indikation kann ein ummantelter, entfernbarer oder nicht-ummantelter SEMS eingesetzt werden. Die Durchführung einer EUS-gesteuerten Drainage kann dann einer PTCD nach frustranem ERCP-Versuch überlegen sein [659] [660]. Erste randomisierte Studien sehen bereits im primären Drainageversuch die EUS-gesteuerte Technik der ERCP ebenbürtig [661] [662].
Beim perihilärem, symptomatischen Gallenwegsverschluss werden PTCD oder ERCP mit unilateraler oder bi-/trilateraler Drainage eingesetzt. Eine EUS-gesteuerte Drainage kommt nur in Ausnahmefällen (z. B. transgastrische Drainage der linken Leber) in Frage. Eine Drainage von mindestens 50 % des (mutmaßlich funktionalen) Leberanteils wird empfohlen, wobei eine Kontrastierung von nicht drainierten Gangsegmenten vermieden werden sollte [663].
Randomisierte Studien berichten von höherem Erfolg und niedrigeren Komplikationen der PTCD vs. ERCP beim perihilären Gallenwegsverschluss [652] [653] [654] [655] [656] [657] [658] [659] [660] [661] [662] [663] [664] [665], aber die Lebensqualität könnte bei dem inneren Drainageverfahren höher sein [666].
Einige frühere randomisierte Daten sprechen für eine unilaterale Drainage, indem auch nur dieser Gangabschnitt dargestellt und intubiert wird [650] [667]. Um eine Cholangitis durch abgehängte Gangareale zu vermeiden, ist allerdings eine effektive Drainage aller dargestellten Gänge hilfreich [668] [669]. Das weist auch auf die für die klinische Situation unzureichende Vereinfachung bei Studien und der einzelnen Patientenbehandlung hin, die im uni- vs. bilateralen Drainageansatz zu sehen ist. Da das Gallenwegsystem zumindest drei Doppelsegmente umfasst, kann eine komplette Drainage in fortgeschrittenen perihilären Obstruktionen erst mit einem Dreifach-Stenting erreicht werden. Ein uni- vs. bilateraler Ansatz in Studien sollte daher zukünftig für die Zielbestimmung einer kompletten vs. inkompletten Drainage verlassen werden. Dies wird in der Studienkonzeption wie auch in der Behandlungsplanung in der Klinik nicht immer berücksichtigt. Randomisierte Studien konnten die effektive Drainage mittels – in der Regel bilateralen – SEMS zeigen [652] [659] [670]. Dabei scheint eine „SEMS-neben-SEMS“ einer „SEMS-in-SEMS“ Technik gleichgestellt zu sein [659]. Es kommen nur nicht-ummantelte, damit nicht entfernbare SEMS in Frage, damit Seitenäste durch die Maschen des Stents drainiert werden können. Eine komplette Drainage muss als Ziel erreichbar sein. Das Outcome im weiteren Verlauf nach SEMS Einlage im Vergleich zu Plastikstents ist nicht belegt. Eine Reintervention bei Komplikationen oder erneuter Symptomatik scheint nach Implantation von permanenten SEMS erschwert. Eine primäre Therapie mit multisegmentaler Plastikstenteinlage kann beim perihilären biliären Verschluss damit auch weiterhin als vorrangiger Therapieansatz gesehen werden.
Die Drainage eines Gangabschnitts, bei dem bereits eine Atrophie der abhängigen Lebersegmente eingetreten ist, sollte nicht erfolgen, da erhöhte Komplikationsraten und keine wesentliche Verbesserung des Patienten-Outcomes zu erwarten sind [671].
Da ein Drainageversuch mit einer Technik – bspw. der ERCP – frustran verlaufen kann, sollte zumindest eine alternative Technik – bspw. PTCD und/oder EUS-gesteuerte biliäre Drainage – verfügbar sein. Die Häufigkeit, mit der eine biliäre Drainage im Zentrum vorgenommen wird, scheint einen wesentlichen Einfluss auf den Erfolg des Eingriffs und das Outcome beim Patienten zu haben [672] [673]. Beides spricht für eine Behandlung dieser Patienten im erfahrenen Zentrum.
Literaturübersicht s. Anhang ([Tab. 13])
#
3.4.4.3 Intraduktale lokoregionäre Therapieverfahren
4.34 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Intraduktale, lokalablative Verfahren (Photodynamische Therapie und intraduktale RFA) können nach Beschluss des Tumorboards durchgeführt werden, um eine effektive Palliation zu ermöglichen. |
|
Starker Konsens |
Intraduktale, lokalablative Verfahren können bei einem lokal begrenzten Tumor in Betracht gezogen werden. Es handelt sich hierbei um eine palliative Behandlungsform. Für eine Outcome-Verbesserung mit einer lokalablativen Therapie bei einem metastasierten Tumor finden sich keine Belege. Es stehen die Photodynamische Therapie (PDT) und die intraduktale Radiofrequenzablation (iRFA) zur Verfügung, wobei letztere sich von der perkutanen RFA wesentlich unterscheidet. Die lokalablativen Therapien werden in aller Regel mit einer endoskopischen Stenttherapie kombiniert und sind nur in dieser Kombination durch Studien geprüft. Hierdurch ist eine lokale Tumordestruktion über wenige Millimeter zu erreichen. Die iRFA wird nach Heranführen einer bipolaren Sonde mittels ERCP in den tumorös stenosierten Gallenwegsabschnitt durch Anwendung von hochfrequentem Wechselstrom durchgeführt [674]. Mit der PDT wird ebenfalls eine lokale Tumordestruktion über wenige Millimeter Eindringtiefe erreicht. Hierfür muss allerdings einige Zeit vor einer lokalen Lichtbestrahlung des Tumorareals in einer ERCP ein Photosensitizer intravenös appliziert werden, der die Tumorzellen besonders lichtempfindlich werden lässt und diese sowie Zellen der Neovaskularisation zerstört [675]. Bei der PDT werden unterschiedliche Photosensitizer eingesetzt. Porfimer-Natrium (Photofrin) ist der am häufigsten genutzte Sensitizer, Temoporfin (Foscan) und Dihematoporphin Ether (Photosan-3) sind weitere Produkte. Photofrin ist zugelassen für die Behandlung von Patienten mit nicht resezierbarem perihilären Cholangiokarzinom. 5-Aminolävulinsäure scheint beim Gallenwegskarzinom nicht wirksam [676]. Vergleiche einer Effektivität der Sensitizer liegen nicht vor.
Eine randomisierte Studie zeigte ein verbessertes Überleben im Vergleich zu einer alleinigen Stenttherapie für die iRFA [316] und zwei randomisierte Studien einen Überlebensvorteil für die PDT [677] [678]. Eine randomisierte Studie zeigte ein schlechteres Outcome für die PDT im Vergleich zum Stent bei Patienten mit lokal fortgeschrittenen und metastasierten perihilären Tumoren [679]. In einer gepoolten Analyse wird ein Überleben von 413 Tage vs. 183 Tage für die PDT gegenüber der alleinigen Stenttherapie gefunden [675]. In der Kombination mit einer systemischen Chemotherapie zeigte sich die PDT der PDT + Stent-Gruppe und der „Stent-allein“ Gruppe in retrospektiver Analyse überlegen [680] [681].
Die Auswahl einer PDT gegenüber einer IRFA ist durch direkte Vergleichsstudien nicht abgesichert [682] [683]. Die IRFA scheint technisch einfacher und mit hoher primärer Erfolgsrate verbunden; ob die Komplikationsrate der iRFA gegenüber der PDT vergleichbar ist, ist nicht klar [674]. Für die PDT sprechen die breitere Erfahrung und die größere Anzahl an in Studien eingeschlossenen Patienten [684], sowie retrospektive Daten für die Kombination mit der systemischen Chemotherapie.
Literaturübersicht s. Anhang ([Tab. 14])
#
#
3.4.5 Stereotaxie
4.35 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Eine Hochpräzisionsradiotherapie (Stereotactic Body Radiotherapy; SBRT) kann nach Beschluss in einer Tumorkonferenz bei fehlenden alternativen Therapieoptionen angeboten werden. |
|
Starker Konsens |
Eine Reihe von Autoren hat in den vergangenen Jahren berichtet, dass nach einer definitiven Radiotherapie die Höhe der Dosis mit einer hohen Lokalkontrollrate und auch mit dem Überleben der Patienten korreliert [685] [686] [687]. Obwohl das zunächst mit einer konventionell fraktionierten Radio(chemo)therapie beobachtet wurde [685] [687], hat die Mehrzahl der Studien der letzten Jahre eine SBRT dafür eingesetzt, welche typischerweise eine Dosiseskalation im Zentrum der Bestrahlungsvolumina verwendet [686] [688] [689]. Die Dosisabhängigkeit gilt sowohl für intrahepatische wie auch für perihiläre CCA. Darüber hinaus ist eine sequentielle Chemotherapie vor und/oder nach der Radiotherapie ein weiterer Faktor für die Verlängerung des Überlebens, und einige Studien haben eine Kombination der Radiotherapie mit einer sequentiellen Chemotherapie durchgeführt [687] [688].
Die Erfahrungen mit SBRT zur Behandlung von Cholangiokarzinomen sind begrenzt. Eine Metaanalyse fasst 226 Patienten in 4 prospektiven [690] [691] [692] [693] und 7 retrospektiven Studien zusammen [688]. Die gepoolte 1-Jahres-Lokalkontrollrate war 81,8 % (95 % CI: 69,4; 89,9 %) wenn die 2 Gy-Äquivalenzdosis (EQD2) ≥ 71.3 Gy war und darunter bei 74,7 % (95 % CI: 57,1 %; 86,7 %). Das mediane Überleben lag bei 13,6 Monaten (10–35,5 Monate). Die berichteten Toxizitäten waren moderat mit < 10 % Akuttoxizität ≥ 3 und 10–20 % Spättoxizität, v. a. als duodenale und gastrale Ulzera.
Die Protonenstrahlbestrahlung ist eine weitere Methode zur Anwendung einer hochdosierten Radiotherapie. Die meisten Daten beschränken sich auf retrospektive Studien mit nur einer Institution. Eine prospektive, multi-institutionelle Phase-II-Studie untersuchte die Wirksamkeit und Sicherheit einer hochdosierten hypofraktionierten Protonentherapie bei intrahepatischen Cholangiokarzinomen (n = 37; daneben auch bei 44 Patienten mit HCC). Eine Dosis von 67,5 Gray-Äquivalenten wurde in 15 Fraktionen angewendet. Die 2-Jahres-Lokalkontroll- und Gesamtüberlebensrate betrug in der Cholangiokarzinom-Kohorte 94,1 % bzw. 46,5 % [353].
Zur interstitiellen Brachytherapie von Cholangiokarzinomen ist die Evidenzlage niedrig. In einer monozentrischen, retrospektiven Serie wurden 15 Patienten mit histologisch gesicherten Tumoren an insgesamt 27 Läsionen mit einer interstitiellen Brachytherapie behandelt. Die mediane Dauer der lokalen Tumorkontrolle betrug 10 Monate und die mediane Überlebenszeit 14 Monate nach der Behandlung [694].
#
3.4.6 Nachsorge
4.36 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Nach Resektion/Ablation eines CCA sollte nach 4–12 Wochen erstmals, im ersten Jahr alle 3 Monate und im zweiten Jahr alle 3–6 Monate ein biphasisches CT oder ein dynamisches MRT durchgeführt werden. |
|
Starker Konsens |
Es liegt keine Evidenz hinsichtlich des genauen Vorgehens bei der Nachsorge vor. Beim praktischen Vorgehen wird nach einer Resektion und Ablation eines Cholangiokarzinoms nach 4–12 Wochen ein biphasisches CT oder dynamisches MRT empfohlen. Im weiteren ersten Jahr alle 3 Monate, im zweiten Jahr alle 3–6 Monate. Die Nachsorge sollte für insgesamt 5 Jahre durchgeführt werden und ab dem dritten Jahr eine jährliche Schnittbildgebung beinhalten. Dieses Vorgehen erfolgt analog der NCCN guideline 2019 [620].
#
#
3.5 Systemtherapie
3.5.1 Adjuvante Therapie
4.37 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Aufgrund des hohen Rezidivrisikos sollte Patienten nach chirurgischer Tumorentfernung (R0, R1) eine adjuvante Systemtherapie mit Capecitabin angeboten werden. |
|
Level of Evidence |
1: Updaterecherche 2023: Luvira 2021 |
|
Starker Konsens |
Aufgrund des subendothelialen Wachstums entlang der Perineuralscheiden beträgt das Rezidivrisiko nach radikaler chirurgischer Tumorentfernung für ein perihiläres Cholangiokarzinom (CCA) 40–80 % (Auflistung der Studienergebnisse siehe [696]). Auch für andere Lokalisationen des CCA und für Gallenblasenkarzinome (GB-CA) ist das Rezidivrisiko ähnlich hoch. Risikofaktoren für ein frühes Rezidiv sind vor allem Lymphknotenmetastasen (N1), R1-Status und ein niedriger Differenzierungsgrad (G3). Eine Metaanalyse retrospektiver und einarmiger Studien mit mehr als 6000 Patienten mit CCA oder GB-CA ergab für Patienten mit einem dieser Risikofaktoren einen Vorteil für eine adjuvante Therapie [697]. Zusätzlich liegen mit den Ergebnissen der BILCAP-Studie die Daten einer randomisierten Phase-III-Studie vor, die den Nutzen einer adjuvanten Chemotherapie zeigen [586]. In dieser Studie wurde bei 447 Patienten mit CCA oder muskelinvasivem GB-CA sowie vollständiger makroskopischer Tumorentfernung (R0 oder R1) die Gabe von Capecitabin (1250 mg/m² zweimal täglich an Tag 1 bis 14 bei einer Zyklusdauer von 21 Tagen, insgesamt 8 Zyklen) mit der alleinigen Nachsorge verglichen. Der Therapiebeginn sollte innerhalb von 12 Wochen postoperativ bei Patienten mit ECOG 0–1 erfolgen, erlaubt war eine Ausdehnung des Zeitraumes bis auf 16 Wochen.
In der Per-Protokoll-Analyse ergab sich ein signifikanter Unterschied im medianen Gesamtüberleben von 52 versus 36 Monate (HR: 0,79; 95 % CI: 0,63; 1,00, p = 0,028). In der Intention-to-Treat-Analyse war der Unterschied zwischen beiden Gruppen vergleichbar mit 50 versus 36 Monate (HR: 0,84; 95 % CI: 0,67; 1,06), allerdings nicht signifikant [698]. Die mediane Zeit von der OP bis zum Therapiebeginn lag bei 10,3 Wochen. Die Langzeitergebnisse der Studie zeigen, dass der Effekt von Capecitabine eher moderat ist und dass der Haupteffekt nicht in der Vermeidung des Rezidivs zu liegen scheint, sondern im Zeitpunkt mit einem medianen Rezidiv-freien Intervall in der ITT Analyse mit Capecitabine von 24,3 Monaten und für die Beobachtungsgruppe mit 17,4 Monaten (HR: 0,81 (95 % CI: 0,65 bis 1,01) [698].
Die randomisierte Phase II Studie STAMP untersuchte für R0 oder R1 resezierte extra-hepatische CCA und positivem regionalem Lymphknotenbefall eine intensivierte The-rapie mit Gemcitabin und Cisplatin im Vergleich mit der Standardtherapie Capecitabin [695]. In dieser Studie von drei Zentren aus Südkorea zeigte sich kein siginifkanter Unterschied für das mediane krankheitsfreie Überleben (14,3 Monate für Gem/Cis vs. 11,1 Monate für Capecitabin) oder Gesamtüberleben (in beiden Studienarmen 35,7 Monate).
Die französische PRODIGE 12-Studie konnte ebenfalls durch Gemcitabin und Oxaliplatin im Vergleich zur alleinigen Nachsorge keine signifikante Verbesserung des Gesamtüberlebens erzielen [699]. Eine Metaanalyse, welche diese Studie ebenfalls integriert hat, bestätigte keinen Vorteil einer Gemcitabin-basierten adjuvanten Therapie beim CCA [700]. Eine Cochrane-Analyse sieht den Effekt einer adjuvanten Therapie beim CCA trotz der positiven BILCAP-Studie als unsicher an und empfiehlt dringend weitere Studien [701]. Aufgrund fehlender Evidenz besteht außerhalb von klinischen Studien zurzeit keine Indikation für eine adjuvante Strahlentherapie.
#
3.5.2 Neoadjuvante Therapie primär resektabler Tumoren
4.38 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Eine neoadjuvante Chemotherapie soll bei primär resektablen Tumoren nicht außerhalb von klinischen Studien erfolgen. |
|
Level of Evidence |
5: Es erfolgte eine ausführliche Recherche 2023, ohne Nachweis positiver Studien. |
|
Starker Konsens |
#
3.5.3 Systemtherapie lokal fortgeschrittener Tumoren
4.39 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei primär irresektablen Tumoren sollte unter einer Tumortherapie eine erneute Vorstellung im Tumorboard mit der Frage einer sekundären Resektabilität erfolgen. |
|
Starker Konsens |
Bei Patienten mit grenzwertig resektablen Tumoren, kann als individuelles Konzept eine Chemotherapie mit kurzfristiger erneuter Evaluation der Operabilität durchgeführt werden. Hierbei liegen weder Daten zu einer standardisierten Definition der Resektabilität noch zur systemischen palliativen Therapie vor. Die Chemotherapie sollte in Analogie zur palliativen Chemotherapie erfolgen. Die Ansprechraten zwischen der Dreifachtherapie mit Gemcitabin, Cisplatin + Durvalumab und der Zweifachtherapie mit Gemcitabin und Cisplatin unterscheiden sich mit 26,7 % [702] bzw. 26,1 % [703] nicht. Interessant ist, dass in der Studie von Gemcitabin und Cisplatin die objektiven Ansprechraten für Gallenwegskarzinome bei lediglich 19 % und bei Gallenblasenkarzinome bei 38 % lagen [703].
Prinzipiell gilt für alle eingesetzten Systemtherapien, auch in klinischen Studien, dass bei gutem Ansprechen die Resektabilität nach 2–3 Monaten erneut evaluiert werden sollte.
#
3.5.4 Palliative Systemtherapie
4.40 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Allen Patienten mit Cholangio- oder Gallenblasenkarzinom soll bei adäquatem Allgemeinzustand in der inoperablen lokal fortgeschrittenen oder metastasierten Situation eine palliative Systemtherapie angeboten werden. |
|
Level of Evidence |
||
Konsens |
Bei der Indikationsstellung zur Chemotherapie sind der Allgemeinzustand des Patienten, die Komorbiditäten, die Patientenpräferenzen sowie die Toxizität der geplanten Schemata zu berücksichtigen [538] [708]. In der ABC-02-Studie [703] und der japanischen BT22-Studie [704] zeigte sich in einer gemeinsamen Auswertung ein Überlebensvorteil für alle Tumorlokalisationen. Der Vorteil war am deutlichsten für Patienten mit einem ECOG Performance Status (PS) 0 oder 1. Die Lebenserwartung bei symptomorientierter Therapie beträgt nach historischen Daten dagegen nur ca. 2,5 bis 4,5 Monate [705]. In der Studie von Markussen wurden die Therapieschemata Gemcitabin/Cisplatin mit Gemcitabin/Oxalipaltin verglichen. In den Therapiegruppen konnten mittlere OS von 8,7 Monaten (Gem/Ox) und 12,0 Monate (Gem/Cis) erreicht werden [707]. In der systematischen Übersichtsarbeiten von Park [706] zeigte sich ebenfalls ein Überlebensvorteil für Patienten, die eine Systemtherapie erhalten.
3.5.41 Erstlinientherapie
4.41 |
Evidenzbasierte Empfehlung |
modifiziert 2024 |
Empfehlungsgrad |
Als Systemtherapie soll in der Erstlinie die Kombination Gemcitabin und Cisplatin mit einem der beiden zugelassenen Antikörper Durvalumab oder Pembrolizumab angeboten werden. |
|
Level of Evidence |
[702] [703] [704] [705] [706] [707] [709] 2: Recherche 2024, Kelley 2023 |
|
Starker Konsens |
Die Placebo-kontrollierte Topaz-01 Studie zeigt eine Überlegenheit im primären Endpunkt Gesamtüberleben von Durvalumab (anti PD-L1 Antikörper) + Gemcitabine + Cisplatin (D + Gem/Cis) im Vergleich zur bisherigen Standardtherapie mit Gemcitabin + Cisplatin (Gem/Cis) [702]. Wichtigste Einschlusskriterien waren intra- und extrahepatische CCAs einschließlich Gallenblasenkarzinome und ECOG 0–1. Papillenkarzinome waren nicht eingeschlossen. Das mediane Gesamtüberleben war mit 12,8 vs. 11,5 Monate nur moderat besser, allerdings separieren sich die Überlebenskurven in der Kaplan-Meier Analyse zunehmend, so dass die Überlebensraten nach 12 Monaten sich mit 54 % vs. 48 % und nach 24 Monaten mit 25 % vs. 10 % zugunsten der Kombination mit Durvalumab unterschieden. Die Ansprechrate lag im D + Gem/Cis Arm bei 27 % und bei 19 % mit Gem/Cis.
Die bessere Wirksamkeit einer kombinierten Therapie von Gemcitabin + Cisplatin bestätigte sich auch mit dem anti PD-1 Antikörper Pembrolizumab (Gem/Cis + P) gegenüber der alleinigen Chemotherapie in der Keynote-Studie 966 [709]. Diese Studie erreichte ihren primären Endpunkt mit einer Verbesserung des medianen Gesamtüberlebens von 12,7 Monaten mit Gem/Cis + P gegenüber 10,9 Monaten mit Gem/Cis. Das geschätze Überleben für die Gruppe mit Pembrolizumab betrug nach 12 Monaten 52 % und nach 24 Monaten 25 % im Vergleich zur Patientengruppe mit Gem/Cis von 44 % nach 12 und 18 % nach 24 Monaten.
Bei Kontraindikationen für eine Therapie mit Durvalumab oder Pembrolizumab soll weiterhin auch die Therapie mit Gem/Cis eingesetzt werden. Zwei Studien, die britische ABC-02-Studie [703] und die japanische BT22-Studie [704], haben in einer gemeinsamen Auswertung bei insgesamt fast 500 Patienten die Überlegenheit einer Kombinationstherapie bestehend aus Gemcitabin und Cisplatin gegenüber einer Monotherapie mit Gemcitabin gezeigt. Hierbei ist besonders zu berücksichtigen, dass mit der Applikation von Gemcitabin 1000 mg/m² und Cisplatin 25 mg/m² an den Tagen 1 und 8 bei einer Zyklusdauer von 21 Tagen ein gut verträgliches Therapieschema implementiert wurde. So zeigten sich keine Unterschiede in beiden Therapiegruppen in Bezug auf das Auftreten von schwergradigen (CTCAE Grad 3 und 4) Nierenfunktionsstörungen (Gemcitabin und Cisplatin versus Gemcitabin: 1,5 % vs. 1 %, p = 0,83) sowie von Übelkeit (4,0 % versus 3,5 %, p = 0,78) und Erbrechen (5,1 vs. 5,5 %, p = 0,65).
Bei Patienten mit ECOG 2 kann alternativ eine Monotherapie mit Gemcitabin erfolgen und bei eingeschränkter Nierenfunktion kann Oxaliplatin statt Cisplatin eingesetzt werden [708]. Die Lebenserwartung bei symptomorientierter Therapie beträgt nach historischen Daten dagegen nur ca. 2,5 bis 4,5 Monate [705].
Alternativ zu dieser Erstlinientherapie wird die Teilnahme an klinischen Studien empfohlen.
#
#
3.5.5 Therapie nach Versagen der Erstlinientherapie
4.42 |
Evidenzbasierte Empfehlung |
modifiziert 2024 |
Empfehlungsgrad |
Nach Versagen oder Unverträglichkeit der Erstlinientherapie soll Patienten mit adäquatem Allgemeinzustand eine weitere Therapie angeboten werden. |
|
Level of Evidence |
2: FOLFOX |
|
Konsens |
4.43 |
Konsensbasierte Empfehlung |
modifiziert 2024 |
EK |
In einer fortgeschrittenen Situation bei Indikation für eine Systemtherapie bei Patienten mit ECOG 0–1 sollte eine molekulare Charakterisierung des Tumors und Vorstellung in einem Interdisziplinären/Molekularen Tumorboard spätestens bis zur Therapieentscheidung über die Zweitlinie erfolgen. |
|
Starker Konsens |
Die Daten zu Tumoren mit FGFR2-Fusionsgenen, MSI-H/d-MMR oder IDH1-Mutationen zeigen, dass molekulargenetische Marker eine zunehmend größere Rolle für die Therapieauswahl auch bei zugelassenen Therapien spielen. Die molekulare Charakterisierung von Cholangiokarzinomen deutet darauf hin, dass diese Tumorentität sich in besonderem Maße für eine molekular gerichtete Therapie eignet [714] und dass diese Patienten bei gutem Allgemeinzustand (ECOG 0–1) nach einem Versagen der Erstlinientherapie in einem molekularen Tumorboard vorgestellt werden sollten. Weitere Beispiele für molekulare Veränderungen neben den zugelassenen Therapieoptionen, die therapeutisch genutzt werden können, sind NTRK-Fusionsgene, Amplifikationen von HER2 oder die BRAF V600E Mutation.
-
Fusionsgene mit dem Neurotrophin-Rezeptoren TRKA, TRKB und TRKC, sog. NTRK-Genfusionen [715] sind seltene Veränderungen bei CCA, die in Einzelfällen beschrieben worden sind [716] [717]. Die hohe Relevanz dieser Veränderungen liegt allerdings in der hohen Ansprechrate solche Tumoren [718], die zur Tumor-unabhängigen Zulassung von Larotrectinib und Entrectinib geführt hat.
-
Amplifikationen von HER2 (ERBB2) finden sich bei 5–15 % aller Gallenwegstumoren, am häufigsten bei Karzinomen der Gallenblase [719]. In der Phase 2-Studie „MyPathway“ wurden Patienten mit einem metastasierten biliären Karzinom und einer Her2-Amplifikation und/oder Her2-Überexpression im ECOG Performance Status 0–2 mit Pertuzumab in Kombination mit Trastuzumab behandelt. Es konnte bei 9 von 39 Patienten ein partial response (23 % [95 % CI: 11–39 %] festgestellt werden, das mOS in dieser Studie lag bei 10,9 Monaten [720]. Eine weitere Studie mit Tucatinib und Trastuzumab mit 30 Patienten zeigte eine Ansprechrate von 47 % und ein OS von 15,5 Monaten [721]. In der DESTINY-PanTumor02 Studie konnte in der Gruppe mit biliären Tumoren bei 16 Patienten mit einem IHC 3 + Wert ein Ansprechen auf Trastuzumab-Deruxtecan bei 56 % erreicht werden [722]. Interessanterweise konnte in einer weiteren Studie auch gezeigt werden, dass eine Therapie mit Neratinib bei einzelnen aktivierenden Mutationen ohne ERBB2-Amplifikation wirksam eingesetzt werden kann [723].
-
Für Patienten mit der BRAF-Mutation V600E wurde ein Ansprechen auf den BRAF-Inhibitor Vemurafenib zunächst in Einzelfällen beschrieben [724]. Inzwischen gibt es weitere Daten für ein gutes Ansprechen mit einer Kombination aus dem BRAF-Inhibitor Dabrafenib und dem MEK-Inhibitor Trametinib in einem frühen Bericht aus der „NCI-MATCH“ Studie [725], weiteren Fallberichten [726] [727] [728] und der Phase II Studie ROAR. In dieser Studie wurden 43 Patienten mit einer BRAF-V600E Mutation behandelt. Insgesamt wurde bei 20 Patienten (47 %) ein Therapieansprechen beobachtet, 15 Patienten zeigten einen stabilen Krankheitsverlauf (35 %) und bei 6 Patienten wurde ein Progress (14 %) als „best response“ dokumentiert. Das Gesamtüberleben nach 12 Monaten betrug 56 %, nach 24 Monaten 36 % und das mediane Gesamtüberleben in dieser Kohorte war 14 Monate [729].
4.44 |
Evidenzbasierte Empfehlung |
modifiziert 2024 |
Empfehlungsgrad |
Patienten, deren Tumoren eine Fibroblasten-Wachstumsfaktor-Rezeptor-2 (FGFR2)-Fusion oder ein FGFR2-Rearrangement aufweisen und die nach mindestens einer Systemtherapie progredient sind, soll eine Therapie mit einem der FGFR-Inhibitoren Futibatinib oder Pemigatinib angeboten werden. |
|
Level of Evidence |
||
Starker Konsens |
Die Zulassung von Pemigatinib beruht auf der einarmigen Phase II Studie FIGHT-202 [711]. Als primärer Endpunkt zeigten 40 von 108 Patienten (37 %) ein Ansprechen auf die Tumortherapie, davon 36 Patienten mit einer partiellen und 4 Patienten mit einer kompletten Remission [711]. Die mediane Dauer des Therapieansprechens war 8,1 Monate (95 % CI: 5,7; 13,1).
Die Zulassung von Futibatinib basiert auf die ebenfalls einarmige Phase II Studie FOE-NIXX-CCA2 [713]. 43 von 103 Patienten (42 %) zeigten ein Ansprechen, davon 1 Patient mit einer kompletten Remission. 31 Patienten wiesen ein Ansprechen von mehr als sechs und 6 Patieten von mehr als zwölf Monaten auf. Das mediane Gesamtüberleben als sekundärer Endpunkt betrug 21,7 Monate [713].
Beide FGFR-Inhibitoren sind für das Cholangiokarzinom nach mindestens einer Vor-therapie zugelassen, eine Entscheidungsgrundlage welcher Inhibitor bevorzugt ein-gesetzt werden soll kann derzeit nicht gegeben werden. Präklinische Arbeiten legen nahe, dass Futibatinib noch bei einzelnen Resistenzmutationen die sich unter Pemi-gatinib entwickeln können, wirksam sein kann [731]. Einzelne Patienten die ein Therapieansprechen auf Futibatinib nach Pemigatinib errei-chen konnten sind beschrieben worden [732] [733]. Als Option nach Progress unter einer Therapie mit einem FGFR-Inhibitor wird die Prüfung von Studienmöglichkeiten empfohlen.
Neben den oben genannten Substanzen wurden weitere vielversprechende erste klinische Daten z. B. auch für Derazantinib [734], Erdafitinib [735] oder RLY-4008 [736] vorgestellt. Medikamente aus dieser Substanzgruppe werden derzeit in zahlreichen Studien und unterschiedlichen Situationen, z. T. auch in der Erstlinie oder nach vorangegangener FGFR-Inhibition, untersucht. Neben Fusionsgenen sich auch aktivierende Mutationen oder Inframe-Deletionen als relevant für Therapieansätze beschrieben worden [737] [738].
4.45 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
|
Empfehlungsgrad |
Immuntherapie-naiven Patienten mit nicht resezierbarem oder metastasiertem biliärem Karzinom, welches eine hochfrequente Mikrosatelliten-Instabilität (MSI-H) oder eine Mismatch-Reparatur-Defizienz (dMMR) aufweist und Fortschreiten der Erkrankung während oder nach mindestens einer vorherigen Therapie, soll eine Therapie mit dem anti-PD-1 Antikörper Pembrolizumab angeboten werden. |
||
Level of Evidence |
⊕⊖⊖⊖: Keynote 158 und ABC-06 |
||
Starker Konsens |
Die Bestimmung auf Mikrosatelliteninstabilität soll Tumoren mit funktionsgestörten DNA-Reparatursystemen (sog. MSI high Tumoren) identifizieren, die von einer Immuntherapie mit PD-1 Checkpoint-Inhibitoren profitieren [741] [742] [743]. Diese machen in frühen Krankheitsstadien bis zu 1 % und bei fortgeschrittenen Tumoren bis zu 2 % aller biliärer Karzinome aus [743] [744]. In seltenen Fällen kann auch im Rahmen eines Lynch Syndroms ein Cholangiokarzinom entstehen [745] [746]. Sollten Patienten in der Erstlinie kein Durvalumab erhalten haben, ist für diese Patienten Pembrolizumab eine Therapiemöglichkeit. Die Zulassung von Pembrolizumab in dieser Indikation beruht auf der Keynote 158 Studie, in der 351 Patienten mit 28 unterschiedlichen Tumorentitäten eingeschlossen worden sind [739]. Bei insgesamt 22 Patienten mit CCA zeigte sich ein Ansprechen bei 9 Patienten (41 %; 3 × CR, 6 × PR), welches im Median 31 Monate andauerte.
4.46 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Patienten mit lokal fortgeschrittenem oder metastasiertem Cholangiokarzinom mit einer IDH1 R132-Mutation, die zuvor mit mindestens einer Linie Systemtherapie behandelt worden sind, soll eine Therapie mit dem IDH1-Inhibitor Ivosidenib angeboten werden. |
|
Level of Evidence |
[747] |
|
Starker Konsens |
Für Patienten mit einer Mutation im Isocitrat Dehydrogenase 1 (IDH1) Gen zeigen Ergebnisse der Phase-III-ClarIDHy-Studie ein signifikant längeres medianes PFS mit 2,7 unter Ivosidenib vs. 1,4 Monaten mit Placebo, allerdings separieren sich die Kurven deutlich im längerfristigen Verlauf [710]. Das mediane Gesamtüberleben in der Studie war nicht signifikant unterschiedlich mit 10,3 Monaten mit Ivosidenib vs. 7,5 Monaten mit Placebo, allerdings wurden aus dem Placeboarm 70 % der Patienten nach Progress mit Ivosidenib behandelt (cross-over Studiendesign) [747]. Die Berechnung eines für Crossover adjustierten Gesamtüberlebens ergab für Placebo eine mediane Überlebenszeit von 5,1 Monaten und war dann im Vergleich zur Verumgruppe signifikant kürzer [747]. Somit scheint eine Subgruppe der Patienten deutlich von der Therapie zu profitieren. Die „Disease Control Rate“, d. h. der Anteil an Patienten mit mindestens stabiler Erkrankung oder partieller Remission lag für Ivosidenib bei 53 % und für Placebo bei 28 %. Die Zulassung der Europäische Kommission für Ivosidenib erfolgte im Mai 2023 als Monotherapie zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem Cholangiokarzinom mit einer IDH1-R132-Mutation, die zuvor bereits mit mindestens einer systemischen Therapie behandelt worden sind.
4.47 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Als medikamentöse Zweitlinientherapie kann bei Patienten mit ECOG 0–1 eine Therapie mit FOLFOX angeboten werden. |
|
Level of Evidence |
[740] |
|
Starker Konsens |
4.48 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Nach Versagen mindestens einer vorherigen Therapielinie kann eine Irinotecan-haltige Therapie angeboten werden. |
|
Level of Evidence |
||
Starker Konsens |
Für den Nutzen einer Zweitlinientherapie bei radiologisch progredienter Tumorerkrankung unter der Erstlinientherapie ohne weitere molekulare Charakterisierung liegen Daten aus der ABC-06-Studie vor [740].
In der randomisierten Phase-III-Studie ABC-06 wurde ein modifiziertes FOLFOX-Regime gegen eine alleinige symptomorientierte Therapie verglichen und eine moderate Verbesserung des medianen Gesamtüberlebens von 5,3 Monate auf 6,2 Monate mit Chemotherapie erreicht (HR: 0,69 (95 % CI: 0,50; 0,97; p = 0,032) [740]. Die 1-Jahres-Überlebensrate für FOLFOX war mit 25,9 % etwas mehr als doppelt so hoch wie in der Kontrollgruppe mit 11,4 %.
Ein direkter Vergleich von mFOLFIRI mit mFOLFOX wurde in einer Phase II Studie aus Südkorea mit jeweils 59 Patienten in jedem Arm untersucht. Der primäre Endpunkt der Überlebensrate nach 6 Monate war 54 % für mFOLFOX und 44 % für mFOLFIRI, der Unterschied war statistisch nicht signifikant [748].
Die Kombination von Irinotecan und Capecitabin führte im Vergleich zu einer Irinotecan Monotherapie in einer randomisierten Phase II Studie aus China mit 60 Patienten nach Progress unter Gemcitabin und Cisplatin zu einer Verlängerung des mOS (10,1 vs 7,3 Monate) bei einer 9-Monate Überlebensrate von 60,9 % vs. 32 % [750]. Diese Ergebnisse wurden durch die NIFTY Studie aus Süd-Korea bei 178 Patienten bestätigt. In dieser Phase-IIb Studie wurde die Kombination von 5-FU/Leukovorin und liposomalem Irinotecan gegenüber 5-FU/Leukovorin alleine untersucht. Das mPFS bei Patienten, die mit der Kombination behandelt wurden, betrug 7,1 Monate im Vergleich zu 1,4 Monaten für Patienten, die nur mit 5-FU/Leukovorin behandelt wurden. Das mediane OS lag bei 8,6 Monate im experimentellen Arm und 5,5 Monate im Kontrollarm [749]. Diese Ergebnisse konnten allerdings in der in Deutschland durchgeführten NALIRICC Studie nicht bestätigt werden. Insgesamt zeigte sich bei deutlich höherer Toxizität keine Verbesserung des PFS und des OS, so dass ein Einsatz von liposomalem Irinotecan anstelle von Irinotecan derzeit nicht empfohlen werden [751].
In einer weiteren Phase II Studie mit 98 Patienten aus Indien wurde der Überlebensvorteil durch die Hinzunahme von Capecitabin zu Irinotecan gegenüber einer Irinotecan-Monotherapie bei Patienten mit einem Gallenblasenkarzinom nicht bestätigt (5,2 vs 6,3 Monate) [752], sodass auch die Monotherapie eine valide Option sein kann.
Angesichts der überwiegend moderaten Vorteile von „klassischen“ Chemotherapieregimen ab der Zweitlinie ist für Patienten mit gutem Allgemeinzustand daher die oben empfohlene molekulare Charakterisierung des Tumors und Vorstellung in einem Molekularen Tumorboard ein wichtiger zusätzlicher diagnostischer Schritt.


#
3.5.6 Verlaufskontrollen unter Systemtherapie
4.49 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Bei biliären Karzinomen unter Systemtherapie sollte alle 6–12 Wochen die diagnostisch am besten geeignete Schnittbildgebung durchgeführt werden. Die Interpretation im klinischen Alltag sollte sich an den Auswerteprinzipien von RECIST 1.1 orientieren. |
|
Konsens |
#
#
#
4 Supportivtherapie des Hepatozellulären Karzinoms und der biliären Karzinome
Zur supportiven Therapie von onkologischen Patienten gibt es eine S3-Leitlinie des Leitlinienprogramms Onkologie, die auch für Patienten mit HCC/CCA gültig ist: https://www.leitlinienprogramm-onkologie.de/leitlinien/supportive-therapie/.
In der S3-Leitlinie zur supportiven Therapie von onkologischen Patienten wird auf die folgenden Themen detailliert eingegangen:
-
Tumortherapie-induzierte Anämie
-
Prophylaxe der Tumortherapie-induzierten Neutropenie mit granulopoetischen Wachstumsfaktoren
-
Tumortherapie-induzierte Nausea und Emesis
-
Tumortherapie-induzierte Diarrhoe
-
Orale Mucositis durch systemische Tumortherapie
-
Tumortherapie-induzierte Hauttoxizität
-
Neurotoxizität – Chemotherapie-induzierte periphere Neuropathie (CIPN)
-
Ossäre Komplikationen
-
Ossäre Manifestationen
-
Medikamentöse Intervention
-
Chirurgische Intervention
-
Strahlentherapeutische Intervention
-
Radionuklidtherapie
-
Therapieassoziierte Osteoporose
-
-
Paravasate
-
Supportive Maßnahmen in der Radioonkologie
-
Radiogene Enteropathie/Enteritis
-
Chronische Enteropathie/Enteritis- Therapie der chronischen Diarrhoe
-
Radiogene Proktitis
-
Späte radiogene Proktitis
-
Radiodermatitis
-
Osteoradionekrose (ORN)
-
Radiogene Mukositis
-
Radiogene Xerostomie
-
Radiogene Pneumonitis
-
Radiotherapie-induzierte Nausea und Emesis
-
Strahlenfolgen an Gehirn und Rückenmark
4.1 Ernährung
5.1 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Mangelernährung beeinträchtigt die Lebensqualität und Therapietoleranz. Eine Mangelernährung sollte erfasst und behandelt werden. |
|
Starker Konsens |
Mangelernährung bei Krebserkrankungen, wie sie auch bei HCC Patienten oftmals vorliegt [753] [754], wird mit vermehrten Komplikationen, längerer Krankenhausverweildauer, schlechterer Lebensqualität, höheren Toxizitäten der Antitumortherapie und Mortalität in Verbindung gebracht [755]. Das Vorliegen einer präoperativen Mangelernährung bei HCC Patienten mit Leberresektion ist assoziiert mit erhöhter postoperativer Komplikationen und längere Krankenhausverweildauer [754] [756].
Mangelernährung sollte anhand der GLIM Criteria diagnostiziert werden [757]. In der aktuellen ESPEN Leitlinie „klinische Ernährung bei Lebererkrankungen“ wird zur Bestimmung der Mangelernährung der Nutritional Risk Score (NRS 2002) oder Minimal Nutrition Assessment (MUST) oder The Royal Free Hospital Nutrition Prioritizing Tool (RFH-NPT) empfohlen. Sarkopenie bei Patienten mit HCC ist mit schlechter Therapieverträglichkeit sowie erhöhter Mortalität assoziiert [758] [759] [760] [761] [762]. Geringe Handkraftstärke und niedriger Phasenwinkel alpha (gemessen mit der Body Impedance Analyse) können Auskunft über ein erhöhtes Mortalitätsrisiko geben [763]. Da in den meisten Fällen das HCC in einer zirrhotischen Leber vorliegt, können bei Sarkopenie Ernährungsmaßnahmen wie ausreichende Energie und Eiweißzufuhr sowie Bewegung in Analogie zu dem Empfehlungen für Leberzirrhose gegeben werden [763]. Patienten mit einem HCC oder CCA und Mangelernährung sollten eine prozessorientierte Ernährungsberatung von qualifizierten Ernährungsfachkräften erhalten, ggf. Einsatz von enteraler/parenteraler Ernährung [755].
#
4.2 Palliativmedizinische Behandlung beim HCC/CCA
Palliativversorgung ist definiert als ein Ansatz zur Verbesserung der Lebensqualität von Patienten und ihren Familien, die mit Problemen konfrontiert sind, welche mit einer lebensbedrohlichen Erkrankung einhergehen. Dies geschieht durch Vorbeugen und Lindern von Leiden durch frühzeitige Erkennung, sorgfältige Einschätzung und Behandlung von Schmerzen sowie anderen Problemen körperlicher, psychosozialer und spiritueller Art.
Beim Leberzellkarzinom und Gallengangskarzinom sollten hier vor allem die Empfehlungen zum Thema Pruritus, Inappetenz, Übelkeit und Schmerzen Beachtung finden.
An dieser Stelle sei auf die allgemeinen Empfehlungen hingewiesen, wie sie in der „Erweiterten S3-Leitlinie Palliativmedizin für Patienten mit einer nicht heilbaren Krebserkrankung“ (AWMF-Registernummer: 128/001OL) ausführlich beschrieben werden (https://www.leitlinienprogramm-onkologie.de/leitlinien/palliativmedizin/).
Dort finden sich auch wichtige Empfehlungen zu Versorgungsstrukturen in der Palliativmedizin, inklusive eines Behandlungspfades für Patienten und Angehörige, da den Angehörigen bei der Betreuung dieser Patientengruppe eine wichtige Rolle zukommt.
#
4.3 Integration von Palliativversorgung
Eine Palliativversorgung kann nur bei rechtzeitiger Einbeziehung in den Behandlungsverlauf von Patienten besonders wirksam sein. Es gelten daher auch hier die allgemeinen Empfehlungen für die Integration von Palliativversorgung, gemäß der o. g. S3-Leitlinie.
5.2 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Alle Patienten mit einer Krebserkrankung sollen unabhängig vom Krankheitsstadium Zugang zu Informationen über Palliativversorgung (z. B. durch Auslage von Flyern) haben. |
|
Starker Konsens |
5.3 |
Evidenzbasierte Empfehlung |
geprüft 2024 |
Empfehlungsgrad |
Allen Patienten soll nach der Diagnose einer nichtheilbaren Krebserkrankung eine Palliativversorgung angeboten werden, unabhängig davon, ob eine tumorspezifische Therapie durchgeführt wird. |
|
Level of Evidence |
[764] [765] [766] [767] [768] [769] [770] [771] [772] 1: Leitlinienadaptation S3-Leitlinie Palliativmedizin Langversion 2.2.-September 2020 |
|
Konsens |
4.3.1 Zeitpunkt der Integration von Palliativversorgung beim HCC/CCA
5.4 |
Konsensbasierte Empfehlung |
modifiziert 2024 |
EK |
Allen Patienten mit einem HCC im Stadium BCLC D oder einem biliären Tumor im Stadium IV nach UICC soll eine Palliativversorgung angeboten werden. |
|
Starker Konsens |
Die Surprise-Question: „Würde ich mich wundern, wenn der Patient in den nächsten 12 Monaten verstirbt“ ist ein Screening-Tool zur Identifikation von Patienten mit einem palliativmedizinischen Versorgungsbedarf. Beantwortet man diese Frage mit „Nein“, sollte man über eine palliativmedizinische Erstvorstellung nachdenken [773] [774] [775] [776]. Die Beantwortung dieser Frage und die Einschätzung der Prognose sind bei der großen Auswahl neuer Therapiemöglichkeiten nicht immer einfach.
Minimalstandard sollte jedoch sein, in Anlehnung an die Leitlinie der „European Association for the Study of the Liver“, dass allen Patienten ab einem Stadium D nach BCLC, aktiv eine Palliativversorgung angeboten wird [4]. Beim Cholangiokarzinom, sollten Patienten ab einem Stadium IV nach UICC (Union for International Cancer Control) eine palliativmedizinische Vorstellung angeboten werden.
#
#
4.4 Palliative Symptomkontrolle bei Patienten mit HCC/CCA
Allgemeine Symptomkontrolle
Für die palliative Symptomkontrolle verweisen wir hier auf die aktuellen Empfehlungen der „Erweiterten S3-Leitlinie Palliativmedizin für Patienten mit einer nicht heilbaren Krebserkrankung“ (AWMF-Registernummer: 128/001OL). Nur auf die Behandlung des Pruritus, als häufiges und belastendes Symptom, wird hier gesondert und gezielt eingegangen.
Pruritus
5.5 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Der Pruritus sollte analog der AWMF-S2k-Leitlinie Pruritus behandelt werden. |
|
Starker Konsens |
Pruritus ist ein häufiges Symptom beim fortgeschrittenen HCC und CCA. Dabei ist der Pruritus wahrscheinlich nicht alleine als Begleiterscheinung des Ikterus infolge einer mechanischen Cholestase oder eines Leberzellzerfalls zu werten, sondern kann unabhängig davon auch Teil des paraneoplastischen Syndroms bei malignen Grunderkrankungen sein [777]. Dabei können die interindividuelle Wahrnehmung und Beeinträchtigung von Pruritus stark variieren. Eine zirkadiane Rhythmik mit Verschlimmerung am späten Nachmittag bis in die Nacht ist häufig. Im Einzelfall kann Pruritus die Lebensqualität derart beeinträchtigen, dass Depression und Suizidalität die Folgen sind. Die Quantifizierung des Schweregrades von Pruritus zu wissenschaftlichen Zwecken erfolgt indirekt durch Messung der Kratzaktivität. Therapiestudien zur Behandlung des Pruritus beim Hepatozellulären Karzinom liegen nicht vor. Die hier aufgeführten Daten beziehen sich auf chronische, nichtmaligne Lebererkrankungen [778] [779]. Bezüglich der medikamentösen Behandlung des Pruritus ist die Studienlage begrenzt. Rifampicin in einer Dosierung von 300–600 mg/d bzw. 10 mg/kg KG/d oral [780] [781], Naltrexon 25–50 mg/d oral [782] oder Cholestyramin 10–15 mg/kg KG/d oral zeigten in mehreren Studien Wirksamkeit. Die Wirksamkeit von Naloxon 0,2 µg/kg KG/min intravenös [783] und des Serotonin Reuptake Inhibitors Sertralin 75–100 mg/d [784] konnten in jeweils einer randomisierten Studie gezeigt werden. Die Studienlage für Ursodesoxycholsäure bezüglich der Verbesserung des Pruritus ist nicht überzeugend. Während Ursodesoxycholsäure bei der PBC und der PSC in dieser Hinsicht nicht wirksam ist [785] [786], führt es bei Frauen mit intrahepatischer Schwangerschaftscholestase zu einer Besserung [787]. Die Ergebnisse zu Ondansetron sind widersprüchlich. Einzelfallbeschreibungen oder Fallserien gibt es für Propofol intravenös, Lidocain intravenös, Dronabidol oral, Butorphanol nasal sowie Phenobarbital oral.
Nichtmedikamentöse Behandlungsversuche umfassen die Phototherapie, Plasmapherese- und separation, die extracorporeale Albumin-Dialyse (MARS), nasobiliäre Sonden zur Ableitung und topische Behandlungen, z. B. mit Lokalanästhetika oder Glucocorticoiden. Empfehlungen zur Behandlung des Pruritus finden sich zusammengefasst in der aktuellen AWMF-S2k-Leitlinie (http://www.awmf.org/leitlinien/detail/ll/013–048.html).
#
4.5 Rehabilitation, Sport- und Bewegungstherapie
5.6 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Patienten mit HCC/CCA sollten zu körperlichen Aktivitäten und/oder Bewegungstherapie motiviert werden. |
|
Starker Konsens |
Es gibt keine spezifischen Studien zu Patienten mit HCC und dieser Fragestellung. In einer kleinen Studie mit 20 Patienten vor und nach orthotoper Lebertransplantation wird die aerobe Kapazität von Patienten mit chronischen Lebererkrankungen untersucht [788]. Die verminderte Sauerstoffkapazität wird als ein prognostischer Faktor angesehen und korreliert mit der Mortalität nach Lebertransplantation [789] [790]. Es besteht ein Zusammenhang zwischen dem Peak-Flow und dem Stadium der Lebererkrankung [788] [789]. Ein spezielles Rehabiliationsprogramm für diese Patienten wird vorgeschlagen [790]. Um die Muskelmasse der Patienten mit chronischen Lebererkrankungen und HCC zu erhalten, sollten ein leichtes Ausdauer- und ein spezielles Muskelaufbautraining empfohlen werden.
5.7 |
Konsensbasierte Empfehlung |
modifiziert 2024 |
EK |
Patienten, die die Voraussetzungen erfüllen, sollte eine Anschlussheilbehandlung oder Rehabilitation angeboten werden. Das rehabilitative Therapieangebot soll medizinische, pflegerische, aufklärende, trainierende und psychosoziale Maßnahmen umfassen, die dem individuellen Rehabilitationsbedarf angepasst werden. |
|
Starker Konsens |
Patienten mit chronischen Lebererkrankungen im fortgeschrittenen Stadium leiden unter Fatigue, welche auch bei der Mehrheit der Patienten nach einer Lebertransplantation bestehen bleibt [790] [791]. Dabei verspüren die Patienten weniger eine psychovegetative Erschöpfung, sondern vermehrt eine körperlich eingeschränkte Leistungsfähigkeit [791]. Daher sollte ein spezielles Rehabilitationsprogramm zur Verbesserung der kardiorespiratorischen Leistungsfähigkeit angeboten werden [790] [792]. Auftrag der Rehabilitation ist die möglichst weitgehende Beseitigung – zumindest aber Kompensation – tumor- oder therapiebedingter Folgen sowie die Hilfestellung bei der Akzeptanz verbleibender Behinderungen mit dem Ziel einer selbstbestimmten Teilhabe am gesellschaftlichen Leben.
Zum Stellenwert rehabilitativer Maßnahmen bei Patienten mit Hepatozellulärem oder biliären Karzinom liegt keine auswertbare Literatur vor. Für die rehabilitative Maßnahme sind ausgewiesene Reha-Zentren bzw. Kliniken mit gastrointestinaler und onkologischer Expertise zu bevorzugen, die den Standards des Qualitätssicherungsverfahrens der Deutschen Rentenversicherung entsprechen. Ziel jeder Rehabilitation sind Sicherung und erforderlichenfalls Verbesserung der Lebensqualität des Betroffenen, wobei die Notwendigkeit dieser Maßnahmen individuell einzuschätzen ist.
Rehabilitation ist vom Gesetzgeber als sozialer Anspruch definiert (SGB I, § 19). Art und Umfang der erforderlichen Leistungen werden im SGB I (§ 29), SGB V (Krankenversicherung), SGB VI (Rentenversicherung), SGB III (Arbeitsförderung), ferner im RehAnglG und im SGB IX konkretisiert. Der Rehabilitationsbedarf nach Behandlung von hepatozellulären oder biliären Karzinomen ist äußerst variabel und im Wesentlichen abhängig von Art und Ausmaß des operativen Vorgehens sowie der Therapiefolgen. Rehabilitationsverfahren sollten bei definiertem Rehabilitationsbedarf und individueller Rehabilitationsfähigkeit möglichst im Anschluss an die Primärtherapie stattfinden. Daten, die die Wertigkeit von Rehabilitationsverfahren ausreichend belegen, existieren nicht.
Eine psychosoziale Beratung und gegebenenfalls Betreuung ist wünschenswert bei Problemen der psychischen Verarbeitung des Tumorleidens, bei Therapiefolgen, bei sozialen Anpassungsstörungen sowie bei der beruflichen Wiedereingliederung [771] [793]. Kontakte mit erfahrenen Gleichbetroffenen können gerade bei der psychischen Verarbeitung oder der Anpassung an eine veränderte Lebenssituation die wesentliche Hilfe für einen Neubetroffenen darstellen. Gleichbetroffene können durch ihr eigenes Beispiel sowie ihre Erfahrungen im Alltagsleben mit Krankheit und Behinderung glaubwürdig vermitteln, dass eine hohe Lebensqualität auch dann möglich ist. Deswegen sollten Kontaktaufnahmen oder Vermittlung zu Selbsthilfeorganisationen erfolgen. Hier sei auf die parallel entstehende Patientenleitlinie verwiesen sowie auf die Homepages der an der Leitlinie beteiligten Patientenvertreter (http://www.lebertransplantation.eu und www.leberhilfe.org/).
#
4.6 Psychoonkologie
Zur psychoonkologischen Versorgung liegt ebenfalls eine S3-Leitlinie des Leitlinienprogramms Onkologie vor, die auch für Patienten mit HCC/CCA gültig ist: https://www.leitlinienprogramm-onkologie.de/leitlinien/psychoonkologie/.
5.8 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Erfassung der psychischen Belastung sowie die psychoonkologische Behandlung sollten, wie in der S3-Querschnittsleitlinie Psychoonkologie beschrieben, erfolgen. |
|
Starker Konsens |
Patienten mit HCC beschrieben eine schlechtere gesundheitsbezogene Lebensqualität im Vergleich zur Allgemeinbevölkerung [794]. Schmerzen, Fatigue, Übelkeit und Leistungsfähigkeit waren mit der schlechteren gesundheitsbezogenen Lebensqualität assoziiert [795]. Es ist wichtig zu bemerken, dass die gesundheitsbezogene Lebensqualität sich mit zunehmendem TNM-Stadium weiter verschlechterte [796]. Darüber hinaus zeigten Patienten mit HCC eine höhere Prävalenz von depressiven Symptomen [797] und Ängstlichkeit [798] im Vergleich zur Allgemeinbevölkerung, wobei die Depressivität zu Schlafstörungen und Fatigue beitrug [799]. Nicht zuletzt hatten die Patienten mit einer fortgeschrittenen HCC-Erkrankung bei Diagnosestellung ein höheres Risiko für einen Suizid während des ersten Jahres nach Diagnosestellung [800].
Wie erwartet, führten die Chirurgie [801], Interventionen wie Chemoembolisation [802] und Radiotherapie [795] zu einer Verbesserung der gesundheitsbezogenen Lebensqualität bei Patienten mit HCC:
Patienten mit HCC berichteten häufig von einer mangelnden Information [803], was auf die Wichtigkeit der Psychoedukation in der Supportivtherapie des HCC hinweist. Dies sollte frühzeitig angeboten werden [803]. Darüber hinaus sollten Ängstlichkeit und Depressivität frühzeitig erhoben und ein psychoonkologisches Behandlungsangebot zeitnah erfolgen, da sich Ängstlichkeit und Depressivität maßgeblich auf das Behandlungsergebnis über einen längeren Zeitraum – mehrere Jahre – auswirken, was mit dem „Functional Assessment of Cancer Therapy-Hepatobiliary“ (FACT-H) erhoben wurde [798]. Die psychoonkologische Behandlung verbesserte nicht nur Depressivität, Ängstlichkeit und gesundheitsbezogene Lebensqualität [797] sondern auch Nebenwirkungen der Tumortherapie sowie krankheitsassoziierte Symptome wie Schmerzen [804] im Vergleich zur Kontrollgruppe welche keine psychoonkologische Behandlung erhielt.
4.6.1 Patientenzentrierte Kommunikation, Information und Aufklärung
5.9 |
Konsensbasierte Empfehlung |
geprüft 2024 |
EK |
Die Kommunikation mit Patienten mit HCC/CCA und ihren Angehörigen soll wiederholt in allen Phasen der Erkrankung und durch alle behandelnden Berufsgruppen patientenzentriert erfolgen und soll sich an deren individuellen Anliegen, Bedürfnissen und Präferenzen orientieren, welche Information, Aufklärung und Beteiligung an Entscheidungen betreffen. |
|
Starker Konsens |
Befragungen von Krebspatienten ergeben übereinstimmend Defizite hinsichtlich ihrer Bedürfnisse nach Information; diese zählen zu den wichtigsten und häufigsten „unmet needs“ von Krebspatienten aller Diagnosen und Krankheitsstadien [805] [806]. Studien belegen günstige Auswirkungen angemessener Aufklärung und Informationsvermittlung hinsichtlich Krankheitsverarbeitung, besserem psychischen Befinden und höherer Lebensqualität [807] [808] [809] [810]. Professionelle kommunikative Kompetenz von Ärzten gewährleistet, dass Informationen im gesamten Krankheits-und Behandlungsverlauf angemessen, orientiert am jeweiligen Bedürfnis und auf eine für Patienten verständliche Weise vermittelt werden [810] [811] [812]. Patienten sollten ermutigt werden, dem Arzt mitzuteilen, welche Informationen aktuell für sie wichtig sind, wie umfassend und wie detailliert diese sein sollen. Ebenso ist ihre individuelle Präferenz hinsichtlich geteilter Entscheidungsfindung (z. B. zur Tumorbehandlung) zu klären und zu berücksichtigen [813] [814]. Behandlungsoptionen und mögliche Alternativen sollen klar und verständlich vermittelt werden, mit realistischen Informationen zur Wirksamkeit und zu potenziell nachteiligen Auswirkungen auf verschiedene Lebensbereiche; dies trifft bei Patienten mit HCC im Besonderen für die adäquate Vorbereitung auf eine Lebertransplantation zu [815] [816] [817]. Angehörige und weitere Bezugspersonen sollen, wann immer möglich, einbezogen werden. Die Präferenzen hinsichtlich patientenzentrierter Kommunikation (PZK) variieren [818] bei Tumorpatienten und können sich im zeitlichen Verlauf verändern. Besonders bei ungünstiger Prognose oder in fortgeschrittenen Krankheitsphasen bevorzugen Tumorpatienten eine patientenzentrierte Haltung ihrer Ärzte in Form von Verständnis, Empathie und Unterstützung [819] [820] [821]. Patienten, die ihren Arzt als „empathisch“ und „aufmerksam“ empfanden, waren nach der Konsultation zufriedener, psychisch weniger belastet und hatten eine höhere Selbstwirksamkeit [819] [822] [823]. Diese individuellen Anliegen, Bedürfnisse und Präferenzen sollen wiederholt im Krankheitsverlauf, insbesondere in kritischen Krankheitsphasen (Diagnose, Rezidiv/Progredienz) erfragt werden.
#
#
#
5 Forschungsfragen
Im Folgenden sind die Forschungsfragen, die von der Leitliniengruppe als relevante nicht ausreichend untersuchte Fragestellungen detektiert wurden, dargestellt.
#
6 Qualitätsindikatoren
Qualitätsindikatoren sind Messgrößen, deren Erhebung der Beurteilung der Qualität der zugrunde liegenden Strukturen, Prozesse bzw. Ergebnisse dient. Qualitätsindikatoren sind ein wichtiges Instrument des Qualitätsmanagements. Ziel ihres Einsatzes ist die stetige Verbesserung der Versorgung, indem die Ergebnisse der Versorgung dargestellt, kritisch reflektiert und wenn nötig verbessert werden. Die vorliegende Auswahl von Qualitätsindikatoren wurde gemäß der Methodik des Leitlinienprogramms Onkologie erstellt [824]. Für den Ableitungsprozess konstituierte sich eine „Arbeitsgruppe Qualitätsindikatoren“ (AG QI). Diese erstellte das finale Set der Qualitätsindikatoren auf Grundlage der bereits bestehenden Qualitätsindikatoren der Leitlinie HCC 2013, der neuen starken Empfehlungen („soll“) der aktualisierten Leitlinie HCC/CCA, der Ergebnisse der bestehenden Qualitätsindikatoren aus den zertifizierten Leberkrebszentren (nur HCC) der Deutschen Krebsgesellschaft sowie der Ergebnisse der Recherche nach bestehenden nationalen und internationalen Qualitätsindikatoren. Die genaue Vorgehensweise und die Zusammensetzung der AG QI sind im Leitlinienreport dargelegt.
Im Rahmen des Leitlinien-Updates (Version 5) wurden die Empfehlungen der Qualitätsindikatoren QI 3 und QI 5 modifiziert. Auf Basis der Modifikationen wurden die Qualitätsindikatoren geprüft, der Nenner des Qualitätsindikators 5 angepasst und im schriftlichen Umlaufverfahren angenommen.
Hinweis zur folgenden Tabellen:
Der Zähler ist stets eine Teilmenge des Nenners.
Die Qualitätsindikatoren 1, 3 und 4 sind mit dem onkologischen Basisdatensatz der Krebsregister zu dokumentieren (Stand: 05/2024).
Qualitätsindikator |
Referenz-Empfehlung |
Evidenzgrundlage/weitere Informationen |
QI 1: Typisierung nach WHO-Klassifikation (seit 2013; in 2020 ergänzt) |
||
Zähler Patienten des Nenners mit Typisierung nach aktueller WHO-Klassifikation Nenner N1: Alle Patienten mit histologisch gesichertem HCC |
Empfehlung 4.9 Die Typisierung der Karzinome der Gallenwege und der Gallenblase soll nach der anatomischen Lokalisation (intrahepatisch, perihilär, distale Gallenwege, Gallenblase) und gemäß der histologischen Differenzierung nach der aktuellen WHO-Klassifikation erfolgen. Bei intrahepatischen Cholangiokarzinomen sollte eine Unterscheidung von „small duct“ und „large duct“ Typ erfolgen. |
EK (Konsens) (3.17) EK (Konsens) (4.9) Qualitätsziel: Möglichst häufig Typisierung nach WHO [111] |
QI 2: Inhalt Befundberichte HCC (seit 2013) |
||
Zähler Patienten des Nenners mit Befundberichten mit Angabe zu: • Staging (nach TNM- Nenner Alle Patienten mit HCC und Leberresektion oder Leberexplantation |
Empfehlung 3.18 Die Bearbeitung und Befundung eines Resektats oder Explantats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resektatrandes (R-Klassifikation) sowie den Status der nichttumorösen Leber ermitteln. |
EK Qualitätsziel: Möglichst häufig vollständige Befundberichte |
QI 3: QI 4 entsprechend Langversion – Vorstellung Tumorkonferenz (seit 2013) |
||
Zähler Patienten des Nenners mit prätherapeutischer Vorstellung in der Tumorkonferenz Nenner Alle Patienten mit HCC |
Empfehlung 3.31 Patienten mit einem Hepatozellulären Karzinom sollen vor einer Behandlung und bei Änderung der Therapiestrategie in einer interdisziplinären Tumorkonferenz vorgestellt werden. |
EK Qualitätsziel: Möglichst häufig prätherapeutische Vorstellung in der Tumorkonferenz Teilnehmer TK: Gastroenterologe, Pathologe, interventioneller Radiologe, Viszeralchirurg Videokonferenzen sind möglich |
QI 4: QI 6 entsprechend Langversion – Vorstellung Tumorkonferenz nach TACE |
||
Zähler Patienten des Nenners mit Vorstellung in der Tumorkonferenz nach zwei Nenner Alle Patienten mit HCC und TACE |
Empfehlung 3.59 Die Indikation zur Fortführung der TACE soll nach zwei Behandlungszyklen im Tumorboard überprüft werden. |
EK Qualitätsziel: Möglichst häufig Vorstellung in der Tumorkonferenz nach TACE |
QI 5: QI 7 entsprechend Langversion – mRECIST-/EASL-Klassifikation nach TACE |
||
Zähler Patienten des Nenners mit Beurteilung der Remission mittels mRECIST- oder Nenner Alle Patienten mit HCC und TACE |
Empfehlung 3.65 Die Remissionsbeurteilung nach Ablation/TACE/TARE soll nach standardisierten Kriterien erfolgen (mRECIST, EASL oder LI-RADS-TR). |
EK Qualitätsziel: Möglichst häufig Verwendung der mRESCIST- oder EASL-Klassifikation nach TACE |
QI 6: QI 8 entsprechend Langversion – Bridging-Therapie (neu 2020) |
||
Zähler Patienten des Nenners, die eine Bridging-Therapie erhalten haben Nenner Alle Patienten mit HCC (BCLC A), Child A auf der Transplantationswarteliste |
Empfehlung 3.38 Patienten mit HCC (BCLC A) innerhalb der Mailand-Kriterien sollen eine Bridging-Therapie erhalten, sofern es die Leberfunktion zulässt. |
A, LoE 1 Qualitätsziel: Möglichst häufig Bridging-Therapie bei Patienten mit HCC (BCLC A) innerhalb der Mailand-Kriterien
|
QI 7: QI 9 entsprechend Langversion – Inhalt Befundberichte CCA (neu 2020) |
||
Zähler Patienten des Nenners, bei denen ein histopathologischer Befundbericht mit Nenner Alle Patienten mit CCA und Resektion oder Explantation |
Empfehlung 4.10 Die Bearbeitung und Befundung eines Resektats soll die Ausdehnung des Tumors (Staging) gemäß der aktuellen TNM-Klassifikation, seinen Typ (Typing) und Differenzierungsgrad (Grading) und den Status des Resektatrandes (R-Klassifikation) sowie bei intrahepatischen Cholangiokarzinomen den Status der nichttumorösen Leber ermitteln. Bei Präparaten mit prämalignen Läsionen soll durch genaue Aufarbeitung ein möglicher Übergang in ein invasives Karzinom abgeklärt werden. |
EK Qualitätsziel: Möglichst häufig vollständige Befundberichte |
#
7 Anhang
7.1 Literaturübersichten
7.1.1 Kapitel 4.4. Operative und Interventionelle Therapie der biliären Karzinome
Autor |
Design |
Methode |
Ergebnis |
Coelen 2018 [642] |
Randomisiert, multizentrisch |
ERCP vs. PTCD für die voraussichtlich verbleibende Leberseite bei geplanter Hemihepatektomie |
Höhere Mortalität in der PTBD Gruppe (41 % von 27 Patienten) als in endoskopischer BD Gruppe (11 % von 27 Patienten) mit einem relativen Risiko von 3,7 (p = 0,03). |
Celotti 2017 [891] |
Metaanalyse |
PBD vs. keine PBD |
Gleiche Mortalität, erhöhte Morbidität bei PBD |
Ba 2020 [643] |
Retrospektiv |
PTCD vs ERCP |
ERCP-Gruppe hatte im Vergleich zur PTBD-Gruppe eine höhere Inzidenz einer postprozeduralen Cholangitis (37 [37,37 %] vs. 18 [22,22 %], p = 0,028) undPankreatitis (17 [17,17 %] vs. 2 [2,47 %], P = 0.001); diese Gruppe benötigte häufiger eine salvaged biliary drainage (18 [18,18 %] vs. 5 [6,17 %], P = 0.029), und erzeugten höhere Kosten (P < 0.05) |
Ramanathan 2018 [892] |
Retrospektiv |
ERCP |
Mehr postoperative Komplikationen bei PBD |
Cai 2017 [893] |
Retrospektiv, single-center |
PBD empfohlen, falls Bilirubin > 12.4 mg/dL |
|
Farges 2013 [894] |
Retrospektiv, multi-center |
ERCP |
Erniedrigte postoperative Mortalität im Falle einer PBD, falls Hemihepatektomie rechts erfolgt ist |
Xiong 2013 [895] |
Retrospektiv, single-center |
||
Wang2019 [896] |
Retrospektiv |
„seeding metastasis“: ERCP vs. PTCD |
ERCP besser als PTCD in Bezug auf Metastasenaussaat bei (10,5 % vs. 22,0 %, OR = 0,35, 95 % CI: 0,23; 0,53) |
Wronka 2019 [639] |
Retrospektiv, single-center |
PBD vs. keine PBD |
Erhöhte postop. Mortalität bei Bili > 6,2; erhöhte Morbidität bei Bili > 2,5 mg/dl |
Kishi 2016 [897] |
Retrospektiv |
||
Nakai 2018 [645] |
Retrospektiv |
Nasobiliäre Sonde vs. Plastikstent transpapillär |
Vergleichbar |
Komaya 2017 [646] |
Retrospektiv |
PTCD vs. endoskopische Drainage |
Das OS ist bei der PTBD signifikant niedriger als in der endoskopischen Drainage-Gruppe (37,0 % vs 44,3 % at 5 years, p = 0,019). Die PTBD stellte einen Risikofaktor für Stichkanalmetastasen (p = 0,005). |
Kim 2015 [647] |
Retrospektiv |
PTCD vs. endoskopische Drainage |
Höhere Morbidität nach PTCD; In 2 von 62 Fällen Tumorzellverschleppung (seeding metastasis) nach PTCD. |
PTBD = perkutane transhepatische biliäre Drainage, PBD = (präoperative) biliäre Drainage.
Autor |
Design |
Methode |
Ergebnis |
Abraham 2002 [651] |
Retrospektiv |
„Quality of Life“ bei Hyperbilirubinämie schlechter und durch erfolgreiche Drainage zu verbessern |
|
Paik 2009 [652] |
Retrospektiv |
PTCD vs. ERCP |
Überleben nach erfolgreicher Drainage besser als keine Drainage |
Smith 1994 [656] |
RCT |
Distaler maligner Gallenwegsverschluss: Chirurgie/bilio-dig. Anastomose vs. Endoskopische Drainage |
Endoskopie mit weniger (frühen) Komplikationen |
Speer 1987 [657] |
RCT |
Palliative Drainage, PTCD vs. ERCP |
PLASTIKUNI-lateral Ikterus behoben81 % 61 %p = 0,017 30-d Mortalität15 %33 %p = 0,016 |
De Palma 2001 [667] |
RCT |
Uni- vs. bi-lateral |
|
Saluja 2008 [653] |
RCT |
PTCD vs. ERCP bei hilär einwachsendem Gallenblasenkarzinom |
|
Sangchan 2012 [898] |
SEMS vs. PLASTIK |
|
|
Cheng 2002 [670] |
Retrospektiv |
SEMS vs. Plastik vs. PTCD |
SEMS, Bihilär, 69 % ohne erneute Intervention |
Lee 2019 [659] |
RANDOMISIERTE STUDIE |
Malignant hilar stricture: side-byside vs. stent in stent SEMS |
Similar Efficacy |
Uberoi 2012 [655] |
Retrospektiv |
Registerstudie Großbritannien |
Krankenhausmortalität 19,8 % bei maligner Stenose |
Paik 2018 [661] |
RCT |
EUS vs. ERCP bei distalem biliären Verschluss |
Ebenbürtig |
Bang 2018 [662] |
RCT |
EUS vs. ERCP bei distalem biliären Verschluss |
Ebenbürtig |
Autor |
Design |
Methode |
Ergebnis |
Ortner 2003 [677] |
Randomisiert |
PDT+ Stent vs Stent |
Überlebensvorteil PDT |
Zoepf 2001 [676] |
Kohortenstudie |
PDT mit 5-ALA |
nichteffektiv |
Zoepf 2005 [678] |
Randomisiert |
PDT+ Stent vs. Stent |
Überlebensvorteil PDT |
Pereira 2018 [679] |
Randomisiert |
PDT+ Stent vs. Stent |
Schlechteres Outcome bei Patienten mit lokal fortgeschrittenen und metastasierten perihilären Tumoren |
Kahaleh 2008 [684] |
Retrospektiv |
PDT+ Stent vs. Stent |
Überlebensvorteil PDT |
Gonzalez-Carmona 2019 [680] |
Retrospektiv |
PDT + Ctx + Stent vs. Ctx + Stent |
Überlebensvorteil PDT |
Strand2014 [682] |
Retrospektiv |
PDT vs. RFA |
Überleben nach ERCP-geführter RFA und PDT ergab keinen signifikanten Unterschied bei Patienten mit einem irresektablen CCA. |
Yang 2018 [316] |
Randomisiert |
RFA + stent vs. stent/Bismuth 1 + 2 perihiläres CCA |
Überlebensvorteil RFA |
Wentrup 2016 [681] |
Retrospektiv |
PDT+CTx vs. PDT alone |
1-Jahres-Überlebensrate war signifikant höher in der PDT-CT-Gruppe verglichen mit der PDT alone Gruppe (88 % vs 58 %, p = 0,001). |
Dolak 2017 [683] |
Retrospektiv |
PDT |
PDT mit Polyhematoporphyrin war durchführbar und sicher |
Tal 2014 [674] |
Retrospektiv |
Endoskopische RFA |
Endoskopische RFA ist einfach und sicher. Hyperbilirubinämie war eine Nebenwirkung bei 3 Patienten. Größere Studienpopulationen sind notwendig zur weiteren Untersuchung der Sicherheit und Effizienz. |
#
#
7.2 Übersicht der Änderungen von Version 4 zur Version 5
#
#
8 Tabellenverzeichnis
[Tab. 1]: Beteiligte Fachgesellschaften und Organisationen (alphabetisch) |
e86 |
[Tab. 2]: Arbeitsgruppen und deren Mitglieder |
e88 |
[Tab. 3]: Abkürzungsverzeichnis |
e88 |
[Tab. 4]: Schema der Evidenzgraduierung nach Oxford (Version 2011) |
e93 |
[Tab. 5]: Schema der Empfehlungsgraduierung |
e94 |
[Tab. 6]: Konsensstärke |
e94 |
[Tab. 7]: Typische Merkmale der CCA-Subtypen |
e99 |
[Tab. 8]: Molekulare Alterationen beim small duct iCCA |
e100 |
[Tab. 9]: Forschungsfragen zum HCC |
e121 |
[Tab. 10]: Forschungsfragen beim biliären Karzinom |
e122 |
[Tab. 11]: Qualitätsindikatoren |
e123 |
[Tab. 12]: Übersicht über Literatur zur präoperativen biliären Drainage (PBD) |
e125 |
[Tab. 13]: Übersicht über Literatur zur biliären Drainage (BD) bei Cholangiokarzinom. |
e126 |
[Tab. 14]: Übersicht über Literatur zu intraduktalen, lokalablativen Verfahren (PBD). |
e126 |
[Tab. 15]: Änderungen von Version 4.0 zu Version 5.1 |
e127 |
#
9 Abbildungsverzeichnis
[Abb. 1]: Diagnosealgorithmus eines Patienten mit einem Verdacht auf ein Cholangiokarzinom Endoskopische Diagnostik |
e98 |
[Abb. 2]: Sequenztherapie beim Cholangiokarzinom |
e116 |
#
#
Interessenkonflikt
Die Übersicht über die Interessenkonflikte der Autorinnen und Autoren ist im Anhang des Leitlinienreports veröffentlicht.
-
Literatur
- 1 Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (03) 1020-1022 https://pubmed.ncbi.nlm.nih.gov/21374666/
- 2 The Global Cancer Observatory. 2021 https://gco.iarc.fr/
- 3 Zentrum für Krebsregisterdaten. 2021 https://www.krebsdaten.de/
- 4 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 https://www.sciencedirect.com/science/article/pii/S0168827818302150
- 5 Sangiovanni A, Prati GM, Fasani P. et al. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology 2006; 43: 1303-1310 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.21176
- 6 Ioannou GN, Splan MF, Weiss NS. et al. Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol 2007; 5: 938-945
- 7 Kanwal F, Kramer JR, Asch SM. et al. Long-Term Risk of Hepatocellular Carcinoma in HCV Patients Treated With Direct Acting Antiviral Agents. Hepatology 2020; 71: 44-55 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30823?download=true
- 8 Kanwal F, Kramer JR, Mapakshi S. et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018; 155: 1828-1837 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279617/pdf/nihms-1504451.pdf
- 9 EASL-EASD-EASO. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402 https://pubmed.ncbi.nlm.nih.gov/27062661/
- 10 Frenette CT, Isaacson AJ, Bargellini I. et al. A Practical Guideline for Hepatocellular Carcinoma Screening in Patients at Risk. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 302-310 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713857/pdf/main.pdf
- 11 Cucchetti A, Cescon M, Erroi V. et al. Cost-effectiveness of liver cancer screening. Best Pract Res Clin Gastroenterol 2013; 27: 961-72
- 12 Brouwer WP, van der Meer AJP, Boonstra A. et al. Prediction of long-term clinical outcome in a diverse chronic hepatitis B population: Role of the PAGE-B score. J Viral Hepat 2017; 24: 1023-1031 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jvh.12727?download=true
- 13 Papatheodoridis G, Dalekos G, Sypsa V. et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J Hepatol 2016; 64: 800-6 https://www.sciencedirect.com/science/article/pii/S0168827815007953?via%3Dihub
- 14 Papatheodoridis GV, Lampertico P, Manolakopoulos S. et al. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53: 348-356
- 15 Yuen MF, Tanaka Y, Fong DY. et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol 2009; 50: 80-88 https://www.sciencedirect.com/science/article/pii/S0168827808005655?via%3Dihub
- 16 Yang HI, Yuen MF, Chan HL. et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol 2011; 12: 568-574 https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(11)70077-8/fulltext
- 17 Wong VW, Chan SL, Mo F. et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J Clin Oncol 2010; 28: 1660-1665
- 18 Yip TC, Wong GL, Wong VW. et al. Reassessing the accuracy of PAGE-B-related scores to predict hepatocellular carcinoma development in patients with chronic hepatitis B. J Hepatol 2020; 72: 847-854 https://www.sciencedirect.com/science/article/abs/pii/S0168827819307172?via%3Dihub
- 19 Marrero JA, Kulik LM, Sirlin CB. et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68: 723-750 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29913?download=true
- 20 Mittal S, El-Serag HB, Sada YH. et al. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2016; 14: 124-131 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690789/pdf/nihms709433.pdf
- 21 EASL-ALEH. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015; 63: 237-264
- 22 Thomas J, Kendall B, Dalais C. et al. Hepatocellular and extrahepatic cancers in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Cancer 2022; 173: 250-262 https://pubmed.ncbi.nlm.nih.gov/35944373/
- 23 Loosen S, Kostev K, Keitel V. et al. An elevated FIB-4 score predicts liver cancer development: A longitudinal analysis from 29,999 patients with NAFLD. J Hepatol 2022; 76 (01) 247-248 https://pubmed.ncbi.nlm.nih.gov/34520785/
- 24 Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156: 1264-1281 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505052/pdf/nihms-1567724.pdf
- 25 Roeb E, Steffen HM, Bantel H. et al. [S2k Guideline non-alcoholic fatty liver disease]. Z Gastroenterol 2015; 53: 668-723 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0035-1553193
- 26 Roeb E, Geier A. Nonalcoholic steatohepatitis (NASH) – current treatment recommendations and future developments. Z Gastroenterol 2019; 57: 508-517 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-0784-8827
- 27 Angulo P, Hui JM, Marchesini G. et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45: 846-854 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21496?download=true
- 28 Tanwar S, Trembling PM, Hogan BJ. et al. Biomarkers of Hepatic Fibrosis in Chronic Hepatitis C: A Comparison of 10 Biomarkers Using 2 Different Assays for Hyaluronic Acid. J Clin Gastroenterol 2017; 51: 268-277 https://www.ingentaconnect.com/content/wk/jcga/2017/00000051/00000003/art00015;jsessionid=4j79pxsus6e3.x-ic-live-03
- 29 Kanwal F, Kramer J, Asch SM. et al. Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents. Gastroenterology 2017; 153: 996-1005 https://pubmed.ncbi.nlm.nih.gov/28642197/
- 30 Masuzaki R, Tateishi R, Yoshida H. et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology 2009; 49: 1954-1961 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.22870
- 31 El-Serag HB, Kanwal F, Richardson P. et al. Risk of hepatocellular carcinoma after sustained virological response in Veterans with hepatitis C virus infection. Hepatology 2016; 64: 130-137 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.28535?download=true
- 32 Ioannou GN, Beste LA, Green PK. et al. Increased Risk for Hepatocellular Carcinoma Persists Up to 10 Years After HCV Eradication in Patients With Baseline Cirrhosis or High FIB-4 Scores. Gastroenterology 2019; 157: 1264-1278 https://www.sciencedirect.com/science/article/abs/pii/S001650851941130X?via%3Dihub
- 33 Omata M, Cheng AL, Kokudo N. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11: 317-370 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491694/pdf/12072_2017_Article_9799.pdf
- 34 Younes R, Bugianesi E. Should we undertake surveillance for HCC in patients with NAFLD?. J Hepatol 2018; 68: 326-334 https://www.journal-of-hepatology.eu/article/S0168-8278(17)32353-X/fulltext
- 35 Simeone JC, Bae JP, Hoogwerf BJ. et al. Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin Epidemiol 2017; 9: 679-688 https://pubmed.ncbi.nlm.nih.gov/29276410/
- 36 Fujiwara N, Friedman SL, Goossens N. et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68: 526-549 https://www.journal-of-hepatology.eu/article/S0168-8278(17)32328-0/pdf
- 37 Gellert-Kristensen H, Richardson T, Davey SmithG. et al. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology 2020; 72 (03) 845-856 https://pubmed.ncbi.nlm.nih.gov/32190914/
- 38 Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta-analysis. Liver Int 2016; 36: 1239-1251 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/liv.13142?download=true
- 39 Papatheodoridis GV, Chan HL, Hansen BE. et al. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J Hepatol 2015; 62: 956-967 https://air.unimi.it/retrieve/handle/2434/437611/717191/1-s2.0-S0168827815000045-main.pdf
- 40 Orci L, Sanduzzi-Zamparelli M, Caballol B. et al. Incidence of Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-analysis, and Meta-regression. Clin Gastroenterol Hepatol 2022; 20 (02) 283-292 https://pubmed.ncbi.nlm.nih.gov/33965578/
- 41 Björkström K, Widman L, Hagström H. Risk of hepatic and extrahepatic cancer in NAFLD: A population-based cohort study. Liver Int 2022; 42 (04) 820-828 https://pubmed.ncbi.nlm.nih.gov/35152526/
- 42 Huang D, Tan D, Ng C. et al. Hepatocellular Carcinoma Incidence in Alcohol-Associated Cirrhosis: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21 (05) 1169-1177 https://pubmed.ncbi.nlm.nih.gov/35940513/
- 43 Lithner F, Wetterberg L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Med Scand 1984; 215 (03) 271-274 https://pubmed.ncbi.nlm.nih.gov/6328897/
- 44 Baravelli C, Sandberg S, Aarsand A. et al. Acute hepatic porphyria and cancer risk: a nationwide cohort study. J Intern Med 2017; 282 (03) 229-240 https://pubmed.ncbi.nlm.nih.gov/28730628/
- 45 Jang H, Yang H, Ko J. et al. Development of Hepatocellular Carcinoma in Patients with Glycogen Storage Disease: a Single Center Retrospective Study. J Korean Med Sci 2020; 35 (01) e5 https://pubmed.ncbi.nlm.nih.gov/31898434/
- 46 Bianchi L. Glycogen storage disease I and hepatocellular tumours. Eur J Pediatr 1993; 152 (Suppl. 01) S63-S70 https://pubmed.ncbi.nlm.nih.gov/8391447/
- 47 de Fost M, Vom DahlS, Weverling G. et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol Dis 36 (01) 53-58 https://pubmed.ncbi.nlm.nih.gov/16246599/
- 48 Regenboog M, van Dussen L, Verheij J. et al. Hepatocellular carcinoma in Gaucher disease: an international case series. J Inherit Metab Dis 2018; 41 (05) 819-827 https://pubmed.ncbi.nlm.nih.gov/29423829/
- 49 Bartlett D, Lloyd C, McKiernan P. et al. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 2014; 37 (05) 745-752 https://pubmed.ncbi.nlm.nih.gov/24515874/
- 50 Poon D, Anderson BO, Chen LT. et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009; 10: 1111-1118
- 51 Chang MH, Chen CJ, Lai MS. et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children Taiwan Childhood Hepatoma Study Group. N Engl J Med 1997; 336: 1855-1859 https://www.nejm.org/doi/pdf/10.1056/NEJM199706263362602?articleTools=true
- 52 Indolfi G, Easterbrook P, Dusheiko G. et al. Hepatitis B virus infection in children and adolescents. Lancet Gastroenterol Hepatol 2019; 4: 466-476 https://www.sciencedirect.com/science/article/abs/pii/S2468125319300421?via%3Dihub
- 53 Inoue M, Yoshimi I, Sobue T. et al. Influence of coffee drinking on subsequent risk of hepatocellular carcinoma: a prospective study in Japan. J Natl Cancer Inst 2005; 97: 293-300 https://pubmed.ncbi.nlm.nih.gov/15713964/
- 54 Bravi F, Tavani A, Bosetti C. et al. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. Eur J Cancer Prev 2017; 26: 368-377
- 55 Aleksandrova K, Bamia C, Drogan D. et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2015; 102: 1498-1508 http://spiral.imperial.ac.uk/bitstream/10044/1/29882/11/Am%20J%20Clin%20Nutr-2015-Aleksandrova-1498-508.pdf
- 56 Setiawan VW, Wilkens LR, Lu SC. et al. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology 2015; 148: 118-125 https://pubmed.ncbi.nlm.nih.gov/25305507/
- 57 Saab S, Mallam D, Cox GA. et al. Impact of coffee on liver diseases: a systematic review. Liver Int 2014; 34: 495-504
- 58 Bhurwal A, Rattan P, Yoshitake S. et al. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J Gastrointestin Liver Dis 2020; 29: 421-428 https://www.jgld.ro/jgld/index.php/jgld/article/download/805/1593
- 59 Kennedy OJ, Roderick P, Buchanan R. et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open 2017; 7: e013739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730000/pdf/bmjopen-2016-013739.pdf
- 60 Filippini T, Malavolti M, Borrelli F. et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev 2020; 3: Cd005004
- 61 Singh S, Fujii LL, Murad MH. et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2013; 11: 1573-1584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900882/pdf/nihms532555.pdf
- 62 Tseng CH. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int 2018; 38: 2018-2027
- 63 Cunha V, Cotrim HP, Rocha R. et al. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: A systematic review. Ann Hepatol 2020; 19: 232-237
- 64 Harris K, Smith L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother 2013; 47: 1348-1352 https://journals.sagepub.com/doi/pdf/10.1177/1060028013503108
- 65 Inzucchi SE, Lipska KJ, Mayo H. et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. Jama 2014; 312: 2668-75 https://jamanetwork.com/journals/jama/articlepdf/2084896/jrv140019.pdf
- 66 Zhang X, Harmsen W, Mettler T. et al. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes. Hepatology 2014; 60 (06) 2008-2016 https://pubmed.ncbi.nlm.nih.gov/24798175/
- 67 Vandenbulcke H, Moreno C, Colle I. et al. Alcohol intake increases the risk of HCC in hepatitis C virus-related compensated cirrhosis: A prospective study. J Hepatol 2016; 65: 543-551
- 68 Roeb E, Canbay A, Bantel H. et al. [Not Available]. Z Gastroenterol 2022; 60 (09) 1346-1421 https://pubmed.ncbi.nlm.nih.gov/36100202/
- 69 Ascha MS, Hanouneh IA, Lopez R. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51: 1972-1978 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20209604
- 70 EASL. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69: 154-181
- 71 Wang ZY, Tao QF, Wang ZH. et al. Antiviral therapy improves post-operative survival outcomes in patients with HBV-related hepatocellular carcinoma of less than 3 cm – A retrospective cohort study. Am J Surg 2020; 219: 717-725 https://www.sciencedirect.com/science/article/abs/pii/S000296101831609X?via%3Dihub
- 72 Jang JW, Yoo SH, Nam HC. et al. Association of Prophylactic Anti-Hepatitis B Virus Therapy With Improved Long-term Survival in Patients With Hepatocellular Carcinoma Undergoing Transarterial Therapy. Clin Infect Dis 2020; 71: 546-555 https://pubmed.ncbi.nlm.nih.gov/31504352/
- 73 Yang Y, Wen F, Li J. et al. A high baseline HBV load and antiviral therapy affect the survival of patients with advanced HBV-related HCC treated with sorafenib. Liver Int 2015; 35: 2147-2154
- 74 Cabibbo G, Celsa C, Calvaruso V. et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol 2019; 71: 265-273 https://www.sciencedirect.com/science/article/abs/pii/S0168827819302211?via%3Dihub
- 75 Dang H, Yeo YH, Yasuda S. et al. Cure With Interferon-Free Direct-Acting Antiviral Is Associated With Increased Survival in Patients With Hepatitis C Virus-Related Hepatocellular Carcinoma From Both East and West. Hepatology 2020; 71: 1910-1922 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30988?download=true
- 76 Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130: 417-422 https://link.springer.com/content/pdf/10.1007%2Fs00432-004-0552-0.pdf
- 77 Trevisani F, Santi V, Gramenzi A. et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis?. Am J Gastroenterol 2007; 102: 2448-2457
- 78 Trevisani F, Santi V, Gramenzi A. et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis?. Am J Gastroenterol 2007; 102: 2448-2457
- 79 Fan R, Papatheodoridis G, Sun J. et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis. J Hepatol 2020; 73 (06) 1368-1378 https://pubmed.ncbi.nlm.nih.gov/32707225/
- 80 Johnson P, Innes H, Hughes D. et al. Evaluation of the aMAP score for hepatocellular carcinoma surveillance: a realistic opportunity to risk stratify. Br J Cancer 2022; 127 (07) 1263-1269 https://pubmed.ncbi.nlm.nih.gov/35798825/
- 81 Pocha C, Dieperink E, McMaken KA. et al. Surveillance for hepatocellular cancer with ultrasonography vs computed tomography – a randomised study. Aliment Pharmacol Ther 2013; 38: 303-312 https://onlinelibrary.wiley.com/doi/pdf/10.1111/apt.12370
- 82 Trinchet JC, Chaffaut C, Bourcier V. et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology 2011; 54: 1987-1997 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.24545
- 83 Tzartzeva K, Obi J, Rich NE. et al. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology 2018; 154: 1706-1718 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927818/pdf/nihms940431.pdf
- 84 Song BG, Sinn DH, Chi S. et al. Additional role of liver stiffness measurement in stratifying residual hepatocellular carcinoma risk predicted by serum biomarkers in chronic hepatitis B patients under antiviral therapy. Eur J Gastroenterol Hepatol 2018; 30: 1447-1452
- 85 Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 2014; 11: e1001624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972088/pdf/pmed.1001624.pdf
- 86 Feng H, Li B, Li Z. et al. PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer 2021; 21 (01) 401 https://pubmed.ncbi.nlm.nih.gov/33849479/
- 87 Ricco G, Cosma C, Bedogni G. et al. Modeling the time-related fluctuations of AFP and PIVKA-II serum levels in patients with cirrhosis undergoing surveillance for hepatocellular carcinoma. Cancer Biomark 2020; 29 (02) 189-196 https://pubmed.ncbi.nlm.nih.gov/32623383/
- 88 Hemken P, Sokoll L, Yang X. et al. Validation of a novel model for the early detection of hepatocellular carcinoma. Clin Proteomics 2019; 16: 2 https://pubmed.ncbi.nlm.nih.gov/30675135/
- 89 Xu F, Zhang L, He W. et al. The Diagnostic Value of Serum PIVKA-II Alone or in Combination with AFP in Chinese Hepatocellular Carcinoma Patients. Dis Markers 2021; 2021: 8868370 https://pubmed.ncbi.nlm.nih.gov/33628341/
- 90 Poté N, Cauchy F, Albuquerque M. et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol 2015; 62 (04) 848-854 https://pubmed.ncbi.nlm.nih.gov/25450201/
- 91 Loglio A, Iavarone M, Facchetti F. et al. The combination of PIVKA-II and AFP improves the detection accuracy for HCC in HBV caucasian cirrhotics on long-term oral therapy. Liver Int 2020; 40 (08) 1987-1996 https://pubmed.ncbi.nlm.nih.gov/32301212/
- 92 Best J, Bechmann L, Sowa J. et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2020; 18 (03) 728-735 https://pubmed.ncbi.nlm.nih.gov/31712073/
- 93 Yang J, Addissie B, Mara K. et al. GALAD Score for Hepatocellular Carcinoma Detection in Comparison with Liver Ultrasound and Proposal of GALADUS Score. Cancer Epidemiol Biomarkers Prev 2019; 28 (03) 531-538 https://pubmed.ncbi.nlm.nih.gov/30464023/
- 94 Schotten C, Ostertag B, Sowa J. et al. GALAD Score Detects Early-Stage Hepatocellular Carcinoma in a European Cohort of Chronic Hepatitis B and C Patients. Pharmaceuticals (Basel) 2021; 14 (08) https://pubmed.ncbi.nlm.nih.gov/34451832/
- 95 Huang C, Fang M, Xiao X. et al. Validation of the GALAD model for early diagnosis and monitoring of hepatocellular carcinoma in Chinese multicenter study. Liver Int 2022; 42 (01) 210-223 https://pubmed.ncbi.nlm.nih.gov/34679250/
- 96 Tayob N, Kanwal F, Alsarraj A. et al. The Performance of AFP, AFP-3, DCP as Biomarkers for Detection of Hepatocellular Carcinoma (HCC): A Phase 3 Biomarker Study in the United States. Clin Gastroenterol Hepatol 2023; 21 (02) 415-423 https://pubmed.ncbi.nlm.nih.gov/35124267/
- 97 Singal A, Tayob N, Mehta A. et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology 2022; 75 (03) 541-549 https://pubmed.ncbi.nlm.nih.gov/34618932/
- 98 Chan H, Vogel A, Berg T. et al. Performance evaluation of the Elecsys PIVKA-II and Elecsys AFP assays for hepatocellular carcinoma diagnosis. JGH Open 2022; 6 (05) 292-300 https://pubmed.ncbi.nlm.nih.gov/35601131/
- 99 Chalasani N, Porter K, Bhattacharya A. et al. Validation of a Novel Multitarget Blood Test Shows High Sensitivity to Detect Early Stage Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2022; 20 (01) 173-182 https://pubmed.ncbi.nlm.nih.gov/34391922/
- 100 Loomba R, Lim JK, Patton H. et al. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2020; 158: 1822-1830
- 101 Petrick JL, Thistle JE, Zeleniuch-Jacquotte A. et al. Body Mass Index, Diabetes and Intrahepatic Cholangiocarcinoma Risk: The Liver Cancer Pooling Project and Meta-analysis. Am J Gastroenterol 2018; 113: 1494-1505 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521884/pdf/nihms-1027973.pdf
- 102 Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020; 69: 1343-1352 https://gut.bmj.com/content/69/7/1343.long
- 103 Singh S, Allen AM, Wang Z. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 2015; 13: 643-654 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208976/pdf/nihms-604814.pdf
- 104 Sterling RK, Lissen E, Clumeck N. et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317-1325
- 105 Taylor RS, Taylor RJ, Bayliss S. et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020; 158: 1611-1625
- 106 Rockey DC, Caldwell SH, Goodman ZD. et al. Liver biopsy. Hepatology 2009; 49: 1017-1044 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22742?download=true
- 107 Silva MA, Hegab B, Hyde C. et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 2008; 57: 1592-6 https://gut.bmj.com/content/gutjnl/57/11/1592.full.pdf
- 108 Müllhaupt B, Durand F, Roskams T. et al. Is tumor biopsy necessary?. Liver Transpl 2011; 17 (Suppl. 02) S14-S25 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22374?download=true
- 109 Fuks D, Cauchy F, Fusco G. et al. Preoperative tumour biopsy does not affect the oncologic course of patients with transplantable HCC. J Hepatol 2014; 61: 589-593
- 110 Paradis V FM. Tumors of the liver and intrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 215-264
- 111 Terminology of nodular hepatocellular lesions. Hepatology 1995; 22: 983-993 https://www.sciencedirect.com/science/article/abs/pii/0270913995903240?via%3Dihub
- 112 Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49: 658-664 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22709?download=true
- 113 Burt AD, Alves V, Bedossa P. et al. Data set for the reporting of intrahepatic cholangiocarcinoma, perihilar cholangiocarcinoma and hepatocellular carcinoma: recommendations from the International Collaboration on Cancer Reporting (ICCR). Histopathology 2018; 73: 369-385 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/his.13520?download=true
- 114 Edmondson HA, Steiner PE. Primary carcinoma of the liver A study of 100 cases among 48,900 necropsies. Cancer 1954; 7: 462-503 https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%28195405%297%3A3%3C462%3A%3AAID-CNCR2820070308%3E3.0.CO%3B2-E
- 115 Nzeako UC, Goodman ZD, Ishak KG. Comparison of tumor pathology with duration of survival of North American patients with hepatocellular carcinoma. Cancer 1995; 76: 579-88 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819950815%2976%3A4%3C579%3A%3AAID-CNCR2820760407%3E3.0.CO%3B2-D?download=true
- 116 Di Tommaso L, Franchi G, Park YN. et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007; 45: 725-734 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21531?download=true
- 117 Di Tommaso L, Destro A, Seok JY. et al. The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J Hepatol 2009; 50: 746-754
- 118 Lee YJ, Lee JM, Lee JS. et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015; 275: 97-109
- 119 Chen N, Motosugi U, Morisaka H. et al. Added Value of a Gadoxetic Acid-enhanced Hepatocyte-phase Image to the LI-RADS System for Diagnosing Hepatocellular Carcinoma. Magn Reson Med Sci 2016; 15: 49-59 https://www.jstage.jst.go.jp/article/mrms/15/1/15_2014-0149/_pdf
- 120 Granito A, Galassi M, Piscaglia F. et al. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther 2013; 37: 355-63 https://www.onlinelibrary.wiley.com/doi/pdf/10.1111/apt.12166
- 121 Haradome H, Grazioli L, Tinti R. et al. Additional value of gadoxetic acid-DTPA-enhanced hepatobiliary phase MR imaging in the diagnosis of early-stage hepatocellular carcinoma: comparison with dynamic triple-phase multidetector CT imaging. J Magn Reson Imaging 2011; 34: 69-78 https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.22588
- 122 Inoue T, Kudo M, Komuta M. et al. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT. J Gastroenterol 2012; 47: 1036-1047 https://link.springer.com/content/pdf/10.1007%2Fs00535-012-0571-6.pdf
- 123 Maiwald B, Lobsien D, Kahn T. et al. Is 3-Tesla Gd-EOB-DTPA-enhanced MRI with diffusion-weighted imaging superior to 64-slice contrast-enhanced CT for the diagnosis of hepatocellular carcinoma?. PLoS One 2014; 9: e111935 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223069/pdf/pone.0111935.pdf
- 124 Park VY, Choi JY, Chung YE. et al. Dynamic enhancement pattern of HCC smaller than 3 cm in diameter on gadoxetic acid-enhanced MRI: comparison with multiphasic MDCT. Liver Int 2014; 34: 1593-1602 https://onlinelibrary.wiley.com/doi/pdf/10.1111/liv.12550
- 125 Sun HY, Lee JM, Shin CI. et al. Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or = 2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Invest Radiol 2010; 45: 96-103 https://www.ncbi.nlm.nih.gov/pubmed/20057319
- 126 Tsurusaki M, Sofue K, Isoda H. et al. Comparison of gadoxetic acid-enhanced magnetic resonance imaging and contrast-enhanced computed tomography with histopathological examinations for the identification of hepatocellular carcinoma: a multicenter phase III study. J Gastroenterol 2016; 51: 71-79 https://link.springer.com/content/pdf/10.1007%2Fs00535-015-1097-5.pdf
- 127 Burrel M, Llovet JM, Ayuso C. et al. MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 2003; 38: 1034-1042 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.1840380430
- 128 Di Martino M, De Filippis G, De Santis A. et al. Hepatocellular carcinoma in cirrhotic patients: prospective comparison of US, CT and MR imaging. Eur Radiol 2013; 23: 887-896 https://link.springer.com/content/pdf/10.1007%2Fs00330-012-2691-z.pdf
- 129 Schellhaas B, Bernatik T, Bohle W. et al. Contrast-Enhanced Ultrasound Algorithms (CEUS-LIRADS/ESCULAP) for the Noninvasive Diagnosis of Hepatocellular Carcinoma – A Prospective Multicenter DEGUM Study. Ultraschall Med 2021; 42 (02) e20 https://pubmed.ncbi.nlm.nih.gov/32717752/
- 130 Strobel D, Jung E, Ziesch M. et al. Real-life assessment of standardized contrast-enhanced ultrasound (CEUS) and CEUS algorithms (CEUS LI-RADS/ESCULAP) in hepatic nodules in cirrhotic patients-a prospective multicenter study. Eur Radiol 2021; 31 (10) 7614-7625 https://pubmed.ncbi.nlm.nih.gov/33855588/
- 131 Schellhaas B, Bernatik T, Dirks K. et al. Contrast-Enhanced Ultrasound Patterns for the Non-invasive Diagnosis of Hepatocellular Carcinoma: A Prospective Multicenter Study in Histologically Proven Liver Lesions in a Real-Life Setting Demonstrating the Benefit of Extended Late Phase Observation. Ultrasound Med Biol 2021; 47 (11) 3170-3180 https://pubmed.ncbi.nlm.nih.gov/34417066/
- 132 Chen X, Li M, Guo R. et al. The diagnostic performance of contrast-enhanced CT versus extracellular contrast agent-enhanced MRI in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (NY) 2022; 47 (06) 2057-2070 https://pubmed.ncbi.nlm.nih.gov/35312822/
- 133 Lee S, Kim Y, Shin J. et al. Liver Imaging Reporting and Data System version 2018 category 5 for diagnosing hepatocellular carcinoma: an updated meta-analysis. Eur Radiol 2024; 34 (03) 1502-1514 https://pubmed.ncbi.nlm.nih.gov/37656177/
- 134 CT/MRT LI-RADS v2018. https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/Translations/LI-RADS-2018-CT-MRI-Core-German.pdf?la=en
- 135 Elsayes K, Kielar A, Elmohr M. et al. White paper of the Society of Abdominal Radiology hepatocellular carcinoma diagnosis disease-focused panel on LI-RADS v2018 for CT and MRI. Abdom Radiol (NY) 2018; 43 (10) 2625-2642 https://pubmed.ncbi.nlm.nih.gov/30155697/
- 136 Castilla-Lievre MA, Franco D, Gervais P. et al. Diagnostic value of combining (1)(1)C-choline and (1)(8)F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016; 43: 852-859 https://www.ncbi.nlm.nih.gov/pubmed/26577938
- 137 Chotipanich C, Kunawudhi A, Promteangtrong C. et al. Diagnosis of Hepatocellular Carcinoma Using C11 Choline PET/CT: Comparison with F18 FDG, ContrastEnhanced MRI and MDCT. Asian Pac J Cancer Prev 2016; 17: 3569-3573 https://www.ncbi.nlm.nih.gov/pubmed/27510010
- 138 Hong G, Suh KS, Suh SW. et al. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. J Hepatol 2016; 64: 852-859 https://www.ncbi.nlm.nih.gov/pubmed/26658686
- 139 Lin CY, Liao CW, Chu LY. et al. Predictive Value of 18F-FDG PET/CT for Vascular Invasion in Patients With Hepatocellular Carcinoma Before Liver Transplantation. Clin Nucl Med 2017; 42: e183-e187 https://www.ncbi.nlm.nih.gov/pubmed/28114226
- 140 Khalili K, Kim TK, Jang HJ. et al. Optimization of imaging diagnosis of 1–2 cm hepatocellular carcinoma: an analysis of diagnostic performance and resource utilization. J Hepatol 2011; 54: 723-8 https://www.sciencedirect.com/science/article/pii/S0168827810008147?via%3Dihub
- 141 Giorgio A, Montesarchio L, Gatti P. et al. Contrast-Enhanced Ultrasound: a Simple and Effective Tool in Defining a Rapid Diagnostic Work-up for Small Nodules Detected in Cirrhotic Patients during Surveillance. J Gastrointestin Liver Dis 2016; 25: 205-211 https://www.ncbi.nlm.nih.gov/pubmed/27308652
- 142 Schellhaas B, Gortz RS, Pfeifer L. et al. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur J Gastroenterol Hepatol 2017; 29: 1036-1044 https://www.ncbi.nlm.nih.gov/pubmed/28562394
- 143 Mitchell DG, Bruix J, Sherman M. et al. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015; 61: 1056-1065 https://www.ncbi.nlm.nih.gov/pubmed/25041904
- 144 Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19: 329-338 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2007-1007122
- 145 Chan AC, Fan ST, Poon RT. et al. Evaluation of the seventh edition of the American Joint Committee on Cancer tumour-node-metastasis (TNM) staging system for patients undergoing curative resection of hepatocellular carcinoma: implications for the development of a refined staging system. HPB (Oxford) 2013; 15: 439-448 https://www.hpbonline.org/article/S1365-182X(15)31417-9/pdf
- 146 Chevret S, Trinchet JC, Mathieu D. et al. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma Groupe d’Etude et de Traitement du Carcinome Hepatocellulaire. J Hepatol 1999; 31: 133-141 https://www.journal-of-hepatology.eu/article/S0168-8278(99)80173-1/fulltext
- 147 Johnson PJ, Berhane S, Kagebayashi C. et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol 2015; 33: 550-558 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322258/pdf/zlj550.pdf
- 148 Kitai S, Kudo M, Minami Y. et al. Validation of a new prognostic staging system for hepatocellular carcinoma: a comparison of the biomarker-combined Japan Integrated Staging Score, the conventional Japan Integrated Staging Score and the BALAD Score. Oncology 2008; 75 (Suppl. 01) 83-90 https://www.karger.com/Article/Abstract/173428
- 149 Leung TW, Tang AM, Zee B. et al. Construction of the Chinese University Prognostic Index for hepatocellular carcinoma and comparison with the TNM staging system, the Okuda staging system, and the Cancer of the Liver Italian Program staging system: a study based on 926 patients. Cancer 2002; 94: 1760-1769 https://onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.10384
- 150 Marrero JA, Fontana RJ, Barrat A. et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 2005; 41: 707-716 https://pubmed.ncbi.nlm.nih.gov/15795889/
- 151 Pinato DJ, Sharma R, Allara E. et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J Hepatol 2017; 66: 338-346 https://www.journal-of-hepatology.eu/article/S0168-8278(16)30535-9/pdf
- 152 Vitale A, Saracino E, Boccagni P. et al. Validation of the BCLC prognostic system in surgical hepatocellular cancer patients. Transplant Proc 2009; 41: 1260-1263 https://www.sciencedirect.com/science/article/pii/S0041134509004850?via%3Dihub
- 153 Yau T, Tang VY, Yao TJ. et al. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-1700 https://www.gastrojournal.org/article/S0016-5085(14)00243-1/pdf
- 154 Sohn JH, Duran R, Zhao Y. et al. Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy. Clin Gastroenterol Hepatol 2017; 15: 746-755 https://www.cghjournal.org/article/S1542-3565(16)31049-7/pdf
- 155 Yang A, Ju W, Yuan X. et al. Comparison between liver resection and liver transplantation on outcomes in patients with solitary hepatocellular carcinoma meeting UNOS criteria: a population-based study of the SEER database. Oncotarget 2017; 8: 97428-97438 https://www.oncotarget.com/article/22134/pdf/
- 156 Krenzien F, Schmelzle M, Struecker B. et al. Liver Transplantation and Liver Resection for Cirrhotic Patients with Hepatocellular Carcinoma: Comparison of Long-Term Survivals. J Gastrointest Surg 2018; 22: 840-848 https://link.springer.com/content/pdf/10.1007/s11605-018-3690-4.pdf
- 157 Cherqui D, Laurent A, Mocellin N. et al. Liver resection for transplantable hepatocellular carcinoma: long-term survival and role of secondary liver transplantation. Ann Surg 2009; 250: 738-746
- 158 Eguchi S, Kanematsu T, Arii S. et al. Recurrence-free survival more than 10 years after liver resection for hepatocellular carcinoma. Br J Surg 2011; 98: 552-557 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.7393?download=true
- 159 Sapisochin G, Goldaracena N, Laurence JM. et al. The extended Toronto criteria for liver transplantation in patients with hepatocellular carcinoma: A prospective validation study. Hepatology 2016; 64: 2077-2088 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.28643
- 160 Mazzaferro V, Battiston C, Sposito C. Pro (With Caution): Extended oncologic indications in liver transplantation. Liver Transpl 2018; 24: 98-103 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/lt.24963
- 161 Mazzaferro V, Regalia E, Doci R. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334: 693-699 https://www.nejm.org/doi/pdf/10.1056/NEJM199603143341104?articleTools=true
- 162 Agopian VG, Harlander-Locke MP, Ruiz RM. et al. Impact of Pretransplant Bridging Locoregional Therapy for Patients With Hepatocellular Carcinoma Within Milan Criteria Undergoing Liver Transplantation: Analysis of 3601 Patients From the US Multicenter HCC Transplant Consortium. Ann Surg 2017; 266: 525-535
- 163 Bundesärztekammer. Richtlinien zur Organtransplantation gem § 16 TPG. Deutsches Ärzteblatt
- 164 von Felden J, Villanueva A. Role of Molecular Biomarkers in Liver Transplantation for Hepatocellular Carcinoma. Liver Transpl 2020; 26: 823-831
- 165 Yao FY, Ferrell L, Bass NM. et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 2001; 33: 1394-1403
- 166 Mazzaferro V, Llovet JM, Miceli R. et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009; 10: 35-43 https://www.sciencedirect.com/science/article/pii/S1470204508702845?via%3Dihub
- 167 Sinha J, Mehta N, Dodge JL. et al. Are There Upper Limits in Tumor Burden for Down-Staging of Hepatocellular Carcinoma to Liver Transplant? Analysis of the All-Comers Protocol. Hepatology 2019; 70: 1185-1196 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.30570
- 168 Lai Q, Vitale A, Halazun K. et al. Identification of an Upper Limit of Tumor Burden for Downstaging in Candidates with Hepatocellular Cancer Waiting for Liver Transplantation: A West-East Collaborative Effort. Cancers (Basel) 2020; 12: 452 https://res.mdpi.com/d_attachment/cancers/cancers-12-00452/article_deploy/cancers-12-00452-v2.pdf
- 169 Mehta N, Guy J, Frenette CT. et al. Excellent Outcomes of Liver Transplantation Following Down-Staging of Hepatocellular Carcinoma to Within Milan Criteria: A Multicenter Study. Clin Gastroenterol Hepatol 2018; 16: 955-964 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053266/pdf/nihms922574.pdf
- 170 Otto G, Herber S, Heise M. et al. Response to transarterial chemoembolization as a biological selection criterion for liver transplantation in hepatocellular carcinoma. Liver Transpl 2006; 12: 1260-1267 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20837?download=true
- 171 Di Sandro S, Sposito C, Lauterio A. et al. Proposal of Prognostic Survival Models before and after Liver Resection for Hepatocellular Carcinoma in Potentially Transplantable Patients. J Am Coll Surg 2018; 226: 1147-1159 https://www.sciencedirect.com/science/article/abs/pii/S1072751518302199?via%3Dihub
- 172 Ferrer-Fàbrega J, Forner A, Liccioni A. et al. Prospective validation of ab initio liver transplantation in hepatocellular carcinoma upon detection of risk factors for recurrence after resection. Hepatology 2016; 63: 839-849 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.28339?download=true
- 173 Scatton O, Goumard C, Cauchy F. et al. Early and resectable HCC: Definition and validation of a subgroup of patients who could avoid liver transplantation. J Surg Oncol 2015; 111: 1007-1015 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.23916?download=true
- 174 de Haas RJ, Lim C, Bhangui P. et al. Curative salvage liver transplantation in patients with cirrhosis and hepatocellular carcinoma: An intention-to-treat analysis. Hepatology 2018; 67: 204-215 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29468?download=true
- 175 Bhangui P, Allard MA, Vibert E. et al. Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes?. Ann Surg 2016; 264: 155-163 https://www.ingentaconnect.com/content/wk/sla/2016/00000264/00000001/art00029;jsessionid=5ees0b4oapp5t.x-ic-live-02
- 176 Pichlmayr R. Is there a place for liver grafting for malignancy?. Transplant Proc 1988; 20: 478-82
- 177 Roayaie S, Schwartz JD, Sung MW. et al. Recurrence of hepatocellular carcinoma after liver transplant: patterns and prognosis. Liver Transpl 2004; 10: 534-540 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20128?download=true
- 178 Shetty K, Timmins K, Brensinger C. et al. Liver transplantation for hepatocellular carcinoma validation of present selection criteria in predicting outcome. Liver Transpl 2004; 10: 911-918 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20140?download=true
- 179 Lee HW, Song GW, Lee SG. et al. Patient Selection by Tumor Markers in Liver Transplantation for Advanced Hepatocellular Carcinoma. Liver Transpl 2018; 24: 1243-1251 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/lt.25056
- 180 Berry K, Ioannou GN. Serum alpha-fetoprotein level independently predicts posttransplant survival in patients with hepatocellular carcinoma. Liver Transpl 2013; 19: 634-45 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lt.23652
- 181 Vibert E, Azoulay D, Hoti E. et al. Progression of alphafetoprotein before liver transplantation for hepatocellular carcinoma in cirrhotic patients: a critical factor. Am J Transplant 2010; 10: 129-137 https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-6143.2009.02750.x
- 182 Yao FY, Mehta N, Flemming J. et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology 2015; 61: 1968-77 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809192/pdf/nihms667031.pdf
- 183 Hameed B, Mehta N, Sapisochin G. et al. Alpha-fetoprotein level > 1000 ng/mL as an exclusion criterion for liver transplantation in patients with hepatocellular carcinoma meeting the Milan criteria. Liver Transpl 2014; 20: 945-951 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23904?download=true
- 184 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358-380 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.29086
- 185 500 ng/mL in Patients with Hepatocellular Carcinoma Leads to Improved Posttransplant Outcomes. Hepatology 2019; 69: 1193-1205 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30413?download=true
- 186 EASL. EASL Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016; 64: 433-485
- 187 Martin P, DiMartini A, Feng S. et al. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 2014; 59: 1144-1165 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.26972?download=true
- 188 Adani GL, Baccarani U, Lorenzin D. et al. Elderly versus young liver transplant recipients: patient and graft survival. Transplant Proc 2009; 41: 1293-1294
- 189 Cross TJ, Antoniades CG, Muiesan P. et al. Liver transplantation in patients over 60 and 65 years: an evaluation of long-term outcomes and survival. Liver Transpl 2007; 13: 1382-1388 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21181?download=true
- 190 Grąt M, Kornasiewicz O, Grąt K. et al. Short and long-term outcomes after primary liver transplantation in elderly patients. Pol Przegl Chir 2013; 85: 581-588
- 191 Aduen JF, Sujay B, Dickson RC. et al. Outcomes after liver transplant in patients aged 70 years or older compared with those younger than 60 years. Mayo Clin Proc 2009; 84: 973-978 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770908/pdf/mayoclinproc_84_11_004.pdf
- 192 Lipshutz GS, Hiatt J, Ghobrial RM. et al. Outcome of liver transplantation in septuagenarians: a single-center experience. Arch Surg 2007; 142: 775-781 https://jamanetwork.com/journals/jamasurgery/articlepdf/400501/spc70006_775_784.pdf
- 193 Oezcelik A, Dayangac M, Guler N. et al. Living Donor Liver Transplantation in Patients 70 Years or Older. Transplantation 2015; 99: 1436-1440
- 194 Taner CB, Ung RL, Rosser BG. et al. Age is not a contraindication for orthotopic liver transplantation: a single institution experience with recipients older than 75 years. Hepatol Int 2012; 6: 403-407 https://link.springer.com/content/pdf/10.1007/s12072-011-9286-7.pdf
- 195 Huang X, Lu S. Impact of preoperative locoregional therapy on recurrence and patient survival following liver transplantation for hepatocellular carcinoma: a meta-analysis. Scand J Gastroenterol 2017; 52: 143-149 https://www.tandfonline.com/doi/full/10.1080/00365521.2016.1236396
- 196 Kulik L, Heimbach JK, Zaiem F. et al. Therapies for patients with hepatocellular carcinoma awaiting liver transplantation: A systematic review and meta-analysis. Hepatology 2018; 67: 381-400 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.29485
- 197 Sneiders D, Houwen T, Pengel LHM. et al. Systematic Review and Meta-Analysis of Posttransplant Hepatic Artery and Biliary Complications in Patients Treated With Transarterial Chemoembolization Before Liver Transplantation. Transplantation 2018; 102: 88-96
- 198 Clavien PA, Lesurtel M, Bossuyt PM. et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol 2012; 13: e11-e22 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417764/pdf/nihms392425.pdf
- 199 Beal EW, Dittmar KM, Hanje AJ. et al. Pretransplant Locoregional Therapy for Hepatocellular Carcinoma: Evaluation of Explant Pathology and Overall Survival. Front Oncol 2016; 6: 143
- 200 Cascales-Campos P, Martinez-Insfran LA, Ramirez P. et al. Liver Transplantation in Patients With Hepatocellular Carcinoma Outside the Milan Criteria After Downstaging: Is It Worth It?. Transplant Proc 2018; 50: 591-594 https://www.sciencedirect.com/science/article/abs/pii/S0041134517309284
- 201 Finkenstedt A, Vikoler A, Portenkirchner M. et al. Excellent post-transplant survival in patients with intermediate stage hepatocellular carcinoma responding to neoadjuvant therapy. Liver Int 2016; 36: 688-695 https://onlinelibrary.wiley.com/doi/full/10.1111/liv.12966
- 202 Györi GP, Felsenreich DM, Silberhumer GR. et al. Multimodality locoregional treatment strategies for bridging HCC patients before liver transplantation. Eur Surg 2017; 49: 236-243 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653748/pdf/10353_2017_Article_487.pdf
- 203 Jianyong L, Jinjing Z, Lunan Y. et al. Preoperative adjuvant transarterial chemoembolization cannot improve the long term outcome of radical therapies for hepatocellular carcinoma. Sci Rep 2017; 7: 41624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290748/pdf/srep41624.pdf
- 204 Nicolini D, Agostini A, Montalti R. et al. Radiological response and inflammation scores predict tumour recurrence in patients treated with transarterial chemoembolization before liver transplantation. World J Gastroenterol 2017; 23: 3690-3701 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449426/pdf/WJG-23-3690.pdf
- 205 Gabr A, Abouchaleh N, Ali R. et al. Comparative study of post-transplant outcomes in hepatocellular carcinoma patients treated with chemoembolization or radioembolization. Eur J Radiol 2017; 93: 100-106 https://www.sciencedirect.com/science/article/abs/pii/S0720048X17302012
- 206 Lai Q, Vitale A, Iesari S. et al. The Intention-to-Treat Effect of Bridging Treatments in the Setting of Milan Criteria-In Patients Waiting for Liver Transplantation. Liver Transpl 2019; 25: 1023-1033 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.25492?download=true
- 207 Oligane HC, Xing M, Kim HS. Effect of Bridging Local-Regional Therapy on Recurrence of Hepatocellular Carcinoma and Survival after Orthotopic Liver Transplantation. Radiology 2017; 282: 869-879
- 208 Millonig G, Graziadei IW, Freund MC. et al. Response to preoperative chemoembolization correlates with outcome after liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 2007; 13: 272-279 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21033?download=true
- 209 Cucchetti A, Cescon M, Bigonzi E. et al. Priority of candidates with hepatocellular carcinoma awaiting liver transplantation can be reduced after successful bridge therapy. Liver Transpl 2011; 17: 1344-1354 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22397?download=true
- 210 Lai Q, Avolio AW, Graziadei I. et al. Alpha-fetoprotein and modified response evaluation criteria in solid tumors progression after locoregional therapy as predictors of hepatocellular cancer recurrence and death after transplantation. Liver Transpl 2013; 19: 1108-1118 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23706?download=true
- 211 Kim DJ, Clark PJ, Heimbach J. et al. Recurrence of hepatocellular carcinoma: importance of mRECIST response to chemoembolization and tumor size. Am J Transplant 2014; 14: 1383-1390 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajt.12684?download=true
- 212 Riaz A, Miller FH, Kulik LM. et al. Imaging response in the primary index lesion and clinical outcomes following transarterial locoregional therapy for hepatocellular carcinoma. Jama 2010; 303: 1062-9 https://jamanetwork.com/journals/jama/articlepdf/185545/joc05021_1062_1069.pdf
- 213 Wong T, Lee V, Law A. et al. Prospective Study of Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma on Waitlist for Liver Transplant. Hepatology 2021; 74 (05) 2580-2594 https://pubmed.ncbi.nlm.nih.gov/34091914/
- 214 Sapisochin G, Barry A, Doherty M. et al. Stereotactic body radiotherapy vs TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma An intention-to-treat analysis. J Hepatol 2017; 67 (01) 92-99 https://pubmed.ncbi.nlm.nih.gov/28257902/
- 215 Bush D, Volk M, Smith J. et al. Proton beam radiotherapy versus transarterial chemoembolization for hepatocellular carcinoma: Results of a randomized clinical trial. Cancer 2023; 129 (22) 3554-3563 https://pubmed.ncbi.nlm.nih.gov/37503907/
- 216 Degroote H, Callebout E, Iesari S. et al. Extended criteria for liver transplantation in hepatocellular carcinoma A retrospective, multicentric validation study in Belgium. Surg Oncol 2019; https://pubmed.ncbi.nlm.nih.gov/31630912/
- 217 Parikh ND, Waljee AK, Singal AG. Downstaging hepatocellular carcinoma: A systematic review and pooled analysis. Liver Transpl 2015; 21: 1142-52 https://deepblue.lib.umich.edu/bitstream/handle/2027.42/113108/lt24169.pdf?sequence=1
- 218 Mazzaferro V, Citterio D, Bhoori S. et al. Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): a randomised, controlled, phase 2b/3 trial. Lancet Oncol 2020; 21 (07) 947-956 https://pubmed.ncbi.nlm.nih.gov/32615109/
- 219 Chapman WC, Garcia-Aroz S, Vachharajani N. et al. Liver Transplantation for Advanced Hepatocellular Carcinoma after Downstaging Without Up-Front Stage Restrictions. J Am Coll Surg 2017; 224: 610-621 https://www.sciencedirect.com/science/article/abs/pii/S1072751516317240
- 220 Graziadei I, Zoller H, Fickert P. et al. Indications for liver transplantation in adults: Recommendations of the Austrian Society for Gastroenterology and Hepatology (ÖGGH) in cooperation with the Austrian Society for Transplantation, Transfusion and Genetics (ATX). Wien Klin Wochenschr 2016; 128: 679-690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052293/pdf/508_2016_Article_1046.pdf
- 221 Mazzaferro V, Sposito C, Zhou J. et al. Metroticket 20 Model for Analysis of Competing Risks of Death After Liver Transplantation for Hepatocellular Carcinoma. Gastroenterology 2018; 154: 128-139 https://www.gastrojournal.org/article/S0016-5085(17)36184-X/fulltext
- 222 Halazun KJ, Tabrizian P, Najjar M. et al. Is it Time to Abandon the Milan Criteria?: Results of a Bicoastal US Collaboration to Redefine Hepatocellular Carcinoma Liver Transplantation Selection Policies. Ann Surg 2018; 268: 690-699
- 223 Hong SK, Lee KW, Kim HS. et al. Living donor liver transplantation for hepatocellular carcinoma in Seoul National University. Hepatobiliary Surg Nutr 2016; 5: 453-460
- 224 Kornberg A, Schernhammer M, Friess H. (18)F-FDG-PET for Assessing Biological Viability and Prognosis in Liver Transplant Patients with Hepatocellular Carcinoma. J Clin Transl Hepatol 2017; 5: 224-234
- 225 Assalino M, Terraz S, Grat M. et al. Liver transplantation for hepatocellular carcinoma after successful treatment of macrovascular invasion – a multi-center retrospective cohort study. Transpl Int 2020; 33: 567-575
- 226 Parikh ND, Yopp A, Singal AG. Controversies in criteria for liver transplantation in hepatocellular carcinoma. Curr Opin Gastroenterol 2016; 32: 182-188
- 227 Salem R, Gordon AC, Mouli S. et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016; 151: 1155-1163 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124387/pdf/nihms813288.pdf
- 228 Ettorre GM, Levi SandriGB, Laurenzi A. et al. Yttrium-90 Radioembolization for Hepatocellular Carcinoma Prior to Liver Transplantation. World J Surg 2017; 41: 241-249 https://link.springer.com/content/pdf/10.1007/s00268-016-3682-z.pdf
- 229 Schwacha-Eipper B, Minciuna I, Banz V. et al. Immunotherapy as a downstaging therapy for liver transplantation. Hepatology 2020; https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.31234
- 230 Golse N, Radenne S, Rode A. et al. Liver Transplantation After Neoadjuvant Sorafenib Therapy: Preliminary Experience and Literature Review. Exp Clin Transplant 2018; 16: 227-236
- 231 Hoffmann K, Ganten T, Gotthardtp D. et al. Impact of neo-adjuvant Sorafenib treatment on liver transplantation in HCC patients – a prospective, randomized, double-blind, phase III trial. BMC Cancer 2015; 15: 392 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449604/pdf/12885_2015_Article_1373.pdf
- 232 Berenguer M, Burra P, Ghobrial M. et al. Posttransplant Management of Recipients Undergoing Liver Transplantation for Hepatocellular Carcinoma Working Group Report From the ILTS Transplant Oncology Consensus Conference. Transplantation 2020; 104: 1143-1149
- 233 Verna EC, Patel YA, Aggarwal A. et al. Liver transplantation for hepatocellular carcinoma: Management after the transplant. Am J Transplant 2020; 20: 333-347 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajt.15697?download=true
- 234 Vivarelli M, Cucchetti A, Piscaglia F. et al. Analysis of risk factors for tumor recurrence after liver transplantation for hepatocellular carcinoma: key role of immunosuppression. Liver Transpl 2005; 11: 497-503 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20391?download=true
- 235 Vivarelli M, Cucchetti A, La Barba G. et al. Liver transplantation for hepatocellular carcinoma under calcineurin inhibitors: reassessment of risk factors for tumor recurrence. Ann Surg 2008; 248: 857-862
- 236 Rodríguez-Perálvarez M, Tsochatzis E, Naveas MC. et al. Reduced exposure to calcineurin inhibitors early after liver transplantation prevents recurrence of hepatocellular carcinoma. J Hepatol 2013; 59: 1193-1199
- 237 Decaens T, Roudot-Thoraval F, Bresson-Hadni S. et al. Role of immunosuppression and tumor differentiation in predicting recurrence after liver transplantation for hepatocellular carcinoma: a multicenter study of 412 patients. World J Gastroenterol 2006; 12: 7319-7325 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087490/pdf/WJG-12-7319.pdf
- 238 Tan PS, Muthiah MD, Koh T. et al. Asian Liver Transplant Network Clinical Guidelines on Immunosuppression in Liver Transplantation. Transplantation 2019; 103: 470-480
- 239 Duvoux C, Toso C. mTOR inhibitor therapy: Does it prevent HCC recurrence after liver transplantation?. Transplant Rev (Orlando) 2015; 29: 168-174
- 240 Tarantino G, Magistri P, Ballarin R. et al. Oncological Impact of M-Tor Inhibitor Immunosuppressive Therapy after Liver Transplantation for Hepatocellular Carcinoma: Review of the Literature. Front Pharmacol 2016; 7: 387 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073152/pdf/fphar-07-00387.pdf
- 241 Teperman L, Moonka D, Sebastian A. et al. Calcineurin inhibitor-free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare-the-nephron trial. Liver Transpl 2013; 19: 675-689 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23658?download=true
- 242 De Simone P, Metselaar HJ, Fischer L. et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl 2009; 15: 1262-1269 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21827?download=true
- 243 Fischer L, Saliba F, Kaiser GM. et al. Three-year Outcomes in De Novo Liver Transplant Patients Receiving Everolimus With Reduced Tacrolimus: Follow-Up Results From a Randomized, Multicenter Study. Transplantation 2015; 99: 1455-1462
- 244 Geissler EK, Schnitzbauer AA, Zülke C. et al. Sirolimus Use in Liver Transplant Recipients With Hepatocellular Carcinoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Transplantation 2016; 100: 116-125
- 245 Schnitzbauer A, Filmann N, Adam R. et al. mTOR Inhibition Is Most Beneficial After Liver Transplantation for Hepatocellular Carcinoma in Patients With Active Tumors. Ann Surg 2020; 272 (05) 855-862 https://pubmed.ncbi.nlm.nih.gov/32889867/
- 246 Trevisani F, Frigerio M, Santi V. et al. Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig Liver Dis 2010; 42: 341-347
- 247 Paradis V, Zalinski S, Chelbi E. et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 2009; 49: 851-859 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.22734
- 248 Piscaglia F, Svegliati-Baroni G, Barchetti A. et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016; 63: 827-838 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.28368
- 249 Ertle J, Dechêne A, Sowa JP. et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128: 2436-2443 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.25797?download=true
- 250 Zhou Y, Lei X, Wu L. et al. Outcomes of hepatectomy for noncirrhotic hepatocellular carcinoma: a systematic review. Surg Oncol 2014; 23: 236-242
- 251 Faber W, Sharafi S, Stockmann M. et al. Long-term results of liver resection for hepatocellular carcinoma in noncirrhotic liver. Surgery 2013; 153: 510-517
- 252 Cauchy F, Zalinski S, Dokmak S. et al. Surgical treatment of hepatocellular carcinoma associated with the metabolic syndrome. Br J Surg 2013; 100: 113-121 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.8963?download=true
- 253 Dasari BV, Kamarajah SK, Hodson J. et al. Development and validation of a risk score to predict the overall survival following surgical resection of hepatocellular carcinoma in non-cirrhotic liver. HPB (Oxford) 2020; 22: 383-390 https://www.sciencedirect.com/science/article/abs/pii/S1365182X19306215?via%3Dihub
- 254 Ju M, Yopp AC. The Utility of Anatomical Liver Resection in Hepatocellular Carcinoma: Associated with Improved Outcomes or Lack of Supportive Evidence?. Cancers (Basel) 2019; 11: 1441 https://res.mdpi.com/d_attachment/cancers/cancers-11-01441/article_deploy/cancers-11-01441.pdf
- 255 Moris D, Tsilimigras DI, Kostakis ID. et al. Anatomic versus non-anatomic resection for hepatocellular carcinoma: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 44: 927-938 https://www.sciencedirect.com/science/article/abs/pii/S0748798318310242?via%3Dihub
- 256 Arnaoutakis DJ, Mavros MN, Shen F. et al. Recurrence patterns and prognostic factors in patients with hepatocellular carcinoma in noncirrhotic liver: a multi-institutional analysis. Ann Surg Oncol 2014; 21: 147-154 https://link.springer.com/content/pdf/10.1245/s10434-013-3211-3.pdf
- 257 Lang H, Sotiropoulos GC, Brokalaki EI. et al. Survival and recurrence rates after resection for hepatocellular carcinoma in noncirrhotic livers. J Am Coll Surg 2007; 205: 27-36
- 258 Bège T, Le Treut YP, Hardwigsen J. et al. Prognostic factors after resection for hepatocellular carcinoma in nonfibrotic or moderately fibrotic liver A 116-case European series. J Gastrointest Surg 2007; 11: 619-625 https://link.springer.com/content/pdf/10.1007/s11605-006-0023-9.pdf
- 259 Teegen EM, Mogl MT, Pratschke J. et al. Adrenal Metastasis of Hepatocellular Carcinoma in Patients following Liver Resection or Liver Transplantation: Experience from a Tertiary Referral Center. Int J Surg Oncol 2018; 2018: 4195076 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087597/pdf/IJSO2018-4195076.pdf
- 260 Wang YY, Zhao XH, Ma L. et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma. J Surg Oncol 2018; 118: 440-445 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.25184?download=true
- 261 Rubin TM, Heyne K, Luchterhand A. et al. Kinetic validation of the LiMAx test during 10 000 intravenous (13)C-methacetin breath tests. J Breath Res 2017; 12: 016005 https://iopscience.iop.org/article/10.1088/1752-7163/aa820b
- 262 Stockmann M, Lock JF, Riecke B. et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg 2009; 250: 119-125
- 263 Huang Z, Huang J, Zhou T. et al. Prognostic value of liver stiffness measurement for the liver-related surgical outcomes of patients under hepatic resection: A meta-analysis. PLoS One 2018; 13: e0190512 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764309/pdf/pone.0190512.pdf
- 264 Simonetto DA, Liu M, Kamath PS. Portal Hypertension and Related Complications: Diagnosis and Management. Mayo Clin Proc 2019; 94: 714-726 https://www.sciencedirect.com/science/article/abs/pii/S0025619618310085?via%3Dihub
- 265 Roayaie S, Jibara G, Tabrizian P. et al. The role of hepatic resection in the treatment of hepatocellular cancer. Hepatology 2015; 62: 440-451 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.27745
- 266 Ishizawa T, Hasegawa K, Aoki T. et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology 2008; 134: 1908-1916 https://www.sciencedirect.com/science/article/pii/S0016508508004277?via%3Dihub
- 267 Torzilli G, Belghiti J, Kokudo N. et al. A snapshot of the effective indications and results of surgery for hepatocellular carcinoma in tertiary referral centers: is it adherent to the EASL/AASLD recommendations?: an observational study of the HCC East-West study group. Ann Surg 2013; 257: 929-937
- 268 Koh YX, Tan HL, Lye WK. et al. Systematic review of the outcomes of surgical resection for intermediate and advanced Barcelona Clinic Liver Cancer stage hepatocellular carcinoma: A critical appraisal of the evidence. World J Hepatol 2018; 10: 433-447 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033716/pdf/WJH-10-433.pdf
- 269 Zaydfudim VM, Vachharajani N, Klintmalm GB. et al. Liver Resection and Transplantation for Patients With Hepatocellular Carcinoma Beyond Milan Criteria. Ann Surg 2016; 264: 650-658 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279918/pdf/nihms-835604.pdf
- 270 Tsilimigras DI, Bagante F, Moris D. et al. Recurrence Patterns and Outcomes after Resection of Hepatocellular Carcinoma within and beyond the Barcelona Clinic Liver Cancer Criteria. Ann Surg Oncol 2020; 27: 2321-2331 https://link.springer.com/content/pdf/10.1245/s10434-020-08452-3.pdf
- 271 Pang TC, Lam VW. Surgical management of hepatocellular carcinoma. World J Hepatol 2015; 7: 245-252 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342606/pdf/WJH-7-245.pdf
- 272 Feng X, Su Y, Zheng S. et al. A double blinded prospective randomized trial comparing the effect of anatomic versus non-anatomic resection on hepatocellular carcinoma recurrence. HPB (Oxford) 2017; 19: 667-674
- 273 Wakabayashi G, Cherqui D, Geller DA. et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 2015; 261: 619-629
- 274 Cherqui D, Soubrane O. Laparoscopic Liver Resection: An Ongoing Revolution. Ann Surg 2017; 265: 864-865 https://www.ingentaconnect.com/content/wk/sla/2017/00000265/00000005/art00019
- 275 Andreou A, Struecker B, Raschzok N. et al. Minimal-invasive versus open hepatectomy for hepatocellular carcinoma: Comparison of postoperative outcomes and long-term survivals using propensity score matching analysis. Surg Oncol 2018; 27: 751-758 https://www.sciencedirect.com/science/article/abs/pii/S0960740418302512?via%3Dihub
- 276 Haber PK, Wabitsch S, Krenzien F. et al. Laparoscopic liver surgery in cirrhosis – Addressing lesions in posterosuperior segments. Surg Oncol 2019; 28: 140-144 https://www.sciencedirect.com/science/article/abs/pii/S0960740418304614?via%3Dihub
- 277 Levi SandriGB, Ettorre GM, Aldrighetti L. et al. Laparoscopic liver resection of hepatocellular carcinoma located in unfavorable segments: a propensity score-matched analysis from the I Go MILS (Italian Group of Minimally Invasive Liver Surgery) Registry. Surg Endosc 2019; 33: 1451-1458 https://link.springer.com/content/pdf/10.1007/s00464-018-6426-3.pdf
- 278 Felli E, Cillo U, Pinna AD. et al. Salvage liver transplantation after laparoscopic resection for hepatocellular carcinoma: a multicenter experience. Updates Surg 2015; 67: 215-222 https://link.springer.com/content/pdf/10.1007/s13304-015-0323-2.pdf
- 279 Chen MS, Li JQ, Zheng Y. et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243: 321-328 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448947/pdf/20060300s00006p321.pdf
- 280 Feng K, Yan J, Li X. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol 2012; 57: 794-802 https://www.sciencedirect.com/science/article/pii/S0168827812003613?via%3Dihub
- 281 Huang J, Yan L, Cheng Z. et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg 2010; 252: 903-912
- 282 Ng KKC, Chok KSH, Chan ACY. et al. Randomized clinical trial of hepatic resection versus radiofrequency ablation for early-stage hepatocellular carcinoma. Br J Surg 2017; 104: 1775-1784 https://onlinelibrary.wiley.com/doi/pdf/10.1002/bjs.10677
- 283 Yin L, Li H, Li AJ. et al. Partial hepatectomy vs transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond Milan Criteria: a RCT. J Hepatol 2014; 61: 82-88 https://www.sciencedirect.com/science/article/pii/S0168827814001561?via%3Dihub
- 284 Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010; 30: 52-60 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0030-1247132.pdf
- 285 Wahab MA, Shehta A, Hamed H. et al. Predictors of recurrence in hepatitis C virus related hepatocellular carcinoma after hepatic resection: a retrospective cohort study. Eurasian J Med 2014; 46: 36-41 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261437/pdf/eajm-46-1-36.pdf
- 286 Ramacciato G, Mercantini P, Nigri GR. et al. Univariate and multivariate analysis of prognostic factors in the surgical treatment of hepatocellular carcinoma in cirrhotic patients. Hepatogastroenterology 2006; 53: 898-903
- 287 Di Costanzo GG, Tortora R, D’Adamo G. et al. Radiofrequency ablation versus laser ablation for the treatment of small hepatocellular carcinoma in cirrhosis: a randomized trial. J Gastroenterol Hepatol 2015; 30: 559-565 https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12791
- 288 Cucchetti A, Piscaglia F, Cescon M. et al. An explorative data-analysis to support the choice between hepatic resection and radiofrequency ablation in the treatment of hepatocellular carcinoma. Dig Liver Dis 2014; 46: 257-263
- 289 Nishikawa H, Inuzuka T, Takeda H. et al. Comparison of percutaneous radiofrequency thermal ablation and surgical resection for small hepatocellular carcinoma. BMC Gastroenterol 2011; 11: 143 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260104/pdf/1471-230X-11-143.pdf
- 290 Uhlig J, Sellers CM, Stein SM. et al. Radiofrequency ablation versus surgical resection of hepatocellular carcinoma: contemporary treatment trends and outcomes from the United States National Cancer Database. Eur Radiol 2019; 29: 2679-2689 https://link.springer.com/article/10.1007/s00330-018-5902-4
- 291 Salmi A, Turrini R, Lanzani G. et al. Radiofrequency ablation of hepatocellular carcinoma in patients with and without cirrhosis. J Ultrasound 2009; 12: 118-124 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552707/pdf/main.pdf
- 292 Mohanty S, Rajaram R, Bilimoria KY. et al. Assessment of non-surgical versus surgical therapy for localized hepatocellular carcinoma. J Surg Oncol 2016; 113: 175-180 https://onlinelibrary.wiley.com/doi/abs/10.1002/jso.24113
- 293 Yamauchi R, Takata K, Shinagawa Y. et al. Hepatocellular Carcinoma Arising in a Non-cirrhotic Liver with Secondary Hemochromatosis. Intern Med 2019; 58: 661-665 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443541/pdf/1349-7235-58-0661.pdf
- 294 Livraghi T, Goldberg SN, Lazzaroni S. et al. Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 1999; 210: 655-661
- 295 Lencioni RA, Allgaier HP, Cioni D. et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 2003; 228: 235-240
- 296 Lin S-H, Lin C-J, C-C Lin. et al. Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma ≤ 4 cm. Gastroenterology 2004; 127: 1714-1723 https://www.sciencedirect.com/science/article/abs/pii/S0016508504015720?via%3Dihub
- 297 Bruix J, Sherman M, Llovet JM. et al. Clinical management of hepatocellular carcinoma Conclusions of the Barcelona-2000 EASL conference European Association for the Study of the Liver. J Hepatol 2001; 35: 421-430
- 298 Shiina S, Teratani T, Obi S. et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 2005; 129: 122-130 https://www.sciencedirect.com/science/article/abs/pii/S0016508505006918?via%3Dihub
- 299 Brunello F, Veltri A, Carucci P. et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: A randomized controlled trial. Scand J Gastroenterol 2008; 43: 727-735 https://www.tandfonline.com/doi/pdf/10.1080/00365520701885481?needAccess=true
- 300 Lin SM, Lin CJ, Lin CC. et al. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut 2005; 54: 1151-1156 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774888/pdf/gut05401151.pdf
- 301 Shiina S, Teratani T, Obi S. et al. Nonsurgical treatment of hepatocellular carcinoma: from percutaneous ethanol injection therapy and percutaneous microwave coagulation therapy to radiofrequency ablation. Oncology 2002; 62 (Suppl. 01) 64-68 https://www.karger.com/Article/Pdf/48278
- 302 Hara K, Takeda A, Tsurugai Y. et al. Radiotherapy for Hepatocellular Carcinoma Results in Comparable Survival to Radiofrequency Ablation: A Propensity Score Analysis. Hepatology 2019; 69: 2533-2545 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30591?download=true
- 303 Peng ZW, Zhang YJ, Chen MS. et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol 2013; 31: 426-432
- 304 Liu H, Wang ZG, Fu SY. et al. Randomized clinical trial of chemoembolization plus radiofrequency ablation versus partial hepatectomy for hepatocellular carcinoma within the Milan criteria. Br J Surg 2016; 103: 348-356 https://bjssjournals.onlinelibrary.wiley.com/doi/full/10.1002/bjs.10061
- 305 Endo K, Kuroda H, Oikawa T. et al. Efficacy of combination therapy with transcatheter arterial chemoembolization and radiofrequency ablation for intermediate-stage hepatocellular carcinoma. Scand J Gastroenterol 2018; 53: 1575-1583 https://www.tandfonline.com/doi/full/10.1080/00365521.2018.1548645
- 306 Fukutomi S, Nomura Y, Nakashima O. et al. Evaluation of hepatocellular carcinoma spread via the portal system by 3-dimensional mapping. HPB (Oxford) 2017; 19: 1119-1125
- 307 Hendriks P, Sudiono D, Schaapman J. et al. Thermal ablation combined with transarterial chemoembolization for hepatocellular carcinoma: What is the right treatment sequence?. Eur J Radiol 2021; 144: 110006 https://pubmed.ncbi.nlm.nih.gov/34717187/
- 308 Smolock AR, Cristescu MM, Hinshaw A. et al. Combination transarterial chemoembolization and microwave ablation improves local tumor control for 3- to 5-cm hepatocellular carcinoma when compared with transarterial chemoembolization alone. Abdom Radiol (NY) 2018; 43: 2497-2504 https://link.springer.com/content/pdf/10.1007/s00261-018-1464-9.pdf
- 309 Bonomo G, Della Vigna P, Monfardini L. et al. Combined therapies for the treatment of technically unresectable liver malignancies: bland embolization and radiofrequency thermal ablation within the same session. Cardiovasc Intervent Radiol 2012; 35: 1372-1379 https://link.springer.com/content/pdf/10.1007/s00270-012-0341-0.pdf
- 310 Lo CM, Ngan H, Tso WK. et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35: 1164-1171 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1053/jhep.2002.33156
- 311 Lammer J, Malagari K, Vogl T. et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 2010; 33: 41-52 https://www.zora.uzh.ch/id/eprint/24207/1/Lammer_CardiovascInterventRadiol_2010_V.pdf
- 312 Golfieri R, Giampalma E, Renzulli M. et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer 2014; 111: 255-264 https://iris.unito.it/retrieve/handle/2318/149077/25760/art%20Doxorubicina-Tace%202014.pdf
- 313 Yamada R, Bassaco B, Bracewell S. et al. Long-term follow-up after conventional transarterial chemoembolization (c-TACE) with mitomycin for hepatocellular carcinoma (HCC). J Gastrointest Oncol 2019; 10: 348-353
- 314 Llovet JM, Real MI, Montana X. et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359: 1734-1739 https://www.sciencedirect.com/science/article/pii/S014067360208649X?via%3Dihub
- 315 Abdel-Rahman O, Elsayed Z. Yttrium-90 microsphere radioembolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev 2020; 1: Cd011313
- 316 Yang J, Wang J, Zhou H. et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy 2018; 50: 751-760 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0043-124870.pdf
- 317 Ludwig JM, Zhang D, Xing M. et al. Meta-analysis: adjusted indirect comparison of drug-eluting bead transarterial chemoembolization versus (90)Y-radioembolization for hepatocellular carcinoma. Eur Radiol 2017; 27: 2031-2041 https://link.springer.com/content/pdf/10.1007%2Fs00330-016-4548-3.pdf
- 318 Casadei Gardini A, Tamburini E, Inarrairaegui M. et al. Radioembolization versus chemoembolization for unresectable hepatocellular carcinoma: a meta-analysis of randomized trials. Onco Targets Ther 2018; 11: 7315-7321 https://www.dovepress.com/getfile.php?fileID=45631
- 319 Kolligs FT, Bilbao JI, Jakobs T. et al. Pilot randomized trial of selective internal radiation therapy vs chemoembolization in unresectable hepatocellular carcinoma. Liver Int 2015; 35: 1715-1721 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/liv.12750?download=true
- 320 Katsanos K, Kitrou P, Spiliopoulos S. et al. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. PLoS One 2017; 12: e0184597 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608206/pdf/pone.0184597.pdf
- 321 Pitton MB, Kloeckner R, Ruckes C. et al. Randomized comparison of selective internal radiotherapy (SIRT) versus drug-eluting bead transarterial chemoembolization (DEB-TACE) for the treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol 2015; 38: 352-360 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355443/pdf/270_2014_Article_1012.pdf
- 322 Lobo L, Yakoub D, Picado O. et al. Unresectable Hepatocellular Carcinoma: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. Cardiovasc Intervent Radiol 2016; 39: 1580-1588 https://link.springer.com/content/pdf/10.1007/s00270-016-1426-y.pdf
- 323 Salem R, Gilbertsen M, Butt Z. et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol 2013; 11: 1358-1365 https://www.sciencedirect.com/science/article/abs/pii/S1542356513005971?via%3Dihub
- 324 Sangro B, Maini CL, Ettorre GM. et al. Radioembolisation in patients with hepatocellular carcinoma that have previously received liver-directed therapies. Eur J Nucl Med Mol Imaging 2018; 45: 1721-1730 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097757/pdf/259_2018_Article_3968.pdf
- 325 Johnson GE, Monsky WL, Valji K. et al. Yttrium-90 Radioembolization as a Salvage Treatment following Chemoembolization for Hepatocellular Carcinoma. J Vasc Interv Radiol 2016; 27: 1123-1129
- 326 Hilgard P, Hamami M, Fouly AE. et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010; 52: 1741-1749 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.23944?download=true
- 327 Sangro B, Carpanese L, Cianni R. et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 2011; 54: 868-878 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.24451?download=true
- 328 Kulik LM, Carr BI, Mulcahy MF. et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008; 47: 71-81 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21980?download=true
- 329 Mazzaferro V, Sposito C, Bhoori S. et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology 2013; 57: 1826-1837 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.26014?download=true
- 330 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64
- 331 Rim CH, Kim CY, Yang DS. et al. Comparison of radiation therapy modalities for hepatocellular carcinoma with portal vein thrombosis: A meta-analysis and systematic review. Radiother Oncol 2018; 129: 112-122 https://www.sciencedirect.com/science/article/abs/pii/S0167814017327305?via%3Dihub
- 332 Salem R, Padia S, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46 (08) 1695-1704 https://pubmed.ncbi.nlm.nih.gov/31098749/
- 333 Levillain H, Bagni O, Deroose C. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48 (05) 1570-1584 https://pubmed.ncbi.nlm.nih.gov/33433699/
- 334 Garin E, Tselikas L, Guiu B. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29 https://pubmed.ncbi.nlm.nih.gov/33166497/
- 335 Salem R, Johnson G, Kim E. et al. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021; 74 (05) 2342-2352 https://pubmed.ncbi.nlm.nih.gov/33739462/
- 336 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. The Lancet Oncology 2017; 18: 1624-1636
- 337 Chow PKH, Gandhi M, Tan SB. et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J Clin Oncol 2018; 36: 1913-1921 https://www.ncbi.nlm.nih.gov/pubmed/29498924
- 338 Sapir E, Tao Y, Schipper MJ. et al. Stereotactic Body Radiation Therapy as an Alternative to Transarterial Chemoembolization for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2018; 100: 122-130 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818982/pdf/nihms942371.pdf
- 339 Eriguchi T, Takeda A, Tateishi Y. et al. Comparison of stereotactic body radiotherapy and radiofrequency ablation for hepatocellular carcinoma: Systematic review and meta-analysis of propensity score studies. Hepatol Res 2021; 51 (07) 813-822 https://pubmed.ncbi.nlm.nih.gov/33856722/
- 340 Rim C, Lee J, Kim S. et al. Comparison of radiofrequency ablation and ablative external radiotherapy for the treatment of intrahepatic malignancies: A hybrid meta-analysis. JHEP Rep 2023; 5 (01) 100594 https://pubmed.ncbi.nlm.nih.gov/36561128/
- 341 Craig T, Xiao Y, McNulty S. et al. Insights From Image Guided Radiation Therapy Credentialing for the NRG Oncology RTOG 1112 Liver Stereotactic Body Radiation Therapy Trial. Pract Radiat Oncol 2022; https://pubmed.ncbi.nlm.nih.gov/36581199/
- 342 Rim C, Kim H, Seong J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Radiother Oncol 2019; 131: 135-144 https://pubmed.ncbi.nlm.nih.gov/30773180/
- 343 Brunner T, Bettinger D, Schultheiss M. et al. Efficacy of Stereotactic Body Radiotherapy in Patients With Hepatocellular Carcinoma Not Suitable for Transarterial Chemoembolization (HERACLES: HEpatocellular Carcinoma Stereotactic RAdiotherapy CLinical Efficacy Study). Front Oncol 2021; 11: 653141 https://pubmed.ncbi.nlm.nih.gov/33816309/
- 344 Omata M, Cheng A, Kokudo N. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11 (04) 317-370 https://pubmed.ncbi.nlm.nih.gov/28620797/
- 345 Vogel A, Cervantes A, Chau I. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29: iv238-iv255
- 346 Guckenberger M, Baus W, Blanck O. et al. Definition and quality requirements for stereotactic radiotherapy: consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2020; 196 (05) 417-420 https://pubmed.ncbi.nlm.nih.gov/32211940/
- 347 Mizumoto M, Tokuuye K, Sugahara S. et al. Proton beam therapy for hepatocellular carcinoma adjacent to the porta hepatis. Int J Radiat Oncol Biol Phys 2008; 71: 462-467
- 348 Fukumitsu N, Sugahara S, Nakayama H. et al. A prospective study of hypofractionated proton beam therapy for patients with hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2009; 74: 831-836
- 349 Sugahara S, Oshiro Y, Nakayama H. et al. Proton beam therapy for large hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2010; 76: 460-466
- 350 Kim T, Park J, Kim Y. et al. Phase I dose-escalation study of proton beam therapy for inoperable hepatocellular carcinoma. Cancer Res Treat 2015; 47 (01) 34-45 https://pubmed.ncbi.nlm.nih.gov/25381830/
- 351 Nakayama H, Sugahara S, Fukuda K. et al. Proton beam therapy for hepatocellular carcinoma located adjacent to the alimentary tract. Int J Radiat Oncol Biol Phys 2011; 80: 992-995
- 352 Bush DA, Smith JC, Slater JD. et al. Randomized Clinical Trial Comparing Proton Beam Radiation Therapy with Transarterial Chemoembolization for Hepatocellular Carcinoma: Results of an Interim Analysis. Int J Radiat Oncol Biol Phys 2016; 95: 477-482
- 353 Hong TS, Wo JY, Yeap BY. et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J Clin Oncol 2016; 34: 460-468 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872014/pdf/JCO642710.pdf
- 354 Mizumoto M, Oshiro Y, Okumura T. et al. Proton Beam Therapy for Hepatocellular Carcinoma: A Review of the University of Tsukuba Experience. Int J Part Ther 2016; 2 (04) 570-578 https://pubmed.ncbi.nlm.nih.gov/31772968/
- 355 Mohnike K, Wieners G, Schwartz F. et al. Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys 2010; 78: 172-179
- 356 Mohnike K, Steffen IG, Seidensticker M. et al. Radioablation by Image-Guided (HDR) Brachytherapy and Transarterial Chemoembolization in Hepatocellular Carcinoma: A Randomized Phase II Trial. Cardiovasc Intervent Radiol 2019; 42: 239-249 https://link.springer.com/content/pdf/10.1007/s00270-018-2127-5.pdf
- 357 Collettini F, Schreiber N, Schnapauff D. et al. CT-guided high-dose-rate brachytherapy of unresectable hepatocellular carcinoma. Strahlenther Onkol 2015; 191: 405-412 https://link.springer.com/content/pdf/10.1007/s00066-014-0781-3.pdf
- 358 Comito T, Loi M, Franzese C. et al. Stereotactic Radiotherapy after Incomplete Transarterial (Chemo-) Embolization (TAE/TACE) versus Exclusive TAE or TACE for Treatment of Inoperable HCC: A Phase III Trial (NCT02323360). Curr Oncol 2022; 29 (11) 8802-8813 https://pubmed.ncbi.nlm.nih.gov/36421345/
- 359 Buckstein M, Kim E, Özbek U. et al. Combination Transarterial Chemoembolization and Stereotactic Body Radiation Therapy for Unresectable Single Large Hepatocellular Carcinoma: Results From a Prospective Phase 2 Trial. Int J Radiat Oncol Biol Phys 2022; 114 (02) 221-230 https://pubmed.ncbi.nlm.nih.gov/35643250/
- 360 Yoon S, Ryoo B, Lee S. et al. Efficacy and Safety of Transarterial Chemoembolization Plus External Beam Radiotherapy vs Sorafenib in Hepatocellular Carcinoma With Macroscopic Vascular Invasion: A Randomized Clinical Trial. JAMA Oncol 2018; 4 (05) 661-669 https://pubmed.ncbi.nlm.nih.gov/29543938/
- 361 Huo Y, Eslick G. Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared With Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol 2015; 1 (06) 756-765 https://pubmed.ncbi.nlm.nih.gov/26182200/
- 362 Bargellini I, Bozzi E, Campani D. et al. Modified RECIST to assess tumor response after transarterial chemoembolization of hepatocellular carcinoma: CT-pathologic correlation in 178 liver explants. Eur J Radiol 2013; 82 (05) e212-e218 https://pubmed.ncbi.nlm.nih.gov/23332890/
- 363 Yu H, Bai Y, Xie X. et al. RECIST 11 versus mRECIST for assessment of tumour response to molecular targeted therapies and disease outcomes in patients with hepatocellular carcinoma: a systematic review and meta-analysis. BMJ Open 2022; 12 (06) e052294 https://pubmed.ncbi.nlm.nih.gov/35649603/
- 364 Kim D, Kim B, Choi J. et al. LI-RADS Treatment Response versus Modified RECIST for Diagnosing Viable Hepatocellular Carcinoma after Locoregional Therapy: A Systematic Review and Meta-Analysis of Comparative Studies. Taehan Yongsang Uihakhoe Chi 2022; 83 (02) 331-343 https://pubmed.ncbi.nlm.nih.gov/36237934/
- 365 Santillan C, Chernyak V, Sirlin C. LI-RADS categories: concepts, definitions, and criteria. Abdom Radiol (NY) 2018; 43: 101-110
- 366 Santillan C, Fowler K, Kono Y. et al. LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents. Abdom Radiol (NY) 2018; 43: 75-81
- 367 Takahashi S, Kudo M, Chung H. et al. Initial treatment response is essential to improve survival in patients with hepatocellular carcinoma who underwent curative radiofrequency ablation therapy. Oncology 2007; 72 (Suppl. 01) 98-103 https://www.karger.com/Article/Pdf/111714
- 368 Guglielmi A, Ruzzenente A, Pachera S. et al. Comparison of seven staging systems in cirrhotic patients with hepatocellular carcinoma in a cohort of patients who underwent radiofrequency ablation with complete response. Am J Gastroenterol 2008; 103: 597-604
- 369 Yoon JH, Lee EJ, Cha SS. et al. Comparison of gadoxetic acid-enhanced MR imaging versus four-phase multi-detector row computed tomography in assessing tumor regression after radiofrequency ablation in subjects with hepatocellular carcinomas. J Vasc Interv Radiol 2010; 21: 348-356
- 370 Vauthey JN, Dixon E, Abdalla EK. et al. Pretreatment assessment of hepatocellular carcinoma: expert consensus statement. HPB (Oxford) 2010; 12: 289-299 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951814/pdf/hpb0012-0289.pdf
- 371 Schima W, Ba-Ssalamah A, Kurtaran A. et al. Post-treatment imaging of liver tumours. Cancer Imaging 2007; 7 Spec No A: S28-36 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727978/pdf/ci079047.pdf
- 372 Frieser M, Kiesel J, Lindner A. et al. Efficacy of contrast-enhanced US versus CT or MRI for the therapeutic control of percutaneous radiofrequency ablation in the case of hepatic malignancies. Ultraschall Med 2011; 32: 148-153 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0029-1245934.pdf
- 373 Schacherer D, Girlich C, Jung ME. et al. Transabdominal ultrasound with echoenhancement by contrast media in the diagnosis of hepatocellular carcinoma. Dig Dis 2009; 27: 109-113 https://www.karger.com/Article/Pdf/218342
- 374 Lencioni R, Piscaglia F, Bolondi L. Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma. J Hepatol 2008; 48: 848-857 https://www.sciencedirect.com/science/article/pii/S0168827808001244?via%3Dihub
- 375 Crocetti L, de Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Intervent Radiol 2010; 33: 11-17 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816824/pdf/270_2009_Article_9736.pdf
- 376 Tsai MC, Wang JH, Hung CH. et al. Favorable alpha-fetoprotein decrease as a prognostic surrogate in patients with hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol 2010; 25: 605-612 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1440-1746.2009.06115.x?download=true
- 377 Lencioni R. New data supporting modified RECIST (mRECIST) for Hepatocellular Carcinoma. Clin Cancer Res 2013; 19: 1312-1314 https://clincancerres.aacrjournals.org/content/clincanres/19/6/1312.full.pdf
- 378 Vincenzi B, Di Maio M, Silletta M. et al. Prognostic Relevance of Objective Response According to EASL Criteria and mRECIST Criteria in Hepatocellular Carcinoma Patients Treated with Loco-Regional Therapies: A Literature-Based Meta-Analysis. PLoS One 2015; 10: e0133488 https://iris.unito.it/retrieve/handle/2318/1572009/162002/pone.0133488.pdf
- 379 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020; 382: 1894-1905 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1915745?articleTools=true
- 380 Cheng AL, Kang YK, Chen Z. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34 https://www.sciencedirect.com/science/article/pii/S1470204508702857?via%3Dihub
- 381 Kudo M, Finn RS, Qin S. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 2018; 391: 1163-1173
- 382 Bruix J, Qin S, Merle P. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 2017; 389: 56-66
- 383 Abou-Alfa GK, Meyer T, Cheng AL. et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med 2018; 379: 54-63 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1717002?articleTools=true
- 384 Zhu AX, Kang YK, Yen CJ. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019; 20: 282-296
- 385 Facciorusso A, Tartaglia N, Villani R. et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Am J Transl Res 2021; 13 (04) 2379-2387 https://pubmed.ncbi.nlm.nih.gov/34017396/
- 386 Abou-Alfa Ghassan K, Lau G, Kudo M. et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence 2022; 1: EVIDoa2100070 https://doi.org/10.1056/EVIDoa2100070
- 387 Llovet JM, Ricci S, Mazzaferro V. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 https://www.nejm.org/doi/pdf/10.1056/NEJMoa0708857?articleTools=true
- 388 Zhu AX, Kang Y, Yen C. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2019; 20: 282-296
- 389 Cheng A, Qin S, Ikeda M. et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76 (04) 862-873 https://pubmed.ncbi.nlm.nih.gov/34902530/
- 390 Galle P, Finn R, Qin S. et al. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial. Lancet Oncol 2021; 22 (07) 991-1001 https://pubmed.ncbi.nlm.nih.gov/34051880/
- 391 Yau T, Park J, Finn R. et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022; 23 (01) 77-90 https://pubmed.ncbi.nlm.nih.gov/34914889/
- 392 Qin S, Kudo M, Meyer T. et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2023; 9 (12) 1651-1659 https://pubmed.ncbi.nlm.nih.gov/37796513/
- 393 Cainap C, Qin S, Huang WT. et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 2015; 33: 172-179 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279237/pdf/zlj172.pdf
- 394 Johnson PJ, Qin S, Park JW. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 2013; 31: 3517-3524
- 395 Zhu AX, Rosmorduc O, Evans TR. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2015; 33: 559-566 http://diposit.ub.edu/dspace/bitstream/2445/117402/1/649304.pdf
- 396 Cheng AL, Kang YK, Lin DY. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013; 31: 4067-4075
- 397 Llovet J, Kudo M, Merle P. et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24 (12) 1399-1410 https://pubmed.ncbi.nlm.nih.gov/38039993/
- 398 Marrero JA, Kudo M, Venook AP. et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J Hepatol 2016; 65: 1140-1147 https://www.journal-of-hepatology.eu/article/S0168-8278(16)30346-4/pdf
- 399 Ganten TM, Stauber RE, Schott E. et al. Sorafenib in Patients with Hepatocellular Carcinoma-Results of the Observational INSIGHT Study. Clin Cancer Res 2017; 23: 5720-5728 https://clincancerres.aacrjournals.org/content/clincanres/23/19/5720.full.pdf
- 400 Leal CRG, Magalhães C, Barbosa D. et al. Survival and tolerance to sorafenib in Child-Pugh B patients with hepatocellular carcinoma: a prospective study. Invest New Drugs 2018; 36: 911-918 https://link.springer.com/article/10.1007/s10637-018-0621-x
- 401 Pressiani T, Boni C, Rimassa L. et al. Sorafenib in patients with Child-Pugh class A and B advanced hepatocellular carcinoma: a prospective feasibility analysis. Ann Oncol 2013; 24: 406-411 https://www.annalsofoncology.org/article/S0923-7534(19)36863-2/pdf
- 402 Ogasawara S, Chiba T, Ooka Y. et al. Sorafenib treatment in Child-Pugh A and B patients with advanced hepatocellular carcinoma: safety, efficacy and prognostic factors. Invest New Drugs 2015; 33: 729-739 https://link.springer.com/article/10.1007%2Fs10637-015-0237-3
- 403 Rimini M, Persano M, Tada T. et al. Survival outcomes from atezolizumab plus bevacizumab versus Lenvatinib in Child Pugh B unresectable hepatocellular carcinoma patients. J Cancer Res Clin Oncol 2023; 149 (10) 7565-7577 https://pubmed.ncbi.nlm.nih.gov/36976353/
- 404 Kudo M, Matilla A, Santoro A. et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol 2021; 75 (03) 600-609 https://pubmed.ncbi.nlm.nih.gov/34051329/
- 405 El-Khoueiry A, Meyer T, Cheng A. et al. Safety and efficacy of cabozantinib for patients with advanced hepatocellular carcinoma who advanced to Child-Pugh B liver function at study week 8: a retrospective analysis of the CELESTIAL randomised controlled trial. BMC Cancer 2022; 22 (01) 377 https://pubmed.ncbi.nlm.nih.gov/35397508/
- 406 Huynh J, Cho M, Kim E. et al. Lenvatinib in patients with unresectable hepatocellular carcinoma who progressed to Child-Pugh B liver function. Ther Adv Med Oncol 2022; 14: 17588359221116608 https://pubmed.ncbi.nlm.nih.gov/36051472/
- 407 Xie E, Yeo Y, Scheiner B. et al. Immune Checkpoint Inhibitors for Child-Pugh Class B Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncol 2023; 9 (10) 1423-1431 https://pubmed.ncbi.nlm.nih.gov/37615958/
- 408 D’Alessio A, Fulgenzi C, Nishida N. et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology 2022; 76 (04) 1000-1012 https://pubmed.ncbi.nlm.nih.gov/35313048/
- 409 Jost-Brinkmann F, Demir M, Wree A. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: Results from a German real-world cohort. Aliment Pharmacol Ther 2023; 57 (11) 1313-1325 https://pubmed.ncbi.nlm.nih.gov/36883351/
- 410 de Castro T, Jochheim L, Bathon M. et al. Atezolizumab and bevacizumab in patients with advanced hepatocellular carcinoma with impaired liver function and prior systemic therapy: a real-world experience. Ther Adv Med Oncol 2022; 14: 17588359221080298 https://pubmed.ncbi.nlm.nih.gov/35251317/
- 411 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18: 1624-1636 https://www.sciencedirect.com/science/article/abs/pii/S1470204517306836
- 412 Lencioni R, Llovet JM, Han G. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol 2016; 64: 1090-1098 https://www.ncbi.nlm.nih.gov/pubmed/26809111
- 413 Meyer T, Fox R, Ma YT. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 2017; 2: 565-575 https://www.thelancet.com/pdfs/journals/langas/PIIS2468-1253(17)30156-5.pdf
- 414 Cai R, Song R, Pang P. et al. Transcatheter arterial chemoembolization plus sorafenib versus transcatheter arterial chemoembolization alone to treat advanced hepatocellular carcinoma: a meta-analysis. BMC Cancer 2017; 17 (01) 714 https://pubmed.ncbi.nlm.nih.gov/29110700/
- 415 Dai Y, Jiang H, Jiang H. et al. Optimal timing of combining sorafenib with trans-arterial chemoembolization in patients with hepatocellular carcinoma: A meta-analysis. Transl Oncol 2021; 14 (12) 101238 https://pubmed.ncbi.nlm.nih.gov/34628285/
- 416 Duan R, Gong F, Wang Y. et al. Transarterial chemoembolization (TACE) plus tyrosine kinase inhibitors versus TACE in patients with hepatocellular carcinoma: a systematic review and meta-analysis. World J Surg Oncol 2023; 21 (01) 120 https://pubmed.ncbi.nlm.nih.gov/37004052/
- 417 Zhao S, Zhang T, Dou W. et al. A comparison of transcatheter arterial chemoembolization used with and without apatinib for intermediate- to advanced-stage hepatocellular carcinoma: a systematic review and meta-analysis. Ann Transl Med 2020; 8 (08) 542 https://pubmed.ncbi.nlm.nih.gov/32411765/
- 418 Gu H, Li J, You N. et al. Efficacy and safety of apatinib combined with transarterial chemoembolization (TACE) in treating patients with recurrent hepatocellular carcinoma. Ann Transl Med 2020; 8 (24) 1677 https://pubmed.ncbi.nlm.nih.gov/33490189/
- 419 Kudo M, Ueshima K, Ikeda M. et al. Final Results of TACTICS: A Randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022; 11 (04) 354-367 https://pubmed.ncbi.nlm.nih.gov/35978604/
- 420 Kudo M, Ueshima K, Ikeda M. et al. Final Results of TACTICS: A Randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022; 11 (04) 354-367 https://pubmed.ncbi.nlm.nih.gov/35978604/
- 421 Ding X, Sun W, Li W. et al. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line treatment for hepatocellular carcinoma with portal vein tumor thrombus: A prospective randomized study. Cancer 2021; 127 (20) 3782-3793 https://pubmed.ncbi.nlm.nih.gov/34237154/
- 422 Cai M, Huang W, Huang J. et al. Transarterial Chemoembolization Combined With Lenvatinib Plus PD-1 Inhibitor for Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study. Front Immunol 2022; 13: 848387 https://pubmed.ncbi.nlm.nih.gov/35300325/
- 423 Marinelli B, Kim E, D’Alessio A. et al. Integrated use of PD-1 inhibition and transarterial chemoembolization for hepatocellular carcinoma: evaluation of safety and efficacy in a retrospective, propensity score-matched study. J Immunother Cancer 2022; 10 (06) https://pubmed.ncbi.nlm.nih.gov/35710293/
- 424 Fan W, Zhu B, Yue S. et al. Idarubicin-Loaded DEB-TACE plus Lenvatinib versus Lenvatinib for patients with advanced hepatocellular carcinoma: A propensity score-matching analysis. Cancer Med 2023; 12 (01) 61-72 https://pubmed.ncbi.nlm.nih.gov/35698292/
- 425 Ricke J, Klümpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71: 1164-1174 https://www.journal-of-hepatology.eu/article/S0168-8278(19)30472-6/fulltext
- 426 Kudo M, Ueshima K, Ikeda M. et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020; 69: 1492-1501 https://www.ncbi.nlm.nih.gov/pubmed/31801872
- 427 Kudo M, Ikeda M, Ueshima K. et al. Response Evaluation Criteria in Cancer of the Liver version 5 (RECICL 2019 revised version). Hepatol Res 2019; 49: 981-989 https://www.ncbi.nlm.nih.gov/pubmed/31231916
- 428 Kudo M, Ueshima K, Ikeda M. et al. TACTICS: Final overall survival (OS) data from a randomized, open label, multicenter, phase II trial of transcatheter arterial chemoembolization (TACE) therapy in combination with sorafenib as compared with TACE alone in patients (pts) with hepatocellular carcinoma (HCC). Journal of Clinical Oncology 2021; 39: 270-270 https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.3_suppl.270
- 429 Bruix J, Qin S, Merle P. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389: 56-66 https://www.sciencedirect.com/science/article/pii/S0140673616324539?via%3Dihub
- 430 Finn R, Ryoo B, Merle P. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2020; 38 (03) 193-202 https://pubmed.ncbi.nlm.nih.gov/31790344/
- 431 Rao Q, Li M, Xu W. et al. Clinical benefits of PD-1/PD-L1 inhibitors in advanced hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int 2020; 14 (05) 765-775 https://pubmed.ncbi.nlm.nih.gov/32572818/
- 432 Parikh N, Marshall A, Betts K. et al. Network meta-analysis of nivolumab plus ipilimumab in the second-line setting for advanced hepatocellular carcinoma. J Comp Eff Res 2021; 10 (05) 343-352 https://pubmed.ncbi.nlm.nih.gov/33442996/
- 433 He S, Jiang W, Fan K. et al. The Efficacy and Safety of Programmed Death-1 and Programmed Death Ligand 1 Inhibitors for the Treatment of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11: 626984 https://pubmed.ncbi.nlm.nih.gov/33833987/
- 434 Kudo M, Finn R, Edeline J. et al. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer 2022; 167: 1-12 https://pubmed.ncbi.nlm.nih.gov/35364421/
- 435 Yau T, Kang Y, Kim T. et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol 2020; 6 (11) e204564 https://pubmed.ncbi.nlm.nih.gov/33001135/
- 436 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase ½ dose escalation and expansion trial. Lancet 2017; 389: 2492-2502 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539326/pdf/nihms-1623792.pdf
- 437 Zhu AX, Finn RS, Edeline J. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19: 940-952 https://www.ncbi.nlm.nih.gov/pubmed/29875066
- 438 Finn RS, Ryoo BY, Merle P. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2020; 38: 193-202 https://www.ncbi.nlm.nih.gov/pubmed/31790344
- 439 Qin S, Chen Z, Fang W. et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. Journal of Clinical Oncology 2022; 40: 383 https://doi.org/10.1200/JCO.2022.40.4_suppl.383
- 440 Dinh T, Utria A, Barry K. et al. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19 (05) 328-342 https://pubmed.ncbi.nlm.nih.gov/35190728/
- 441 Honeyman J, Simon E, Robine N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 2014; 343: 1010-1014 https://pubmed.ncbi.nlm.nih.gov/24578576/
- 442 Ramai D, Ofosu A, Lai J. et al. Fibrolamellar Hepatocellular Carcinoma: A Population-Based Observational Study. Dig Dis Sci 2021; 66 (01) 308-314 https://pubmed.ncbi.nlm.nih.gov/32052215/
- 443 Rimassa L, Personeni N, Czauderna C. et al. Systemic treatment of HCC in special populations. J Hepatol 2021; 74 (04) 931-943 https://pubmed.ncbi.nlm.nih.gov/33248171/
- 444 Wege H, Schulze K, von Felden J. et al. Rare variants of primary liver cancer: Fibrolamellar, combined, and sarcomatoid hepatocellular carcinomas. Eur J Med Genet 2021; 64 (11) 104313 https://pubmed.ncbi.nlm.nih.gov/34418585/
- 445 Da Fonseca L, Yamamoto V, Trinconi Cunha M. et al. Treatment Outcomes in Patients with Advanced Fibrolamellar Hepatocellular Carcinoma Under Systemic Treatment: Analysis of Clinical Characteristics, Management, and Radiomics. J Hepatocell Carcinoma 2023; 10: 1923-1933 https://pubmed.ncbi.nlm.nih.gov/37933267/
- 446 Chakrabarti S, Tella S, Kommalapati A. et al. Clinicopathological features and outcomes of fibrolamellar hepatocellular carcinoma. J Gastrointest Oncol 2019; 10 (03) 554-561 https://pubmed.ncbi.nlm.nih.gov/31183207/
- 447 Gras P, Truant S, Boige V. et al. Prolonged Complete Response after GEMOX Chemotherapy in a Patient with Advanced Fibrolamellar Hepatocellular Carcinoma. Case Rep Oncol 2012; 5 (01) 169-172 https://pubmed.ncbi.nlm.nih.gov/22666208/
- 448 Patt Y, Hassan M, Lozano R. et al. Phase II trial of systemic continuous fluorouracil and subcutaneous recombinant interferon Alfa-2b for treatment of hepatocellular carcinoma. J Clin Oncol 2003; 21 (03) 421-427 https://pubmed.ncbi.nlm.nih.gov/12560429/
- 449 Kim A, Gani F, Layman A. et al. Multiple Immune-Suppressive Mechanisms in Fibrolamellar Carcinoma. Cancer Immunol Res 2019; 7 (05) 805-812 https://pubmed.ncbi.nlm.nih.gov/30902819/
- 450 Chen K, Popovic A, Hsiehchen D. et al. Clinical Outcomes in Fibrolamellar Hepatocellular Carcinoma Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14 (21) https://pubmed.ncbi.nlm.nih.gov/36358766/
- 451 Berger R, Dinstag G, Tirosh O. et al. Fibrolamellar carcinoma transcriptomic-based treatment prediction: complete response after nivolumab and ipilimumab. J Immunother Cancer 2022; 10 (12) https://pubmed.ncbi.nlm.nih.gov/36600603/
- 452 De Toni E, Roessler D. Using dual checkpoint blockade to treat fibrolamellar hepatocellular carcinoma. Gut 2020; 69 (11) 2056-2058 https://pubmed.ncbi.nlm.nih.gov/32051207/
- 453 Kang S, Magliocca J, Sellers M. et al. Successful Liver Transplantation of Recurrent Fibrolamellar Carcinoma following Clinical and Pathologic Complete Response to Triple Immunochemotherapy: A Case Report. Oncol Res Treat 2022; 45 (07) 430-437 https://pubmed.ncbi.nlm.nih.gov/35537414/
- 454 Gottlieb S, O’Grady C, Gliksberg A. et al. Early Experiences with Triple Immunochemotherapy in Adolescents and Young Adults with High-Risk Fibrolamellar Carcinoma. Oncology 2021; 99 (05) 310-317 https://pubmed.ncbi.nlm.nih.gov/33690232/
- 455 Bauer J, Köhler N, Maringer Y. et al. The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat Commun 2022; 13 (01) 6401 https://pubmed.ncbi.nlm.nih.gov/36302754/
- 456 Nagtegaal I, Odze R, Klimstra D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76 (02) 182-188 https://pubmed.ncbi.nlm.nih.gov/31433515/
- 457 Eschrich J, Kobus Z, Geisel D. et al. The Diagnostic Approach towards Combined Hepatocellular-Cholangiocarcinoma-State of the Art and Future Perspectives. Cancers (Basel) 2023; 15 (01) https://pubmed.ncbi.nlm.nih.gov/36612297/
- 458 Gigante E, Paradis V, Ronot M. et al. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3 (01) 100174 https://pubmed.ncbi.nlm.nih.gov/33205035/
- 459 Xue R, Chen L, Zhang C. et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019; 35 (06) 932-947 https://pubmed.ncbi.nlm.nih.gov/31130341/
- 460 Gigante E, Hobeika C, Le Bail B. et al. Systemic Treatments with Tyrosine Kinase Inhibitor and Platinum-Based Chemotherapy in Patients with Unresectable or Metastatic Hepatocholangiocarcinoma. Liver Cancer 2022; 11 (05) 460-473 https://pubmed.ncbi.nlm.nih.gov/36158591/
- 461 Pomej K, Balcar L, Shmanko K. et al. Clinical characteristics and outcome of patients with combined hepatocellular-cholangiocarcinoma-a European multicenter cohort. ESMO Open 2023; 8 (01) 100783 https://pubmed.ncbi.nlm.nih.gov/36753993/
- 462 Jang Y, Kim E, Kim H. et al. Clinical outcomes of immune checkpoint inhibitors in unresectable or metastatic combined hepatocellular-cholangiocarcinoma. J Cancer Res Clin Oncol 2023; 149 (10) 7547-7555 https://pubmed.ncbi.nlm.nih.gov/36971796/
- 463 Rizell M, Åberg F, Perman M. et al. Checkpoint Inhibition Causing Complete Remission of Metastatic Combined Hepatocellular-Cholangiocarcinoma after Hepatic Resection. Case Rep Oncol 2020; 13 (01) 478-484 https://pubmed.ncbi.nlm.nih.gov/32508620/
- 464 Satake T, Shibuki T, Watanabe K. et al. Case Report: Atezolizumab plus bevacizumab for combined hepatocellular-cholangiocarcinoma. Front Oncol 2023; 13: 1234113 https://pubmed.ncbi.nlm.nih.gov/37546425/
- 465 Kim E, Yoo C, Kang H. et al. Clinical outcomes of systemic therapy in patients with unresectable or metastatic combined hepatocellular-cholangiocarcinoma. Liver Int 2021; 41 (06) 1398-1408 https://pubmed.ncbi.nlm.nih.gov/33548073/
- 466 Kobayashi S, Terashima T, Shiba S. et al. Multicenter retrospective analysis of systemic chemotherapy for unresectable combined hepatocellular and cholangiocarcinoma. Cancer Sci 2018; 109 (08) 2549-2557 https://pubmed.ncbi.nlm.nih.gov/29856900/
- 467 Rogers J, Bolonesi R, Rashid A. et al. Systemic therapy for unresectable, mixed hepatocellular-cholangiocarcinoma: treatment of a rare malignancy. J Gastrointest Oncol 2017; 8 (02) 347-351 https://pubmed.ncbi.nlm.nih.gov/28480073/
- 468 Trikalinos N, Zhou A, Doyle M. et al. Systemic Therapy for Combined Hepatocellular-Cholangiocarcinoma: A Single-Institution Experience. J Natl Compr Canc Netw 2018; 16 (10) 1193-1199 https://pubmed.ncbi.nlm.nih.gov/30323089/
- 469 Salimon M, Prieux-Klotz C, Tougeron D. et al. Gemcitabine plus platinum-based chemotherapy for first-line treatment of hepatocholangiocarcinoma: an AGEO French multicentre retrospective study. Br J Cancer 2018; 118 (03) 325-330 https://pubmed.ncbi.nlm.nih.gov/29169182/
- 470 Qin S, Chen M, Cheng A. et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet 2023; 402: 1835-1847 https://pubmed.ncbi.nlm.nih.gov/37871608/
- 471 Bruix J, Takayama T, Mazzaferro V. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 2015; 16: 1344-1354 https://www.sciencedirect.com/science/article/pii/S1470204515001989?via%3Dihub
- 472 Vogel A, Grant R, Meyer T. et al. Adjuvant and neoadjuvant therapies for hepatocellular carcinoma. Hepatology 2023; https://pubmed.ncbi.nlm.nih.gov/38108634/
- 473 Ho W, Zhu Q, Durham J. et al. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. Nat Cancer 2021; 2 (09) 891-903 https://pubmed.ncbi.nlm.nih.gov/34796337/
- 474 Kaseb A, Hasanov E, Cao H. et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 208-218 https://pubmed.ncbi.nlm.nih.gov/35065057/
- 475 Marron T, Fiel M, Hamon P. et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 219-229 https://pubmed.ncbi.nlm.nih.gov/35065058/
- 476 Xia Y, Tang W, Qian X. et al. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase II clinical trial. J Immunother Cancer 2022; 10 (04) https://pubmed.ncbi.nlm.nih.gov/35379737/
- 477 Katzenstein HM, Krailo MD, Malogolowkin MH. et al. Hepatocellular carcinoma in children and adolescents: results from the Pediatric Oncology Group and the Children’s Cancer Group intergroup study. J Clin Oncol 2002; 20: 2789-2797
- 478 Czauderna P, Mackinlay G, Perilongo G. et al. Hepatocellular carcinoma in children: results of the first prospective study of the International Society of Pediatric Oncology group. J Clin Oncol 2002; 20: 2798-2804 https://www.ncbi.nlm.nih.gov/pubmed/12065556
- 479 Schmid I, von Schweinitz D. Pediatric hepatocellular carcinoma: challenges and solutions. J Hepatocell Carcinoma 2017; 4: 15-21 https://pubmed.ncbi.nlm.nih.gov/28144610/
- 480 Schmid I, Häberle B, Albert MH. et al. Sorafenib and cisplatin/doxorubicin (PLADO) in pediatric hepatocellular carcinoma. Pediatr Blood Cancer 2012; 58: 539-544 https://onlinelibrary.wiley.com/doi/abs/10.1002/pbc.23295
- 481 Villani A, Davidson S, Kanwar N. et al. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. Nat Cancer 2023; 4 (02) 203-221 https://pubmed.ncbi.nlm.nih.gov/36585449/
- 482 Schroeder C, Faust U, Krauße L. et al. Clinical trio genome sequencing facilitates the interpretation of variants in cancer predisposition genes in paediatric tumour patients. Eur J Hum Genet 2023; 31 (10) 1139-1146 https://pubmed.ncbi.nlm.nih.gov/37507557/
- 483 Cohen-Gogo S, Denburg A, Villani A. et al. Precision oncology for children: A primer for paediatricians. Paediatr Child Health 2023; 28 (05) 278-284 https://pubmed.ncbi.nlm.nih.gov/37484033/
- 484 Parsons D, Roy A, Yang Y. et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol 2016; 2 (05) 616-624 https://pubmed.ncbi.nlm.nih.gov/26822237/
- 485 Atchison EA, Gridley G, Carreon JD. et al. Risk of cancer in a large cohort of US veterans with diabetes. Int J Cancer 2011; 128: 635-643 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.25362?download=true
- 486 de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. Liver Int 2012; 32: 441-448 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1478-3231.2011.02614.x?download=true
- 487 El-Serag HB, Engels EA, Landgren O. et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of US veterans. Hepatology 2009; 49: 116-123 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22606?download=true
- 488 Huang Y, You L, Xie W. et al. Smoking and risk of cholangiocarcinoma: a systematic review and meta-analysis. Oncotarget 2017; 8: 100570-100581 https://www.oncotarget.com/article/20141/pdf/
- 489 Jing W, Jin G, Zhou X. et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur J Cancer Prev 2012; 21: 24-31
- 490 Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol 2012; 57: 69-76 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804834/pdf/nihms363811.pdf
- 491 Wongjarupong N, Assavapongpaiboon B, Susantitaphong P. et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol 2017; 17: 149 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721586/pdf/12876_2017_Article_696.pdf
- 492 Park JY, Hong SP, Kim YJ. et al. Long-term follow up of gallbladder polyps. J Gastroenterol Hepatol 2009; 24: 219-222 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1440-1746.2008.05689.x?download=true
- 493 Nagaraja V, Eslick GD. Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther 2014; 39: 745-750 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/apt.12655?download=true
- 494 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383: 2168-2179 https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(13)61903-0.pdf
- 495 Rizvi S, Khan SA, Hallemeier CL. et al. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15: 95-111
- 496 Valle JW, Borbath I, Khan SA. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27: v28-v37 https://pubmed.ncbi.nlm.nih.gov/27664259/
- 497 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145: 1215-1229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862291/pdf/nihms535439.pdf
- 498 Kamsa-ard S, Kamsa-ard S, Luvira V. et al. Risk Factors for Cholangiocarcinoma in Thailand: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2018; 19: 605-614 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980830/pdf/APJCP-19-605.pdf
- 499 Qian MB, Utzinger J, Keiser J. et al. Clonorchiasis. Lancet 2016; 387: 800-810
- 500 Qian MB, Zhou XN. Global burden of cancers attributable to liver flukes. Lancet Glob Health 2017; 5: e139
- 501 You MS, Lee SH, Kang J. et al. Natural Course and Risk of Cholangiocarcinoma in Patients with Recurrent Pyogenic Cholangitis: A Retrospective Cohort Study. Gut Liver 2019; 13: 373-379 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529165/pdf/gnl-13-373.pdf
- 502 Ten Hove A, de Meijer VE, Hulscher JBF. et al. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg 2018; 105: 482-490 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900735/pdf/BJS-105-482.pdf
- 503 Fahrner R, Dennler SG, Inderbitzin D. Risk of malignancy in Caroli disease and syndrome: A systematic review. World J Gastroenterol 2020; 26: 4718-4728 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445861/pdf/WJG-26-4718.pdf
- 504 Claessen MM, Vleggaar FP, Tytgat KM. et al. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol 2009; 50: 158-164
- 505 Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology 2011; 54: 173-184 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.24351?download=true
- 506 McGee EE, Jackson SS, Petrick JL. et al. Smoking, Alcohol, and Biliary Tract Cancer Risk: A Pooling Project of 26 Prospective Studies. J Natl Cancer Inst 2019; 111: 1263-1278 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910180/pdf/djz103.pdf
- 507 Clements O, Eliahoo J, Kim JU. et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J Hepatol 2020; 72: 95-103
- 508 Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol 2019; 8: 31 http://cco.amegroups.com/article/view/28517/25064
- 509 Rawla P, Sunkara T, Thandra KC. et al. Epidemiology of gallbladder cancer. Clin Exp Hepatol 2019; 5: 93-102 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728871/pdf/CEH-5-36699.pdf
- 510 Kratzer W, Schmid A, Akinli AS. et al. [Gallbladder polyps: prevalence and risk factors]. Ultraschall Med 2011; 32 (Suppl. 01) S68-S73 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0029-1245265.pdf
- 511 Schnelldorfer T. Porcelain gallbladder: a benign process or concern for malignancy?. J Gastrointest Surg 2013; 17: 1161-1168 https://link.springer.com/content/pdf/10.1007/s11605-013-2170-0.pdf
- 512 DesJardins H, Duy L, Scheirey C. et al. Porcelain Gallbladder: Is Observation a Safe Option in Select Populations?. J Am Coll Surg 2018; 226: 1064-1069 https://www.sciencedirect.com/science/article/abs/pii/S1072751518301571?via%3Dihub
- 513 Patel S, Roa JC, Tapia O. et al. Hyalinizing cholecystitis and associated carcinomas: clinicopathologic analysis of a distinctive variant of cholecystitis with porcelain-like features and accompanying diagnostically challenging carcinomas. Am J Surg Pathol 2011; 35: 1104-1113
- 514 Gutt C, Jenssen C, Barreiros AP. et al. [Updated S3-Guideline for Prophylaxis, Diagnosis and Treatment of Gallstones German Society for Digestive and Metabolic Diseases (DGVS) and German Society for Surgery of the Alimentary Tract (DGAV) – AWMF Registry 021/008]. Z Gastroenterol 2018; 56: 912-966 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0644-2972.pdf
- 515 Eaton JE, Thackeray EW, Lindor KD. Likelihood of malignancy in gallbladder polyps and outcomes following cholecystectomy in primary sclerosing cholangitis. Am J Gastroenterol 2012; 107: 431-439
- 516 [Practice guideline autoimmune liver diseases – AWMF-Reg No 021-27]. Z Gastroenterol 2017; 55: 1135-1226 https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-120199
- 517 Wiles R, Thoeni RF, Barbu ST. et al. Management and follow-up of gallbladder polyps: Joint guidelines between the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), European Association for Endoscopic Surgery and other Interventional Techniques (EAES), International Society of Digestive Surgery - European Federation (EFISDS) and European Society of Gastrointestinal Endoscopy (ESGE). Eur Radiol 2017; 27: 3856-3866 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544788/pdf/330_2017_Article_4742.pdf
- 518 Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: Epidemiology, prevention, and surveillance strategies. World J Gastroenterol 2019; 25: 659-671 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378537/pdf/WJG-25-659.pdf
- 519 Charatcharoenwitthaya P, Enders FB, Halling KC. et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 2008; 48: 1106-1117 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22441?download=true
- 520 Naitoh I, Nakazawa T, Kato A. et al. Predictive factors for positive diagnosis of malignant biliary strictures by transpapillary brush cytology and forceps biopsy. J Dig Dis 2016; 17: 44-51 https://onlinelibrary.wiley.com/doi/abs/10.1111/1751-2980.12311
- 521 Navaneethan U, Njei B, Lourdusamy V. et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc 2015; 81: 168-176 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824293/pdf/nihms773255.pdf
- 522 Klimstra DS LA. Tumors of the gallbladder and extrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 265-294
- 523 Moeini A, Sia D, Zhang Z. et al. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 2017; 66: 952-961
- 524 Paradis V SP. Other tumours of the digestive system. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 499-510
- 525 C W. TNM-Klassifikation maligner Tumoren. 8 Auflage, korrigierter Nachdruck. Weinheim: Wiley-VCH; 2020
- 526 Wagner G HP. Organspezifische Tumordokumentation – Prinzipien und Verschlüsselungsanweisungen für Klinik und Praxis. Online-version: deutsche Krebsgesellschaft. Frankfurt (Main). 1995
- 527 Khuntikeo N, Chamadol N, Yongvanit P. et al. Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 2015; 15: 459 https://www.ncbi.nlm.nih.gov/pubmed/26054405
- 528 Li R, Zhang X, Ma KS. et al. Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdom Imaging 2013; 38: 112-119 https://link.springer.com/content/pdf/10.1007%2Fs00261-012-9854-x.pdf
- 529 Xu HX, Chen LD, Liu LN. et al. Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. Br J Radiol 2012; 85: 1029-1037 https://www.ncbi.nlm.nih.gov/pubmed/22374276
- 530 Wildner D, Bernatik T, Greis C. et al. CEUS in hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in 320 patients – early or late washout matters: a subanalysis of the DEGUM multicenter trial. Ultraschall Med 2015; 36: 132-139 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0034-1399147.pdf
- 531 Bach AM, Hann LE, Brown KT. et al. Portal vein evaluation with US: comparison to angiography combined with CT arterial portography. Radiology 1996; 201: 149-154 https://www.ncbi.nlm.nih.gov/pubmed/8816536
- 532 Wennmacker SZ, Lamberts MP, Di Martino M. et al. Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps. Cochrane Database Syst Rev 2018; 8: CD012233 https://www.ncbi.nlm.nih.gov/pubmed/30109701
- 533 Zhang Y, Uchida M, Abe T. et al. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr 1999; 23: 670-677 https://www.ncbi.nlm.nih.gov/pubmed/10524843
- 534 Johnson PT, Fishman EK. Routine use of precontrast and delayed acquisitions in abdominal CT: time for change. Abdom Imaging 2013; 38: 215-223 https://www.ncbi.nlm.nih.gov/pubmed/23132390
- 535 Fabrega-Foster K, Ghasabeh MA, Pawlik TM. et al. Multimodality imaging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2017; 6: 67-78 https://www.ncbi.nlm.nih.gov/pubmed/28503554
- 536 Valls C, Guma A, Puig I. et al. Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging 2000; 25: 490-496 https://www.ncbi.nlm.nih.gov/pubmed/10931983
- 537 Kim JH, Won HJ, Shin YM. et al. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. Am J Roentgenol 2011; 196: W205-W209 https://www.ajronline.org/doi/pdfplus/10.2214/Am J Roentgenol.10.4937
- 538 Bridgewater J, Galle PR, Khan SA. et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014; 60: 1268-1289 https://www.ncbi.nlm.nih.gov/pubmed/24681130
- 539 Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging 2015; 42: 1165-1179 https://www.ncbi.nlm.nih.gov/pubmed/25447417
- 540 Murakami T, Nakamura H, Tsuda K. et al. Contrast-enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. J Magn Reson Imaging 1995; 5: 165-170 https://www.ncbi.nlm.nih.gov/pubmed/7766977
- 541 Hamrick-Turner J, Abbitt PL, Ros PR. Intrahepatic cholangiocarcinoma: MR appearance. Am J Roentgenol 1992; 158: 77-79 https://www.ncbi.nlm.nih.gov/pubmed/1309221
- 542 Fan ZM, Yamashita Y, Harada M. et al. Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. Am J Roentgenol 1993; 161: 313-317 https://www.ncbi.nlm.nih.gov/pubmed/8392787
- 543 https://www.ncbi.nlm.nih.gov/pubmed/24559750
- 544 Chung YE, Kim MJ, Park YN. et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009; 29: 683-700 https://www.ncbi.nlm.nih.gov/pubmed/19448110
- 545 Park HJ, Kim YK, Park MJ. et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 2013; 38: 793-801 https://www.ncbi.nlm.nih.gov/pubmed/22829097
- 546 Fattach HE, Dohan A, Guerrache Y. et al. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging. Eur J Radiol 2015; 84: 1444-1451 https://www.ncbi.nlm.nih.gov/pubmed/26022518
- 547 Navaneethan U, Njei B, Venkatesh PG. et al. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf) 2015; 3: 209-215 https://www.ncbi.nlm.nih.gov/pubmed/25169922
- 548 Pahade JK, Juice D, Staib L. et al. Is there an added value of a hepatobiliary phase with gadoxetate disodium following conventional MRI with an extracellular gadolinium agent in a single imaging session for detection of primary hepatic malignancies?. Abdom Radiol (NY) 2016; 41: 1270-1284 https://link.springer.com/content/pdf/10.1007%2Fs00261-016-0635-9.pdf
- 549 Park HJ, Kim SH, Jang KM. et al. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures. Eur Radiol 2014; 24: 947-958 https://www.ncbi.nlm.nih.gov/pubmed/24487774
- 550 Lee J, Kim SH, Kang TW. et al. Mass-forming Intrahepatic Cholangiocarcinoma: Diffusion-weighted Imaging as a Preoperative Prognostic Marker. Radiology 2016; 281: 119-128 https://www.ncbi.nlm.nih.gov/pubmed/27115053
- 551 Rupp C, Hippchen T, Bruckner T. et al. Effect of scheduled endoscopic dilatation of dominant strictures on outcome in patients with primary sclerosing cholangitis. Gut 2019; 68: 2170-2178 https://www.ncbi.nlm.nih.gov/pubmed/30910856
- 552 Zhang H, Zhu J, Ke F. et al. Radiological Imaging for Assessing the Respectability of Hilar Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Biomed Res Int 2015; 2015: 497942 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569758/pdf/BMRI2015-497942.pdf
- 553 Lamarca A, Barriuso J, Chander A. et al. 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol 2019; 71 (01) 115-129 https://pubmed.ncbi.nlm.nih.gov/30797051/
- 554 Feng ST, Wu L, Cai H. et al. Cholangiocarcinoma: spectrum of appearances on Gd-EOB-DTPA-enhanced MR imaging and the effect of biliary function on signal intensity. BMC Cancer 2015; 15: 38 https://www.ncbi.nlm.nih.gov/pubmed/25655565
- 555 Kim SH, Lee CH, Kim BH. et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2012; 36: 704-709 https://www.ncbi.nlm.nih.gov/pubmed/23192208
- 556 Kiefer LS, Sekler J, Gückel B. et al. Impact of 18F-FDG-PET/CT on Clinical Management in Patients with Cholangiocellular Carcinoma. BJR|Open 2021; 3: 20210008 https://doi.org/10.1259/bjro.20210008
- 557 De Moura DTH, Moura EGH, Bernardo WM. et al. Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis. Endosc Ultrasound 2018; 7: 10-19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838722/pdf/EUS-7-10.pdf
- 558 Heimbach JK, Sanchez W, Rosen CB. et al. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford) 2011; 13: 356-360 https://www.ncbi.nlm.nih.gov/pubmed/21492336
- 559 El Chafic AH, Dewitt J, Leblanc JK. et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy 2013; 45: 883-889 https://www.ncbi.nlm.nih.gov/pubmed/24165813
- 560 Korc P, Sherman S. ERCP tissue sampling. Gastrointest Endosc 2016; 84: 557-571 https://www.ncbi.nlm.nih.gov/pubmed/27156656
- 561 Fogel EL, deBellis M, McHenry L. et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest Endosc 2006; 63: 71-77 https://www.ncbi.nlm.nih.gov/pubmed/16377319
- 562 Shieh FK, Luong-Player A, Khara HS. et al. Improved endoscopic retrograde cholangiopancreatography brush increases diagnostic yield of malignant biliary strictures. World J Gastrointest Endosc 2014; 6: 312-317 https://www.ncbi.nlm.nih.gov/pubmed/25031790
- 563 Glasbrenner B, Ardan M, Boeck W. et al. Prospective evaluation of brush cytology of biliary strictures during endoscopic retrograde cholangiopancreatography. Endoscopy 1999; 31: 712-717 https://www.ncbi.nlm.nih.gov/pubmed/10604612
- 564 Macken E, Drijkoningen M, Van Aken E. et al. Brush cytology of ductal strictures during ERCP. Acta Gastroenterol Belg 2000; 63: 254-9 https://www.ncbi.nlm.nih.gov/pubmed/11189981
- 565 Mansfield JC, Griffin SM, Wadehra V. et al. A prospective evaluation of cytology from biliary strictures. Gut 1997; 40: 671-677 https://www.ncbi.nlm.nih.gov/pubmed/9203949
- 566 Trikudanathan G, Navaneethan U, Njei B. et al. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc 2014; 79: 783-789 https://www.ncbi.nlm.nih.gov/pubmed/24140129
- 567 Draganov PV, Chauhan S, Wagh MS. et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: a prospective, long-term follow-up study. Gastrointest Endosc 2012; 75: 347-353 https://www.ncbi.nlm.nih.gov/pubmed/22248602
- 568 Sugiyama M, Atomi Y, Wada N. et al. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 1996; 91: 465-467 https://www.ncbi.nlm.nih.gov/pubmed/8633492
- 569 Jailwala J, Fogel EL, Sherman S. et al. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc 2000; 51: 383-390 https://www.ncbi.nlm.nih.gov/pubmed/10744806
- 570 Hartman DJ, Slivka A, Giusto DA. et al. Tissue yield and diagnostic efficacy of fluoroscopic and cholangioscopic techniques to assess indeterminate biliary strictures. Clin Gastroenterol Hepatol 2012; 10: 1042-1046 https://www.ncbi.nlm.nih.gov/pubmed/22677575
- 571 Pugliese V, Conio M, Nicolo G. et al. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study. Gastrointest Endosc 1995; 42: 520-526 https://www.ncbi.nlm.nih.gov/pubmed/8674921
- 572 Kitajima Y, Ohara H, Nakazawa T. et al. Usefulness of transpapillary bile duct brushing cytology and forceps biopsy for improved diagnosis in patients with biliary strictures. J Gastroenterol Hepatol 2007; 22: 1615-1620 https://www.ncbi.nlm.nih.gov/pubmed/17573833
- 573 Navaneethan U, Hasan MK, Lourdusamy V. et al. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc 2015; 82: 608-614 https://www.ncbi.nlm.nih.gov/pubmed/26071061
- 574 Gerges C, Beyna T, Tang RSY. et al. Digital single-operator peroral cholangioscopy-guided biopsy versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized multicenter trial (with video). Gastrointest Endosc 2019; https://www.ncbi.nlm.nih.gov/pubmed/31778656
- 575 Aabakken L, Karlsen TH, Albert J. et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy 2017; 49: 588-608 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0043-107029.pdf
- 576 Bagante F, Spolverato G, Weiss M. et al. Assessment of the Lymph Node Status in Patients Undergoing Liver Resection for Intrahepatic Cholangiocarcinoma: the New Eighth Edition AJCC Staging System. J Gastrointest Surg 2018; 22: 52-59 https://link.springer.com/content/pdf/10.1007/s11605-017-3426-x.pdf
- 577 Bagante F, Spolverato G, Weiss M. et al. Surgical Management of Intrahepatic Cholangiocarcinoma in Patients with Cirrhosis: Impact of Lymphadenectomy on Peri-Operative Outcomes. World J Surg 2018; 42: 2551-2560 https://link.springer.com/content/pdf/10.1007/s00268-017-4453-1.pdf
- 578 Ebata T, Mizuno T, Yokoyama Y. et al. Surgical resection for Bismuth type IV perihilar cholangiocarcinoma. Br J Surg 2018; 105: 829-838 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.10556?download=true
- 579 El-Diwany R, Pawlik TM, Ejaz A. Intrahepatic Cholangiocarcinoma. Surg Oncol Clin N Am 2019; 28: 587-599 https://www.sciencedirect.com/science/article/abs/pii/S1055320719300444?via%3Dihub
- 580 Lang H, Sotiropoulos GC, Sgourakis G. et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg 2009; 208: 218-228
- 581 Schnitzbauer AA, Eberhard J, Bartsch F. et al. The MEGNA Score and Preoperative Anemia are Major Prognostic Factors After Resection in the German Intrahepatic Cholangiocarcinoma Cohort. Ann Surg Oncol 2020; 27: 1147-1155 https://link.springer.com/content/pdf/10.1245/s10434-019-07968-7.pdf
- 582 Zhang XF, Bagante F, Chakedis J. et al. Perioperative and Long-Term Outcome for Intrahepatic Cholangiocarcinoma: Impact of Major Versus Minor Hepatectomy. J Gastrointest Surg 2017; 21: 1841-1850 https://link.springer.com/content/pdf/10.1007/s11605-017-3499-6.pdf
- 583 Bartsch F, Tripke V, Baumgart J. et al. Extended resection of intrahepatic cholangiocarcinoma: A retrospective single-center cohort study. Int J Surg 2019; 67: 62-69 https://www.sciencedirect.com/science/article/abs/pii/S1743919119301116?via%3Dihub
- 584 Mizuno T, Ebata T, Nagino M. Advanced hilar cholangiocarcinoma: An aggressive surgical approach for the treatment of advanced hilar cholangiocarcinoma: Perioperative management, extended procedures, and multidisciplinary approaches. Surg Oncol 2020; 33: 201-206 https://www.sciencedirect.com/science/article/abs/pii/S0960740419302439?via%3Dihub
- 585 Rassam F, Roos E, van Lienden KP. et al. Modern work-up and extended resection in perihilar cholangiocarcinoma: the AMC experience. Langenbecks Arch Surg 2018; 403: 289-307 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986829/pdf/423_2018_Article_1649.pdf
- 586 Primrose JN, Fox RP, Palmer DH. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019; 20: 663-673 https://www.sciencedirect.com/science/article/abs/pii/S147020451830915X?via%3Dihub
- 587 Le RoyB, Gelli M, Pittau G. et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br J Surg 2018; 105: 839-847 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.10641?download=true
- 588 Chang Y, Li Q, Wu Q. et al. Impact of surgical strategies on the survival of gallbladder cancer patients: analysis of 715 cases. World J Surg Oncol 2020; 18: 142 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320575/pdf/12957_2020_Article_1915.pdf
- 589 Coimbra FJF, Torres OJM, Alikhanov R. et al. BRAZILIAN CONSENSUS ON INCIDENTAL GALLBLADDER CARCINOMA. Arq Bras Cir Dig 2020; 33: e1496 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357549/pdf/0102-6720-abcd-33-01-e1496.pdf
- 590 Sikora SS, Singh RK. Surgical strategies in patients with gallbladder cancer: nihilism to optimism. J Surg Oncol 2006; 93: 670-681 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.20535?download=true
- 591 Søreide K, Guest RV, Harrison EM. et al. Systematic review of management of incidental gallbladder cancer after cholecystectomy. Br J Surg 2019; 106: 32-45 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.11035?download=true
- 592 Benson AB, Abrams TA, Ben-Josef E. et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw 2009; 7: 350-391 https://jnccn.org/downloadpdf/journals/jnccn/7/4/article-p350.pdf
- 593 Yuza K, Sakata J, Prasoon P. et al. Long-term outcomes of surgical resection for T1b gallbladder cancer: an institutional evaluation. BMC Cancer 2020; 20: 20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945689/pdf/12885_2019_Article_6507.pdf
- 594 Lee SE, Jang JY, Kim SW. et al. Surgical strategy for T1 gallbladder cancer: a nationwide multicenter survey in South Korea. Ann Surg Oncol 2014; 21: 3654-3660 https://link.springer.com/content/pdf/10.1245/s10434-014-3527-7.pdf
- 595 Bartsch F, Paschold M, Baumgart J. et al. Surgical Resection for Recurrent Intrahepatic Cholangiocarcinoma. World J Surg 2019; 43: 1105-1116 https://link.springer.com/content/pdf/10.1007/s00268-018-04876-x.pdf
- 596 Spolverato G, Kim Y, Alexandrescu S. et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann Surg Oncol 2016; 23: 235-243 https://link.springer.com/content/pdf/10.1245/s10434-015-4642-9.pdf
- 597 Seidensticker R, Seidensticker M, Doegen K. et al. Extensive Use of Interventional Therapies Improves Survival in Unresectable or Recurrent Intrahepatic Cholangiocarcinoma. Gastroenterol Res Pract 2016; 2016: 8732521 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758109/pdf/GRP2016-8732521.pdf
- 598 Xu C, Li L, Xu W. et al. Ultrasound-guided percutaneous microwave ablation versus surgical resection for recurrent intrahepatic cholangiocarcinoma: intermediate-term results. Int J Hyperthermia 2019; 36: 351-358 https://www.tandfonline.com/doi/pdf/10.1080/02656736.2019.1571247?needAccess=true
- 599 Zhang SJ, Hu P, Wang N. et al. Thermal ablation versus repeated hepatic resection for recurrent intrahepatic cholangiocarcinoma. Ann Surg Oncol 2013; 20: 3596-3602 https://link.springer.com/content/pdf/10.1245/s10434-013-3035-1.pdf
- 600 Amini N, Ejaz A, Spolverato G. et al. Temporal trends in liver-directed therapy of patients with intrahepatic cholangiocarcinoma in the United States: a population-based analysis. J Surg Oncol 2014; 110: 163-170 https://www.ncbi.nlm.nih.gov/pubmed/24676600
- 601 Butros SR, Shenoy-Bhangle A, Mueller PR. et al. Radiofrequency ablation of intrahepatic cholangiocarcinoma: feasability, local tumor control, and long-term outcome. Clin Imaging 2014; 38: 490-494 https://www.clinicalimaging.org/article/S0899-7071(14)00040-0/fulltext
- 602 Fu Y, Yang W, Wu W. et al. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2012; 23: 642-649 https://www.jvir.org/article/S1051-0443(12)00208-4/fulltext
- 603 Han K, Ko HK, Kim KW. et al. Radiofrequency ablation in the treatment of unresectable intrahepatic cholangiocarcinoma: systematic review and meta-analysis. J Vasc Interv Radiol 2015; 26: 943-948 https://www.jvir.org/article/S1051-0443(15)00250-X/fulltext
- 604 Kolarich AR, Shah JL, George TJ. et al. Non-surgical management of patients with intrahepatic cholangiocarcinoma in the United States, 2004-2015: an NCDB analysis. J Gastrointest Oncol 2018; 9: 536-545 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006029/pdf/jgo-09-03-536.pdf
- 605 Takahashi EA, Kinsman KA, Schmit GD. et al. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression. Abdom Radiol (NY) 2018; 43: 3487-3492 https://link.springer.com/content/pdf/10.1007/s00261-018-1656-3.pdf
- 606 Kim JH, Won HJ, Shin YM. et al. Radiofrequency ablation for recurrent intrahepatic cholangiocarcinoma after curative resection. Eur J Radiol 2011; 80: e221-e225 https://www.ejradiology.com/article/S0720-048X(10)00476-6/fulltext
- 607 Goldaracena N, Gorgen A, Sapisochin G. Current status of liver transplantation for cholangiocarcinoma. Liver Transpl 2018; 24: 294-303
- 608 Facciuto ME, Singh MK, Lubezky N. et al. Tumors with intrahepatic bile duct differentiation in cirrhosis: implications on outcomes after liver transplantation. Transplantation 2015; 99: 151-157
- 609 Vilchez V, Shah MB, Daily MF. et al. Long-term outcome of patients undergoing liver transplantation for mixed hepatocellular carcinoma and cholangiocarcinoma: an analysis of the UNOS database. HPB (Oxford) 2016; 18: 29-34 https://www.hpbonline.org/article/S1365-182X(15)00002-7/pdf
- 610 Sapisochin G, de Lope CR, Gastaca M. et al. Intrahepatic cholangiocarcinoma or mixed hepatocellular-cholangiocarcinoma in patients undergoing liver transplantation: a Spanish matched cohort multicenter study. Ann Surg 2014; 259: 944-952
- 611 Sapisochin G, Facciuto M, Rubbia-Brandt L. et al. Liver transplantation for „very early“ intrahepatic cholangiocarcinoma: International retrospective study supporting a prospective assessment. Hepatology 2016; 64: 1178-1188
- 612 Lunsford KE, Javle M, Heyne K. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol 2018; 3: 337-348 https://www.thelancet.com/journals/langas/article/PIIS2468-1253(18)30045-1/fulltext
- 613 Becker NS, Rodriguez JA, Barshes NR. et al. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg 2008; 12: 117-122 https://link.springer.com/content/pdf/10.1007/s11605-007-0335-4.pdf
- 614 Darwish MuradS, Kim WR, Harnois DM. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012; 143: 88-98 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846443/pdf/nihms507180.pdf
- 615 Rosen CB, Heimbach JK, Gores GJ. Surgery for cholangiocarcinoma: the role of liver transplantation. HPB (Oxford) 2008; 10: 186-189 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504373/pdf/MHPB10-186.pdf
- 616 Gulamhusein AF, Sanchez W. Liver transplantation in the management of perihilar cholangiocarcinoma. Hepat Oncol 2015; 2: 409-421 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095165/pdf/hep-02-409.pdf
- 617 Ethun CG, Lopez-Aguiar AG, Anderson DJ. et al. Transplantation Versus Resection for Hilar Cholangiocarcinoma: An Argument for Shifting Treatment Paradigms for Resectable Disease. Ann Surg 2018; 267: 797-805 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002861/pdf/nihms955692.pdf
- 618 Mantel HT, Westerkamp AC, Adam R. et al. Strict Selection Alone of Patients Undergoing Liver Transplantation for Hilar Cholangiocarcinoma Is Associated with Improved Survival. PLoS One 2016; 11: e0156127 https://air.unimi.it/retrieve/handle/2434/465540/799026/journal.pone.0156127.PDF
- 619 Weber SM, Ribero D, O’Reilly EM. et al. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford) 2015; 17: 669-680
- 620 NCCN Guidelines for Hepatobiliary Cancers Version 3. 2019.
- 621 Ray CE, Edwards A, Smith MT. et al. Metaanalysis of survival, complications, and imaging response following chemotherapy-based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2013; 24: 1218-1226
- 622 Koch C, Franzke C, Bechstein WO. et al. Poor Prognosis of Advanced Cholangiocarcinoma: Real-World Data from a Tertiary Referral Center. Digestion 2019; 1-8
- 623 Gusani NJ, Balaa FK, Steel JL. et al. Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J Gastrointest Surg 2008; 12: 129-137 https://link.springer.com/content/pdf/10.1007/s11605-007-0312-y.pdf
- 624 Boehm LM, Jayakrishnan TT, Miura JT. et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol 2015; 111: 213-220 https://onlinelibrary.wiley.com/doi/full/10.1002/jso.23781
- 625 Kiefer MV, Albert M, McNally M. et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer 2011; 117: 1498-1505 https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.25625
- 626 Vogl TJ, Naguib NN, Nour-Eldin NE. et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int J Cancer 2012; 131: 733-740 https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.26407
- 627 Cucchetti A, Cappelli A, Mosconi C. et al. Improving patient selection for selective internal radiation therapy of intra-hepatic cholangiocarcinoma: A meta-regression study. Liver Int 2017; 37: 1056-1064 https://onlinelibrary.wiley.com/doi/full/10.1111/liv.13382
- 628 Gangi A, Shah J, Hatfield N. et al. Intrahepatic Cholangiocarcinoma Treated with Transarterial Yttrium-90 Glass Microsphere Radioembolization: Results of a Single Institution Retrospective Study. J Vasc Interv Radiol 2018; 29: 1101-1108 https://www.sciencedirect.com/science/article/pii/S1051044318310868?via%3Dihub
- 629 Manceau V, Palard X, Rolland Y. et al. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and (90)Y-loaded glass microsphere selective internal radiation therapy. Eur J Nucl Med Mol Imaging 2018; 45: 1731-1741 https://link.springer.com/content/pdf/10.1007%2Fs00259-018-3990-7.pdf
- 630 Reimer P, Virarkar MK, Binnenhei M. et al. Prognostic Factors in Overall Survival of Patients with Unresectable Intrahepatic Cholangiocarcinoma Treated by Means of Yttrium-90 Radioembolization: Results in Therapy-Naïve Patients. Cardiovasc Intervent Radiol 2018; 41: 744-752 https://link.springer.com/content/pdf/10.1007/s00270-017-1871-2.pdf
- 631 Yang L, Shan J, Shan L. et al. Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: a systematic review. J Gastrointest Oncol 2015; 6: 570-588 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570915/pdf/jgo-06-05-570.pdf
- 632 Zhen Y, Liu B, Chang Z. et al. A pooled analysis of transarterial radioembolization with yttrium-90 microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma. Onco Targets Ther 2019; 12: 4489-4498 https://pubmed.ncbi.nlm.nih.gov/31239717/
- 633 Mosconi C, Solaini L, Vara G. et al. Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma-a Systemic Review and Meta-Analysis. Cardiovasc Intervent Radiol 2021; 44 (05) 728-738 https://pubmed.ncbi.nlm.nih.gov/33709272/
- 634 Hyder O, Marsh JW, Salem R. et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol 2013; 20: 3779-3786 https://link.springer.com/content/pdf/10.1245/s10434-013-3127-y.pdf
- 635 Marquardt S, Kirstein MM, Brüning R. et al. Percutaneous hepatic perfusion (chemosaturation) with melphalan in patients with intrahepatic cholangiocarcinoma: European multicentre study on safety, short-term effects and survival. Eur Radiol 2019; 29: 1882-1892 https://link.springer.com/content/pdf/10.1007/s00330-018-5729-z.pdf
- 636 Edeline J, Touchefeu Y, Guiu B. et al. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol 2019; 6: 51-59 https://jamanetwork.com/journals/jamaoncology/articlepdf/2753557/jamaoncology_edeline_2019_oi_190074.pdf
- 637 Konstantinidis IT, Groot KoerkampB, Do RK. et al. Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016; 122: 758-65 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.29824?download=true
- 638 Al-Adra DP, Gill RS, Axford SJ. et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol 2015; 41: 120-127
- 639 Wronka KM, Grąt M, Stypułkowski J. et al. Relevance of Preoperative Hyperbilirubinemia in Patients Undergoing Hepatobiliary Resection for Hilar Cholangiocarcinoma. J Clin Med 2019; 8: 458 https://res.mdpi.com/d_attachment/jcm/jcm-08-00458/article_deploy/jcm-08-00458.pdf
- 640 Al MahjoubA, Menahem B, Fohlen A. et al. Preoperative Biliary Drainage in Patients with Resectable Perihilar Cholangiocarcinoma: Is Percutaneous Transhepatic Biliary Drainage Safer and More Effective than Endoscopic Biliary Drainage?. A Meta-Analysis. J Vasc Interv Radiol 2017; 28: 576-582
- 641 Hameed A, Pang T, Chiou J. et al. Percutaneous vs endoscopic pre-operative biliary drainage in hilar cholangiocarcinoma – a systematic review and meta-analysis. HPB (Oxford) 2016; 18: 400-410 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857062/pdf/main.pdf
- 642 Coelen RJS, Roos E, Wiggers JK. et al. Endoscopic versus percutaneous biliary drainage in patients with resectable perihilar cholangiocarcinoma: a multicentre, randomised controlled trial. Lancet Gastroenterol Hepatol 2018; 3: 681-690 https://www.sciencedirect.com/science/article/abs/pii/S2468125318302346?via%3Dihub
- 643 Ba Y, Yue P, Leung JW. et al. Percutaneous transhepatic biliary drainage may be the preferred preoperative drainage method in hilar cholangiocarcinoma. Endosc Int Open 2020; 8: E203-E210 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0990-9114.pdf
- 644 Maeda T, Ebata T, Yokoyama Y. et al. Preoperative course of patients undergoing endoscopic nasobiliary drainage during the management of resectable perihilar cholangiocarcinoma. J Hepatobiliary Pancreat Sci 2019; 26: 341-347 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jhbp.640?download=true
- 645 Nakai Y, Yamamoto R, Matsuyama M. et al. Multicenter study of endoscopic preoperative biliary drainage for malignant hilar biliary obstruction: E-POD hilar study. J Gastroenterol Hepatol 2018; 33: 1146-1153 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.14050?download=true
- 646 Komaya K, Ebata T, Yokoyama Y. et al. Verification of the oncologic inferiority of percutaneous biliary drainage to endoscopic drainage: A propensity score matching analysis of resectable perihilar cholangiocarcinoma. Surgery 2017; 161: 394-404
- 647 Kim KM, Park JW, Lee JK. et al. A Comparison of Preoperative Biliary Drainage Methods for Perihilar Cholangiocarcinoma: Endoscopic versus Percutaneous Transhepatic Biliary Drainage. Gut Liver 2015; 9: 791-799 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625710/pdf/gnl-09-791.pdf
- 648 Kennedy TJ, Yopp A, Qin Y. et al. Role of preoperative biliary drainage of liver remnant prior to extended liver resection for hilar cholangiocarcinoma. HPB (Oxford) 2009; 11: 445-451 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742615/pdf/hpb0011-0445.pdf
- 649 Miura S, Kanno A, Fukase K. et al. Preoperative biliary drainage of the hepatic lobe to be resected does not affect liver hypertrophy after percutaneous transhepatic portal vein embolization. Surg Endosc 2020; 34: 667-674 https://link.springer.com/content/pdf/10.1007/s00464-019-06813-y.pdf
- 650 Hintze RE, Abou-Rebyeh H, Adler A. et al. Magnetic resonance cholangiopancreatography-guided unilateral endoscopic stent placement for Klatskin tumors. Gastrointest Endosc 2001; 53: 40-46
- 651 Abraham NS, Barkun JS, Barkun AN. Palliation of malignant biliary obstruction: a prospective trial examining impact on quality of life. Gastrointest Endosc 2002; 56: 835-841
- 652 Paik WH, Park YS, Hwang JH. et al. Palliative treatment with self-expandable metallic stents in patients with advanced type III or IV hilar cholangiocarcinoma: a percutaneous versus endoscopic approach. Gastrointest Endosc 2009; 69: 55-62
- 653 Saluja SS, Gulati M, Garg PK. et al. Endoscopic or percutaneous biliary drainage for gallbladder cancer: a randomized trial and quality of life assessment. Clin Gastroenterol Hepatol 2008; 6: 944-950 https://www.sciencedirect.com/science/article/abs/pii/S1542356508003418?via%3Dihub
- 654 Schima W, Prokesch R, Osterreicher C. et al. Biliary Wallstent endoprosthesis in malignant hilar obstruction: long-term results with regard to the type of obstruction. Clin Radiol 1997; 52: 213-219
- 655 Uberoi R, Das N, Moss J. et al. British Society of Interventional Radiology: Biliary Drainage and Stenting Registry (BDSR). Cardiovasc Intervent Radiol 2012; 35: 127-138 https://link.springer.com/content/pdf/10.1007/s00270-011-0103-4.pdf
- 656 Smith AC, Dowsett JF, Russell RC. et al. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bileduct obstruction. Lancet 1994; 344: 1655-1660
- 657 Speer AG, Cotton PB, Russell RC. et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet 1987; 2: 57-62
- 658 Almadi MA, Barkun A, Martel M. Plastic vs Self-Expandable Metal Stents for Palliation in Malignant Biliary Obstruction: A Series of Meta-Analyses. Am J Gastroenterol 2017; 112: 260-273
- 659 Lee TH, Moon JH, Choi JH. et al. Prospective comparison of endoscopic bilateral stent-in-stent versus stent-by-stent deployment for inoperable advanced malignant hilar biliary stricture. Gastrointest Endosc 2019; 90: 222-230 https://www.sciencedirect.com/science/article/abs/pii/S0016510719301737?via%3Dihub
- 660 Sharaiha RZ, Kumta NA, Desai AP. et al. Endoscopic ultrasound-guided biliary drainage versus percutaneous transhepatic biliary drainage: predictors of successful outcome in patients who fail endoscopic retrograde cholangiopancreatography. Surg Endosc 2016; 30: 5500-5505 https://link.springer.com/content/pdf/10.1007/s00464-016-4913-y.pdf
- 661 Paik WH, Lee TH, Park DH. et al. EUS-Guided Biliary Drainage Versus ERCP for the Primary Palliation of Malignant Biliary Obstruction: A Multicenter Randomized Clinical Trial. Am J Gastroenterol 2018; 113: 987-997
- 662 Bang JY, Navaneethan U, Hasan M. et al. Stent placement by EUS or ERCP for primary biliary decompression in pancreatic cancer: a randomized trial (with videos). Gastrointest Endosc 2018; 88: 9-17
- 663 Dumonceau JM, Tringali A, Papanikolaou IS. et al. Endoscopic biliary stenting: indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated October 2017. Endoscopy 2018; 50: 910-930 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0659-9864.pdf
- 664 Moole H, Dharmapuri S, Duvvuri A. et al. Endoscopic versus Percutaneous Biliary Drainage in Palliation of Advanced Malignant Hilar Obstruction: A Meta-Analysis and Systematic Review. Can J Gastroenterol Hepatol 2016; 2016: 4726078 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014937/pdf/CJGH2016-4726078.pdf
- 665 Zhao XQ, Dong JH, Jiang K. et al. Comparison of percutaneous transhepatic biliary drainage and endoscopic biliary drainage in the management of malignant biliary tract obstruction: a meta-analysis. Dig Endosc 2015; 27: 137-145 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/den.12320?download=true
- 666 Born P, Rösch T, Triptrap A. et al. Long-term results of percutaneous transhepatic biliary drainage for benign and malignant bile duct strictures. Scand J Gastroenterol 1998; 33: 544-549 https://www.tandfonline.com/doi/pdf/10.1080/00365529850172142?needAccess=true
- 667 De Palma GD, Galloro G, Siciliano S. et al. Unilateral versus bilateral endoscopic hepatic duct drainage in patients with malignant hilar biliary obstruction: results of a prospective, randomized, and controlled study. Gastrointest Endosc 2001; 53: 547-553
- 668 Chang WH, Kortan P, Haber GB. Outcome in patients with bifurcation tumors who undergo unilateral versus bilateral hepatic duct drainage. Gastrointest Endosc 1998; 47: 354-362
- 669 Bulajic M, Panic N, Radunovic M. et al. Clinical outcome in patients with hilar malignant strictures type II Bismuth-Corlette treated by minimally invasive unilateral versus bilateral endoscopic biliary drainage. Hepatobiliary Pancreat Dis Int 2012; 11: 209-214
- 670 Cheng JL, Bruno MJ, Bergman JJ. et al. Endoscopic palliation of patients with biliary obstruction caused by nonresectable hilar cholangiocarcinoma: efficacy of self-expandable metallic Wallstents. Gastrointest Endosc 2002; 56: 33-39
- 671 Vienne A, Hobeika E, Gouya H. et al. Prediction of drainage effectiveness during endoscopic stenting of malignant hilar strictures: the role of liver volume assessment. Gastrointest Endosc 2010; 72: 728-735
- 672 Rees J, Mytton J, Evison F. et al. The outcomes of biliary drainage by percutaneous transhepatic cholangiography for the palliation of malignant biliary obstruction in England between 2001 and 2014: a retrospective cohort study. BMJ Open 2020; 10: e033576 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045186/pdf/bmjopen-2019-033576.pdf
- 673 Harvey PR, Baldwin S, Mytton J. et al. Higher volume providers are associated with improved outcomes following ERCP for the palliation of malignant biliary obstruction. EClinicalMedicine 2020; 18: 100212 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948226/pdf/main.pdf
- 674 Tal AO, Vermehren J, Friedrich-Rust M. et al. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J Gastrointest Endosc 2014; 6: 13-19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921441/pdf/WJGE-6-13.pdf
- 675 Moole H, Tathireddy H, Dharmapuri S. et al. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: A systematic review and meta-analysis. World J Gastroenterol 2017; 23: 1278-1288 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323453/pdf/WJG-23-1278.pdf
- 676 Zoepf T, Jakobs R, Rosenbaum A. et al. Photodynamic therapy with 5-aminolevulinic acid is not effective in bile duct cancer. Gastrointest Endosc 2001; 54: 763-766
- 677 Ortner ME, Caca K, Berr F. et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 2003; 125: 1355-1363 https://www.sciencedirect.com/science/article/abs/pii/S0016508503013623?via%3Dihub
- 678 Zoepf T, Jakobs R, Arnold JC. et al. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol 2005; 100: 2426-2430
- 679 Pereira SP, Jitlal M, Duggan M. et al. PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer. ESMO Open 2018; 3: e000379 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069917/pdf/esmoopen-2018-000379.pdf
- 680 Gonzalez-Carmona MA, Bolch M, Jansen C. et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49: 437-447 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/apt.15050?download=true
- 681 Wentrup R, Winkelmann N, Mitroshkin A. et al. Photodynamic Therapy Plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma. Gut Liver 2016; 10: 470-475 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849702/pdf/gnl-10-470.pdf
- 682 Strand DS, Cosgrove ND, Patrie JT. et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc 2014; 80: 794-804
- 683 Dolak W, Schwaighofer H, Hellmich B. et al. Photodynamic therapy with polyhematoporphyrin for malignant biliary obstruction: A nationwide retrospective study of 150 consecutive applications. United European Gastroenterol J 2017; 5: 104-110 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384559/pdf/10.1177_2050640616654037.pdf
- 684 Kahaleh M, Mishra R, Shami VM. et al. Unresectable cholangiocarcinoma: comparison of survival in biliary stenting alone versus stenting with photodynamic therapy. Clin Gastroenterol Hepatol 2008; 6: 290-297 https://www.sciencedirect.com/science/article/abs/pii/S1542356507011469?via%3Dihub
- 685 Ben-Josef E, Normolle D, Ensminger WD. et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol 2005; 23: 8739-8747
- 686 Brunner TB, Blanck O, Lewitzki V. et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 2019; 132: 42-47 https://www.sciencedirect.com/science/article/abs/pii/S0167814018336089?via%3Dihub
- 687 Tao R, Krishnan S, Bhosale PR. et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. J Clin Oncol 2016; 34: 219-226 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980564/pdf/JCO613778.pdf
- 688 Lee J, Yoon WS, Koom WS. et al. Efficacy of stereotactic body radiotherapy for unresectable or recurrent cholangiocarcinoma: a meta-analysis and systematic review. Strahlenther Onkol 2019; 195: 93-102 https://link.springer.com/content/pdf/10.1007/s00066-018-1367-2.pdf
- 689 Frakulli R, Buwenge M, Macchia G. et al. Stereotactic body radiation therapy in cholangiocarcinoma: a systematic review. Br J Radiol 2019; 92: 20180688 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580923/pdf/bjr.20180688.pdf
- 690 Barney BM, Olivier KR, Miller RC. et al. Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiat Oncol 2012; 7: 67 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464963/pdf/1748-717X-7-67.pdf
- 691 Tse RV, Hawkins M, Lockwood G. et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 2008; 26: 657-664
- 692 Weiner AA, Olsen J, Ma D. et al. Stereotactic body radiotherapy for primary hepatic malignancies – Report of a phase I/II institutional study. Radiother Oncol 2016; 121: 79-85 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543719/pdf/nihms872134.pdf
- 693 Kopek N, Holt MI, Hansen AT. et al. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol 2010; 94: 47-52
- 694 Schnapauff D, Denecke T, Grieser C. et al. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2012; 35: 581-587 https://link.springer.com/content/pdf/10.1007/s00270-011-0249-0.pdf
- 695 Jeong H, Kim K, Jeong J. et al. Adjuvant gemcitabine plus cisplatin versus capecitabine in node-positive extrahepatic cholangiocarcinoma: the STAMP randomized trial. Hepatology 2023; 77 (05) 1540-1549 https://pubmed.ncbi.nlm.nih.gov/37070950/
- 696 Vogel A, Wege H, Caca K. et al. The diagnosis and treatment of cholangiocarcinoma. Dtsch Arztebl Int 2014; 111: 748-754 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239580/pdf/Dtsch_Arztebl_Int-111-0748.pdf
- 697 Horgan AM, Amir E, Walter T. et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol 2012; 30: 1934-1940
- 698 Bridgewater J, Fletcher P, Palmer D. et al. Long-Term Outcomes and Exploratory Analyses of the Randomized Phase III BILCAP Study. J Clin Oncol 2022; 40 (18) 2048-2057 https://pubmed.ncbi.nlm.nih.gov/35316080/
- 699 Edeline J, Bonnetain F, Phelip JM. et al. Gemox versus surveillance following surgery of localized biliary tract cancer: Results of the PRODIGE 12-ACCORD 18 (UNICANCER GI) phase III trial. Journal of Clinical Oncology 2017; 35: 225-225 http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.4_suppl.225
- 700 Edeline J, Hirano S, Bertaut A. et al. Individual patient data meta-analysis of adjuvant gemcitabine-based chemotherapy for biliary tract cancer: combined analysis of the BCAT and PRODIGE-12 studies. Eur J Cancer 2022; 164: 80-87 https://pubmed.ncbi.nlm.nih.gov/35182925/
- 701 Luvira V, Satitkarnmanee E, Pugkhem A. et al. Postoperative adjuvant chemotherapy for resectable cholangiocarcinoma. Cochrane Database Syst Rev 2021; 9 (09) CD012814 https://pubmed.ncbi.nlm.nih.gov/34515993/
- 702 Oh D, Ruth HeA, Qin S. et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evidence 2022; 1: EVIDoa2200015 https://doi.org/10.1056/EVIDoa2200015
- 703 Valle J, Wasan H, Palmer DH. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281 https://www.nejm.org/doi/pdf/10.1056/NEJMoa0908721?articleTools=true
- 704 Okusaka T, Nakachi K, Fukutomi A. et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer 2010; 103: 469-474 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939781/pdf/6605779a.pdf
- 705 Valle JW, Furuse J, Jitlal M. et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol 2014; 25: 391-398
- 706 Park JO, Oh DY, Hsu C. et al. Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review. Cancer Res Treat 2015; 47: 343-361 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509359/pdf/crt-2014-308.pdf
- 707 Markussen A, Jensen L, Diness L. et al. Treatment of Patients with Advanced Biliary Tract Cancer with Either Oxaliplatin, Gemcitabine, and Capecitabine or Cisplatin and Gemcitabine-A Randomized Phase II Trial. Cancers (Basel) 2020; 12 (07) https://pubmed.ncbi.nlm.nih.gov/32698410/
- 708 Valle JW, Borbath I, Khan SA. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27: v28-v37 https://www.ncbi.nlm.nih.gov/pubmed/27664259
- 709 Kelley R, Ueno M, Yoo C. et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; https://pubmed.ncbi.nlm.nih.gov/37075781/
- 710 Abou-Alfa GK, Macarulla T, Javle MM. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Oncology 2020; 21: 796-807
- 711 Abou-Alfa GK, Sahai V, Hollebecque A. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. The Lancet Oncology 2020; 21: 671-684
- 712 Lamarca A, Palmer DH, Wasan HS. et al. ABC-06 | A randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. Journal of Clinical Oncology 2019; 37: 4003-4003 https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.4003
- 713 Goyal L, Meric-Bernstam F, Hollebecque A. et al. Futibatinib for. N Engl J Med 2023; 388 (03) 228-239 https://pubmed.ncbi.nlm.nih.gov/36652354/
- 714 Valle JW, Lamarca A, Goyal L. et al. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017; 7: 943-962 https://cancerdiscovery.aacrjournals.org/content/candisc/7/9/943.full.pdf
- 715 Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15: 731-747 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419506/pdf/nihms-1016874.pdf
- 716 Solomon JP, Linkov I, Rosado A. et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2019; https://www.ncbi.nlm.nih.gov/pubmed/31375766
- 717 Ross JS, Wang K, Gay L. et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014; 19: 235-242 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958461/pdf/theoncologist_13352.pdf
- 718 Drilon A, Laetsch TW, Kummar S. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378: 731-739 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1714448?articleTools=true
- 719 Oh DY, Bang YJ. HER2-targeted therapies – a role beyond breast cancer. Nat Rev Clin Oncol 2019; https://www.ncbi.nlm.nih.gov/pubmed/31548601
- 720 Javle M, Borad M, Azad N. et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021; 22 (09) 1290-1300 https://pubmed.ncbi.nlm.nih.gov/34339623/
- 721 Nakamura Y, Mizuno N, Sunakawa Y. et al. Tucatinib and Trastuzumab for Previously Treated Human Epidermal Growth Factor Receptor 2-Positive Metastatic Biliary Tract Cancer (SGNTUC-019): A Phase II Basket Study. J Clin Oncol 2023; 41 (36) 5569-5578 https://pubmed.ncbi.nlm.nih.gov/37751561/
- 722 Meric-Bernstam F, Makker V, Oaknin A. et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J Clin Oncol 2024; 42 (01) 47-58 https://pubmed.ncbi.nlm.nih.gov/37870536/
- 723 Harding J, Piha-Paul S, Shah R. et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers. Nat Commun 2023; 14 (01) 630 https://pubmed.ncbi.nlm.nih.gov/36746967/
- 724 Hyman DM, Puzanov I, Subbiah V. et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 2015; 373: 726-736 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1502309?articleTools=true
- 725 Salama AKS, Li SL, Macrae ER. et al. Dabrafenib and trametinib in patients with tumors with BRAF V600E/K mutations: Results from the molecular analysis for therapy choice (MATCH) Arm H. Journal of Clinical Oncology 2019; 37: URL
- 726 Lavingia V, Fakih M. Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review. J Gastrointest Oncol 2016; 7: E98-E102 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177579/pdf/jgo-07-06-E98.pdf
- 727 Kocsis J, Árokszállási A, András C. et al. Combined dabrafenib and trametinib treatment in a case of chemotherapy-refractory extrahepatic BRAF V600E mutant cholangiocarcinoma: dramatic clinical and radiological response with a confusing synchronic new liver lesion. J Gastrointest Oncol 2017; 8: E32-E38 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401859/pdf/jgo-08-02-E32.pdf
- 728 Bunyatov T, Zhao A, Kovalenko J. et al. Personalised approach in combined treatment of cholangiocarcinoma: a case report of healing from cholangiocellular carcinoma at stage IV. J Gastrointest Oncol 2019; 10: 815-820 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657318/pdf/jgo-10-04-815.pdf
- 729 Subbiah V, Lassen U, Élez E. et al. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol 2020; 21 (09) 1234-1243 https://pubmed.ncbi.nlm.nih.gov/32818466/
- 730 Abou-Alfa G, Sahai V, Hollebecque A. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020; 21 (05) 671-684 https://pubmed.ncbi.nlm.nih.gov/32203698/
- 731 Wu Q, Ellis H, Siravegna G. et al. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma. Clin Cancer Res 2024; 30 (01) 198-208 https://pubmed.ncbi.nlm.nih.gov/37843855/
- 732 Rengan A, Denlinger C. Robust Response to Futibatinib in a Patient With Metastatic FGFR-Addicted Cholangiocarcinoma Previously Treated Using Pemigatinib. J Natl Compr Canc Netw 2022; 20 (05) 430-435 https://pubmed.ncbi.nlm.nih.gov/35378504/
- 733 Meric-Bernstam F, Bahleda R, Hierro C. et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring. Cancer Discov 2022; 12 (02) 402-415 https://pubmed.ncbi.nlm.nih.gov/34551969/
- 734 Mazzaferro V, El-Rayes BF, Droz DitBusset M. et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer 2019; 120: 165-171 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342954/pdf/41416_2018_Article_334.pdf
- 735 Bahleda R, Italiano A, Hierro C. et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res 2019; 25: 4888-4897 https://clincancerres.aacrjournals.org/content/clincanres/25/16/4888.full.pdf
- 736 Subbiah V, Sahai V, Maglic D. et al. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations. Cancer Discov 2023; 13 (09) 2012-2031 https://pubmed.ncbi.nlm.nih.gov/37270847/
- 737 Cleary J, Raghavan S, Wu Q. et al. Cancer Discov. 2021; 11 (10) 2488-2505 https://pubmed.ncbi.nlm.nih.gov/33926920/
- 738 Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2018; https://www.ncbi.nlm.nih.gov/pubmed/30367139
- 739 Maio M, Ascierto P, Manzyuk L. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann Oncol 2022; 33 (09) 929-938 https://pubmed.ncbi.nlm.nih.gov/35680043/
- 740 Lamarca A, Palmer D, Wasan H. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021; 22 (05) 690-701 https://pubmed.ncbi.nlm.nih.gov/33798493/
- 741 Marabelle A, Le DT, Ascierto PA. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology https://ascopubs.org/doi/abs/10.1200/JCO.19.02105
- 742 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413 https://science.sciencemag.org/content/sci/357/6349/409.full.pdf
- 743 Le DT, Uram JN, Wang H. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372: 2509-2520 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1500596?articleTools=true
- 744 Goeppert B, Roessler S, Renner M. et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer 2019; 120: 109-114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325153/pdf/41416_2018_Article_199.pdf
- 745 Cloyd J, Chun Y, Ikoma N. et al. Clinical and Genetic Implications of DNA Mismatch Repair Deficiency in Biliary Tract Cancers Associated with Lynch Syndrome. J Gastrointest Cancer 2018; 49 (01) 93-96 https://pubmed.ncbi.nlm.nih.gov/29238914/
- 746 Zalevskaja K, Mecklin J, Seppälä T. Clinical characteristics of pancreatic and biliary tract cancers in Lynch syndrome: A retrospective analysis from the Finnish National Lynch Syndrome Research Registry. Front Oncol 2023; 13: 1123901 https://pubmed.ncbi.nlm.nih.gov/36816932/
- 747 Zhu A, Macarulla T, Javle M. et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol 2021; 7 (11) 1669-1677 https://pubmed.ncbi.nlm.nih.gov/34554208/
- 748 Choi I, Kim K, Lee J. et al. A randomised phase II study of oxaliplatin/5-FU (mFOLFOX) versus irinotecan/5-FU (mFOLFIRI) chemotherapy in locally advanced or metastatic biliary tract cancer refractory to first-line gemcitabine/cisplatin chemotherapy. Eur J Cancer 2021; 154: 288-295 https://pubmed.ncbi.nlm.nih.gov/34303267/
- 749 Yoo C, Kim K, Jeong J. et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol 2021; https://pubmed.ncbi.nlm.nih.gov/34656226/
- 750 Zheng Y, Tu X, Zhao P. et al. A randomised phase II study of second-line XELIRI regimen versus irinotecan monotherapy in advanced biliary tract cancer patients progressed on gemcitabine and cisplatin. Br J Cancer 2018; 119 (03) 291-295 https://pubmed.ncbi.nlm.nih.gov/29955136/
- 751 Vogel A, Wenzel P, Folprecht G. et al. 53MO Nal-IRI and 5-FU/LV compared to 5-FU/LV in patients with cholangio- and gallbladder carcinoma previously treated with gemcitabine-based therapies (NALIRICC – AIO-HEP-0116). Annals of Oncology 2022; 33: S563 https://doi.org/10.1016/j.annonc.2022.07.081
- 752 Ramaswamy A, Ostwal V, Sharma A. et al. Efficacy of Capecitabine Plus Irinotecan vs Irinotecan Monotherapy as Second-line Treatment in Patients With Advanced Gallbladder Cancer: A Multicenter Phase 2 Randomized Clinical Trial (GB-SELECT). JAMA Oncol 2021; 7 (03) 436-439 https://pubmed.ncbi.nlm.nih.gov/33270098/
- 753 Schütte K, Tippelt B, Schulz C. et al. Malnutrition is a prognostic factor in patients with hepatocellular carcinoma (HCC). Clin Nutr 2015; 34: 1122-1127
- 754 Huang TH, Hsieh CC, Kuo LM. et al. Malnutrition associated with an increased risk of postoperative complications following hepatectomy in patients with hepatocellular carcinoma. HPB (Oxford) 2019; 21: 1150-1155
- 755 Arends J, Bachmann P, Baracos V. et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr 2017; 36: 11-48
- 756 Ciuni R, Biondi A, Grosso G. et al. Nutritional aspects in patient undergoing liver resection. Updates Surg 2011; 63: 249-252 https://link.springer.com/content/pdf/10.1007/s13304-011-0121-4.pdf
- 757 Cederholm T, Jensen GL, Correia M. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 2019; 10: 207-217 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438340/pdf/JCSM-10-207.pdf
- 758 Badran H, Elsabaawy MM, Ragab A. et al. Baseline Sarcopenia is Associated with Lack of Response to Therapy, Liver Decompensation and High Mortality in Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2020; 21: 3285-3290 http://journal.waocp.org/article_89349_cc643ce4770cf7eeca5890c5d5c453d5.pdf
- 759 Fujiwara N, Nakagawa H, Kudo Y. et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 2015; 63: 131-140
- 760 Kim N, Yu JI, Park HC. et al. Incorporating sarcopenia and inflammation with radiation therapy in patients with hepatocellular carcinoma treated with nivolumab. Cancer Immunol Immunother 2020; https://link.springer.com/content/pdf/10.1007/s00262-020-02794-3.pdf
- 761 Mardian Y, Yano Y, Ratnasari N. et al. „Sarcopenia and intramuscular fat deposition are associated with poor survival in Indonesian patients with hepatocellular carcinoma: a retrospective study“. BMC Gastroenterol 2019; 19: 229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937974/pdf/12876_2019_Article_1152.pdf
- 762 Voron T, Tselikas L, Pietrasz D. et al. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Ann Surg 2015; 261: 1173-1183
- 763 Plauth M, Bernal W, Dasarathy S. et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr 2019; 38: 485-521 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686849/pdf/nihms-1529826.pdf
- 764 Haun MW, Estel S, Rucker G. et al. Early palliative care for adults with advanced cancer. Cochrane Database Syst Rev 2017; 6: CD011129 http://www.ncbi.nlm.nih.gov/pubmed/28603881
- 765 Adler K, Schlieper D, Kindgen-Milles D. et al. [Integration of palliative care into intensive care: Systematic review]. Anaesthesist 2017; 66: 660-666 http://www.ncbi.nlm.nih.gov/pubmed/28589374
- 766 Dalgaard KM, Bergenholtz H, Nielsen ME. et al. Early integration of palliative care in hospitals: A systematic review on methods, barriers, and outcome. Palliat Support Care 2014; 12: 495-513 http://www.ncbi.nlm.nih.gov/pubmed/24621947
- 767 Davis MP, Temel JS, Balboni T. et al. A review of the trials which examine early integration of outpatient and home palliative care for patients with serious illnesses. Ann Palliat Med 2015; 4: 99-121 http://www.ncbi.nlm.nih.gov/pubmed/26231807
- 768 Hui D, Kim YJ, Park JC. et al. Integration of oncology and palliative care: a systematic review. Oncologist 2015; 20: 77-83 http://www.ncbi.nlm.nih.gov/pubmed/25480826
- 769 Hui D, Meng YC, Bruera S. et al. Referral Criteria for Outpatient Palliative Cancer Care: A Systematic Review. Oncologist 2016; 21: 895-901 http://www.ncbi.nlm.nih.gov/pubmed/27185614
- 770 Tassinari D, Drudi F, Monterubbianesi MC. et al. Early Palliative Care in Advanced Oncologic and Non-Oncologic Chronic Diseases: A Systematic Review of Literature. Rev Recent Clin Trials 2016; 11: 63-71 http://www.ncbi.nlm.nih.gov/pubmed/26464077
- 771 Gärtner U, Braun GD, Held K. et al. [Physical complaints, stress and quality of life of oncologic patients Effects and patient assessment in inpatient rehabilitation]. Med Klin (Munich) 1996; 91: 501-508
- 772 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK. Palliativmedizin für Patienten mit einer nicht-heilbaren Krebserkrankung. Version 2.2. 2020 https://www.leitlinienprogramm-onkologie.de/leitlinien/palliativmedizin/
- 773 Hamano J, Morita T, Inoue S. et al. Surprise Questions for Survival Prediction in Patients With Advanced Cancer: A Multicenter Prospective Cohort Study. Oncologist 2015; 20: 839-844 http://www.ncbi.nlm.nih.gov/pubmed/26054631
- 774 Moroni M, Zocchi D, Bolognesi D. et al. The „surprise“ question in advanced cancer patients: A prospective study among general practitioners. Palliat Med 2014; 28: 959-964 http://www.ncbi.nlm.nih.gov/pubmed/24662237
- 775 Moss AH, Lunney JR, Culp S. et al. Prognostic significance of the „surprise“ question in cancer patients. J Palliat Med 2010; 13: 837-840 http://www.ncbi.nlm.nih.gov/pubmed/20636154
- 776 Murray S, Boyd K. Using the „surprise question“ can identify people with advanced heart failure and COPD who would benefit from a palliative care approach. Palliat Med 2011; 25: 382 http://www.ncbi.nlm.nih.gov/pubmed/21610113
- 777 Kremer AE, Beuers U, Oude-Elferink RP. et al. Pathogenesis and treatment of pruritus in cholestasis. Drugs 2008; 68: 2163-2182 http://www.ncbi.nlm.nih.gov/pubmed/18840005
- 778 Stander S, Raap U, Weisshaar E. et al. Pathogenesis of pruritus. J Dtsch Dermatol Ges 2011; 9: 456-463 http://www.ncbi.nlm.nih.gov/pubmed/21208378
- 779 Stander S, Zeidler C, Augustin M. et al. S2k-Leitlinie zur Diagnostik und Therapie des chronischen Pruritus – Update – Kurzversion. J Dtsch Dermatol Ges 2017; 15: 860-873 http://www.ncbi.nlm.nih.gov/pubmed/28763608
- 780 Bachs L, Pares A, Elena M. et al. Comparison of rifampicin with phenobarbitone for treatment of pruritus in biliary cirrhosis. Lancet 1989; 1: 574-576 http://www.ncbi.nlm.nih.gov/pubmed/2564110
- 781 Ghent CN, Carruthers SG. Treatment of pruritus in primary biliary cirrhosis with rifampin Results of a double-blind, crossover, randomized trial. Gastroenterology 1988; 94: 488-493 http://www.ncbi.nlm.nih.gov/pubmed/3275568
- 782 Terg R, Coronel E, Sorda J. et al. Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo-controlled study. J Hepatol 2002; 37: 717-722 http://www.ncbi.nlm.nih.gov/pubmed/12445410
- 783 Bergasa NV, Talbot TL, Alling DW. et al. A controlled trial of naloxone infusions for the pruritus of chronic cholestasis. Gastroenterology 1992; 102: 544-549 http://www.ncbi.nlm.nih.gov/pubmed/1732125
- 784 Mayo MJ, Handem I, Saldana S. et al. Sertraline as a first-line treatment for cholestatic pruritus. Hepatology 2007; 45: 666-674 http://www.ncbi.nlm.nih.gov/pubmed/17326161
- 785 Lindor KD. Ursodiol for primary sclerosing cholangitis Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 1997; 336: 691-695 http://www.ncbi.nlm.nih.gov/pubmed/9041099
- 786 Talwalkar JA, Souto E, Jorgensen RA. et al. Natural history of pruritus in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2003; 1: 297-302 http://www.ncbi.nlm.nih.gov/pubmed/15017671
- 787 Zapata R, Sandoval L, Palma J. et al. Ursodeoxycholic acid in the treatment of intrahepatic cholestasis of pregnancy A 12-year experience. Liver Int 2005; 25: 548-554 http://www.ncbi.nlm.nih.gov/pubmed/15910492
- 788 Lemyze M, Dharancy S, Nevière R. et al. Aerobic capacity in patients with chronic liver disease: Very modest effect of liver transplantation. Presse Med 2010; 39: e174-e181
- 789 Epstein SK, Freeman RB, Khayat A. et al. Aerobic capacity is associated with 100-day outcome after hepatic transplantation. Liver Transpl 2004; 10: 418-424 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20088?download=true
- 790 van Ginneken BT, van den Berg-Emons RJ, Kazemier G. et al. Physical fitness, fatigue, and quality of life after liver transplantation. Eur J Appl Physiol 2007; 100: 345-353 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914221/pdf/421_2007_Article_435.pdf
- 791 van den Berg-Emons R, van Ginneken B, Wijffels M. et al. Fatigue is a major problem after liver transplantation. Liver Transpl 2006; 12: 928-933 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20684?download=true
- 792 van Ginneken BT, van den Berg-Emons HJ, Metselaar HJ. et al. Effects of a rehabilitation programme on daily functioning, participation, health-related quality of life, anxiety and depression in liver transplant recipients. Disabil Rehabil 2010; 32: 2107-2112 https://www.tandfonline.com/doi/abs/10.3109/09638288.2010.482174
- 793 Schwibbe G. [Changes in quality of life in oncological patients in the course of an inpatient after-care program]. Rehabilitation (Stuttg) 1991; 30: 55-62
- 794 Fan SY, Eiser C, Ho MC. et al. Health-related quality of life in patients with hepatocellular carcinoma: the mediation effects of illness perceptions and coping. Psychooncology 2013; 22: 1353-1360 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.3146?download=true
- 795 Fan SY, Eiser C, Ho MC. Health-related quality of life in patients with hepatocellular carcinoma: a systematic review. Clin Gastroenterol Hepatol 2010; 8: 559-564 https://www.sciencedirect.com/science/article/abs/pii/S1542356510002533?via%3Dihub
- 796 Qiao CX, Zhai XF, Ling CQ. et al. Health-related quality of life evaluated by tumor node metastasis staging system in patients with hepatocellular carcinoma. World J Gastroenterol 2012; 18: 2689-2694 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370007/pdf/WJG-18-2689.pdf
- 797 Steel JL, Geller DA, Gamblin TC. et al. Depression, immunity, and survival in patients with hepatobiliary carcinoma. J Clin Oncol 2007; 25: 2397-2405
- 798 Lee HH, Chiu CC, Lin JJ. et al. Impact of preoperative anxiety and depression on quality of life before and after resection of hepatocellular carcinoma. J Affect Disord 2019; 246: 361-367 https://www.sciencedirect.com/science/article/abs/pii/S0165032718318639?via%3Dihub
- 799 Huang TW, Lin CC. The mediating effects of depression on sleep disturbance and fatigue: symptom clusters in patients with hepatocellular carcinoma. Cancer Nurs 2009; 32: 398-403
- 800 Ahn MH, Park S, Lee HB. et al. Suicide in cancer patients within the first year of diagnosis. Psychooncology 2015; 24: 601-607 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.3705?download=true
- 801 Chiu CC, Lee KT, Wang JJ. et al. Health-Related Quality of Life before and after Surgical Resection of Hepatocellular Carcinoma: A Prospective Study. Asian Pac J Cancer Prev 2018; 19: 65-72 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844638/pdf/APJCP-19-65.pdf
- 802 Shun SC, Chen CH, Sheu JC. et al. Quality of life and its associated factors in patients with hepatocellular carcinoma receiving one course of transarterial chemoembolization treatment: a longitudinal study. Oncologist 2012; 17: 732-739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360913/pdf/onc732.pdf
- 803 Shun SC, Lai YH, Hung H. et al. The Role of Age in Change in Unmet Supportive Care Needs in Hepatocellular Carcinoma Patients During Transition From Hospital to Home. Cancer Nurs 2017; 40: 245-254
- 804 Wang ZX, Liu SL, Sun CH. et al. Psychological intervention reduces postembolization pain during hepatic arterial chemoembolization therapy: a complementary approach to drug analgesia. World J Gastroenterol 2008; 14: 931-935 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687062/pdf/WJG-14-931.pdf
- 805 Sanson-Fisher R, Girgis A, Boyes A. et al. The unmet supportive care needs of patients with cancer Supportive Care Review Group. Cancer 2000; 88: 226-37 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291097-0142%2820000101%2988%3A1%3C226%3A%3AAID-CNCR30%3E3.0.CO%3B2-P?download=true
- 806 Kleeberg UR, Tews JT, Ruprecht T. et al. Patient satisfaction and quality of life in cancer outpatients: results of the PASQOC study. Support Care Cancer 2005; 13: 303-310 https://link.springer.com/content/pdf/10.1007/s00520-004-0727-x.pdf
- 807 Fallowfield L, Jenkins V. Communicating sad, bad, and difficult news in medicine. Lancet 2004; 363: 312-319
- 808 de Haes H, Teunissen S. Communication in palliative care: a review of recent literature. Curr Opin Oncol 2005; 17: 345-350
- 809 Ong LM, Visser MR, Lammes FB. et al. Doctor-patient communication and cancer patients’ quality of life and satisfaction. Patient Educ Couns 2000; 41: 145-156
- 810 Fukui S, Ogawa K, Ohtsuka M. et al. A randomized study assessing the efficacy of communication skill training on patients’ psychologic distress and coping: nurses’ communication with patients just after being diagnosed with cancer. Cancer 2008; 113: 1462-1470 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.23710?download=true
- 811 Lienard A, Merckaert I, Libert Y. et al. Factors that influence cancer patients’ and relatives’ anxiety following a three-person medical consultation: impact of a communication skills training program for physicians. Psychooncology 2008; 17: 488-496 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.1262?download=true
- 812 Razavi D, Merckaert I, Marchal S. et al. How to optimize physicians’ communication skills in cancer care: results of a randomized study assessing the usefulness of posttraining consolidation workshops. J Clin Oncol 2003; 21: 3141-3149
- 813 Butow P, Juraskova I, Chang S. et al. Shared decision making coding systems: how do they compare in the oncology context?. Patient Educ Couns 2010; 78: 261-268
- 814 Edwards A, Elwyn G. Inside the black box of shared decision making: distinguishing between the process of involvement and who makes the decision. Health Expect 2006; 9: 307-320 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5060371/pdf/HEX-9-307.pdf
- 815 Gordon EJ, Bergeron A, McNatt G. et al. Are informed consent forms for organ transplantation and donation too difficult to read?. Clin Transplant 2012; 26: 275-283 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1399-0012.2011.01480.x?download=true
- 816 Rodrigue JR, Hanto DW, Curry MP. Patients’ expectations and success criteria for liver transplantation. Liver Transpl 2011; 17: 1309-1317 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22355?download=true
- 817 Volk ML, Tocco RS, Pelletier SJ. et al. Patient decision making about organ quality in liver transplantation. Liver Transpl 2011; 17: 1387-1393 https://deepblue.lib.umich.edu/bitstream/handle/2027.42/88081/22437_ftp.pdf?sequence=1
- 818 Butow PN, Tattersall MH, Goldstein D. Communication with cancer patients in culturally diverse societies. Ann N Y Acad Sci 1997; 809: 317-329 https://nyaspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1749-6632.1997.tb48095.x?download=true
- 819 Dowsett SM, Saul JL, Butow PN. et al. Communication styles in the cancer consultation: preferences for a patient-centred approach. Psychooncology 2000; 9: 147-156 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291099-1611%28200003/04%299%3A2%3C147%3A%3AAID-PON443%3E3.0.CO%3B2-X?download=true
- 820 Epstein RM. Making communication research matter: what do patients notice, what do patients want, and what do patients need?. Patient Educ Couns 2006; 60: 272-278
- 821 Zachariae R, Pedersen CG, Jensen AB. et al. Association of perceived physician communication style with patient satisfaction, distress, cancer-related self-efficacy, and perceived control over the disease. Br J Cancer 2003; 88: 658-665 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376357/pdf/88-6600798a.pdf
- 822 Fogarty LA, Curbow BA, Wingard JR. et al. Can 40 seconds of compassion reduce patient anxiety?. J Clin Oncol 1999; 17: 371-379
- 823 Strasser F, Palmer JL, Willey J. et al. Impact of physician sitting versus standing during inpatient oncology consultations: patients’ preference and perception of compassion and duration A randomized controlled trial. J Pain Symptom Manage 2005; 29: 489-497
- 824 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK. Entwicklung von leitlinienbasierten Qualitätsindikatoren Methodenpapier für das Leitlinienprogramm Onkologie, Version 21. 2017 https://www.leitlinienprogramm-onkologie.de/methodik/grundlegende-informationen-zur-methodik
- 825 Ashoori N, Bamberg F, Paprottka P. et al. Multimodality treatment for early-stage hepatocellular carcinoma: a bridging therapy for liver transplantation. Digestion 2012; 86: 338-348
- 826 Boteon A, Boteon YL, Vinuela EF. et al. The impact of transarterial chemoembolization induced complications on outcomes after liver transplantation: A propensity-matched study. Clin Transplant 2018; 32: e13255
- 827 Habibollahi P, Shamchi SP, Choi JM. et al. Association of Complete Radiologic and Pathologic Response following Locoregional Therapy before Liver Transplantation with Long-Term Outcomes of Hepatocellular Carcinoma: A Retrospective Study. J Vasc Interv Radiol 2019; 30: 323-329 https://www.sciencedirect.com/science/article/pii/S105104431831741X?via%3Dihub
- 828 Lu DS, Yu NC, Raman SS. et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. Hepatology 2005; 41: 1130-1137
- 829 Nicolini A, Martinetti L, Crespi S. et al. Transarterial chemoembolization with epirubicin-eluting beads versus transarterial embolization before liver transplantation for hepatocellular carcinoma. J Vasc Interv Radiol 2010; 21: 327-332
- 830 Sandow T, Pavlus J, Field D. et al. Bridging Hepatocellular Carcinoma to Transplant: Transarterial Chemoembolization Response, Tumor Biology, and Recurrence after Transplantation in a 12-Year Transplant Cohort. J Vasc Interv Radiol 2019; 30: 995-1003
- 831 Tan CHN, Yu Y, Tan YRN. et al. Bridging therapies to liver transplantation for hepatocellular carcinoma: A bridge to nowhere?. Ann Hepatobiliary Pancreat Surg 2018; 22: 27-35
- 832 Werner JD, Frangakis C, Ruck JM. et al. Neoadjuvant Transarterial Chemoembolization Improves Survival After Liver Transplant in Patients With Hepatocellular Carcinoma. Exp Clin Transplant 2019; 17: 638-643
- 833 Sapisochin G, Barry A, Doherty M. et al. Stereotactic body radiotherapy vs TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma An intention-to-treat analysis. J Hepatol 2017; 67: 92-99
- 834 Wang JH, Wang CC, Hung CH. et al. Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J Hepatol 2012; 56: 412-418 https://www.journal-of-hepatology.eu/article/S0168-8278(11)00524-1/fulltext
- 835 Peng ZW, Lin XJ, Zhang YJ. et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology 2012; 262: 1022-1033
- 836 Hasegawa K, Kokudo N, Makuuchi M. et al. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. J Hepatol 2013; 58: 724-729 https://www.sciencedirect.com/science/article/pii/S016882781200877X?via%3Dihub
- 837 Fang Y, Chen W, Liang X. et al. Comparison of long-term effectiveness and complications of radiofrequency ablation with hepatectomy for small hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29: 193-200 https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12441
- 838 Miura JT, Johnston FM, Tsai S. et al. Surgical resection versus ablation for hepatocellular carcinoma ≤ 3 cm: a population-based analysis. HPB (Oxford) 2015; 17: 896-901 https://www.hpbonline.org/article/S1365-182X(15)31122-9/pdf
- 839 Zhang M, Ma H, Zhang J. et al. Comparison of microwave ablation and hepatic resection for hepatocellular carcinoma: a meta-analysis. Onco Targets Ther 2017; 10: 4829-4839 https://pubmed.ncbi.nlm.nih.gov/29042794/
- 840 Zhang QB, Zhang XG, Jiang RD. et al. Microwave ablation versus hepatic resection for the treatment of hepatocellular carcinoma and oesophageal variceal bleeding in cirrhotic patients. Int J Hyperthermia 2017; 33: 255-262 https://www.tandfonline.com/doi/pdf/10.1080/02656736.2016.1257824?needAccess=true
- 841 Liu PH, Hsu CY, Hsia CY. et al. Surgical Resection Versus Radiofrequency Ablation for Single Hepatocellular Carcinoma ≤ 2 cm in a Propensity Score Model. Ann Surg 2016; 263: 538-545 https://www.ingentaconnect.com/content/wk/sla/2016/00000263/00000003/art00040;jsessionid=1n53m5b4ljd7b.x-ic-live-01
- 842 Takayasu K, Arii S, Sakamoto M. et al. Impact of resection and ablation for single hypovascular hepatocellular carcinoma ≤ 2 cm analysed with propensity score weighting. Liver Int 2018; 38: 484-493 https://onlinelibrary.wiley.com/doi/abs/10.1111/liv.13670
- 843 Hung HH, Chiou YY, Hsia CY. et al. Survival rates are comparable after radiofrequency ablation or surgery in patients with small hepatocellular carcinomas. Clin Gastroenterol Hepatol 2011; 9: 79-86 https://www.cghjournal.org/article/S1542-3565(10)00847-5/pdf
- 844 Ogihara M, Wong LL, Machi J. Radiofrequency ablation versus surgical resection for single nodule hepatocellular carcinoma: long-term outcomes. HPB (Oxford) 2005; 7: 214-221
- 845 Lü MD, Kuang M, Liang LJ. et al. [Surgical resection versus percutaneous thermal ablation for early-stage hepatocellular carcinoma: a randomized clinical trial]. Zhonghua Yi Xue Za Zhi 2006; 86: 801-805
- 846 Lupo L, Panzera P, Giannelli G. et al. Single hepatocellular carcinoma ranging from 3 to 5 cm: radiofrequency ablation or resection?. HPB (Oxford) 2007; 9: 429-434
- 847 Abu-Hilal M, Primrose JN, Casaril A. et al. Surgical resection versus radiofrequency ablation in the treatment of small unifocal hepatocellular carcinoma. J Gastrointest Surg 2008; 12: 1521-1526
- 848 Tashiro H, Aikata H, Waki K. et al. Treatment strategy for early hepatocellular carcinomas: comparison of radiofrequency ablation with or without transcatheter arterial chemoembolization and surgical resection. J Surg Oncol 2011; 104: 3-9
- 849 Kim JW, Shin SS, Kim JK. et al. Radiofrequency ablation combined with transcatheter arterial chemoembolization for the treatment of single hepatocellular carcinoma of 2 to 5 cm in diameter: comparison with surgical resection. Korean J Radiol 2013; 14: 626-635
- 850 Tang C, Shen J, Feng W. et al. Combination Therapy of Radiofrequency Ablation and Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Retrospective Study. Medicine (Baltimore) 2016; 95: e3754 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902444/pdf/medi-95-e3754.pdf
- 851 Bholee AK, Peng K, Zhou Z. et al. Radiofrequency ablation combined with transarterial chemoembolization versus hepatectomy for patients with hepatocellular carcinoma within Milan criteria: a retrospective case-control study. Clin Transl Oncol 2017; 19: 844-852
- 852 Pan T, Mu LW, Wu C. et al. Comparison of Combined Transcatheter Arterial Chemoembolization and CT-guided Radiofrequency Ablation with Surgical Resection in Patients with Hepatocellular Carcinoma within the Up-to-seven Criteria: A Multicenter Case-matched Study. J Cancer 2017; 8: 3506-3513 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687165/pdf/jcav08p3506.pdf
- 853 Zhang R, Shen L, Zhao L. et al. Combined transarterial chemoembolization and microwave ablation versus transarterial chemoembolization in BCLC stage B hepatocellular carcinoma. Diagn Interv Radiol 2018; 24: 219-224 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045511/pdf/dir-24-4-219.pdf
- 854 Lin DY, Liaw YF, Lee TY. et al. Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma--a randomized controlled trial. Gastroenterology 1988; 94: 453-456 https://www.sciencedirect.com/science/article/abs/pii/0016508588904362?via%3Dihub
- 855 Pelletier G, Roche A, Ink O. et al. A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. J Hepatol 1990; 11: 181-184
- 856 A comparison of lipiodol chemoembolization and conservative treatment for unresectable hepatocellular carcinoma. N Engl J Med 1995; 332: 1256-1261 https://www.nejm.org/doi/pdf/10.1056/NEJM199505113321903?articleTools=true
- 857 Bruix J, Llovet JM, Castells A. et al. Transarterial embolization versus symptomatic treatment in patients with advanced hepatocellular carcinoma: results of a randomized, controlled trial in a single institution. Hepatology 1998; 27: 1578-1583 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.510270617?download=true
- 858 Pelletier G, Ducreux M, Gay F. et al. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial Groupe CHC. J Hepatol 1998; 29: 129-134
- 859 Stefanini GF, Amorati P, Biselli M. et al. Efficacy of transarterial targeted treatments on survival of patients with hepatocellular carcinoma An Italian experience. Cancer 1995; 75: 2427-2434 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819950515%2975%3A10%3C2427%3A%3AAID-CNCR2820751007%3E3.0.CO%3B2-J?download=true
- 860 Bronowicki JP, Vetter D, Dumas F. et al. Transcatheter oily chemoembolization for hepatocellular carcinoma A 4-year study of 127 French patients. Cancer 1994; 74: 16-24 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819940701%2974%3A1%3C16%3A%3AAID-CNCR2820740105%3E3.0.CO%3B2-V?download=true
- 861 Kim JH, Yoon HK, Kim SY. et al. Transcatheter arterial chemoembolization vs chemoinfusion for unresectable hepatocellular carcinoma in patients with major portal vein thrombosis. Aliment Pharmacol Ther 2009; 29: 1291-1298 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2036.2009.04016.x?download=true
- 862 Herber S, Otto G, Schneider J. et al. Transarterial chemoembolization (TACE) for inoperable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2007; 30: 1156-1165 https://link.springer.com/content/pdf/10.1007/s00270-007-9032-7.pdf
- 863 Chung GE, Lee JH, Kim HY. et al. Transarterial chemoembolization can be safely performed in patients with hepatocellular carcinoma invading the main portal vein and may improve the overall survival. Radiology 2011; 258: 627-634
- 864 Georgiades CS, Hong K, D’Angelo M. et al. Safety and efficacy of transarterial chemoembolization in patients with unresectable hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 2005; 16: 1653-1659 https://www.sciencedirect.com/science/article/pii/S1051044307607933?via%3Dihub
- 865 Okazaki M, Higashihara H, Koganemaru H. et al. Transcatheter arterial embolization for inoperable hepatocellular carcinoma. Jpn J Clin Radiol 1991; 36: 535-539
- 866 Sacco R, Bargellini I, Bertini M. et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol 2011; 22: 1545-1552
- 867 van Malenstein H, Maleux G, Vandecaveye V. et al. A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie 2011; 34: 368-376 https://www.karger.com/Article/Pdf/329602
- 868 Dhanasekaran R, Kooby DA, Staley CA. et al. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J Surg Oncol 2010; 101: 476-480 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.21522?download=true
- 869 Ferrer Puchol MD, la Parra C, Esteban E. et al. [Comparison of doxorubicin-eluting bead transarterial chemoembolization (DEB-TACE) with conventional transarterial chemoembolization (TACE) for the treatment of hepatocellular carcinoma]. Radiologia 2011; 53: 246-253 https://www.sciencedirect.com/science/article/abs/pii/S0033833810003449?via%3Dihub
- 870 Wiggermann P, Sieron D, Brosche C. et al. Transarterial Chemoembolization of Child-A hepatocellular carcinoma: drug-eluting bead TACE (DEB TACE) vs TACE with cisplatin/lipiodol (cTACE). Med Sci Monit 2011; 17: Cr189-Cr195 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539521/pdf/medscimonit-17-4-cr189.pdf
- 871 Song MJ, Chun HJ, Song DS. et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol 2012; 57: 1244-1250
- 872 Megías VericatJE, García MarcosR, López BrizE. et al. Trans-arterial chemoembolization with doxorubicin-eluting particles versus conventional trans-arterial chemoembolization in unresectable hepatocellular carcinoma: A study of effectiveness, safety and costs. Radiologia 2015; 57: 496-504 https://www.sciencedirect.com/science/article/abs/pii/S0033833815000764?via%3Dihub
- 873 Kloeckner R, Weinmann A, Prinz F. et al. Conventional transarterial chemoembolization versus drug-eluting bead transarterial chemoembolization for the treatment of hepatocellular carcinoma. BMC Cancer 2015; 15: 465 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460638/pdf/12885_2015_Article_1480.pdf
- 874 Facciorusso A, Mariani L, Sposito C. et al. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Gastroenterol Hepatol 2016; 31: 645-653 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.13147?download=true
- 875 Baur J, Ritter CO, Germer CT. et al. Transarterial chemoembolization with drug-eluting beads versus conventional transarterial chemoembolization in locally advanced hepatocellular carcinoma. Hepat Med 2016; 8: 69-74 https://pubmed.ncbi.nlm.nih.gov/27382341/
- 876 Gao S, Yang Z, Zheng Z. et al. Doxorubicin-eluting bead versus conventional TACE for unresectable hepatocellular carcinoma: a meta-analysis. Hepatogastroenterology 2013; 60: 813-820
- 877 Huang K, Zhou Q, Wang R. et al. Doxorubicin-eluting beads versus conventional transarterial chemoembolization for the treatment of hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29: 920-925 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.12439?download=true
- 878 Zhou X, Tang Z, Wang J. et al. Doxorubicin-eluting beads versus conventional transarterialchemoembolization for the treatment of hepatocellular carcinoma: a meta-analysis. Int J Clin Exp Med 2014; 7: 3892-3903
- 879 Zou JH, Zhang L, Ren ZG. et al. Efficacy and safety of cTACE versus DEB-TACE in patients with hepatocellular carcinoma: a meta-analysis. J Dig Dis 2016; 17: 510-517 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1751-2980.12380?download=true
- 880 Facciorusso A, Di Maso M, Muscatiello N. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma: A meta-analysis. Dig Liver Dis 2016; 48: 571-577
- 881 Chiesa C, Maccauro M, Romito R. et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011; 55 (02) 168-197 https://pubmed.ncbi.nlm.nih.gov/21386789/
- 882 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53 (02) 255-263 https://pubmed.ncbi.nlm.nih.gov/22302962/
- 883 Garin E, Rolland Y, Pracht M. et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with. Liver Int 2017; 37 (01) 101-110 https://pubmed.ncbi.nlm.nih.gov/27514012/
- 884 Kappadath S, Mikell J, Balagopal A. et al. Hepatocellular Carcinoma Tumor Dose Response After. Int J Radiat Oncol Biol Phys 2018; 102 (02) 451-461 https://pubmed.ncbi.nlm.nih.gov/30191875/
- 885 Chan K, Alessio A, Johnson G. et al. Prospective Trial Using Internal Pair-Production Positron Emission Tomography to Establish the Yttrium-90 Radioembolization Dose Required for Response of Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2018; 101 (02) 358-365 https://pubmed.ncbi.nlm.nih.gov/29559288/
- 886 d’Abadie P, Walrand S, Hesse M. et al. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42 (07) 747-754 https://pubmed.ncbi.nlm.nih.gov/33741864/
- 887 Nodari G, Popoff R, Riedinger J. et al. Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy. EJNMMI Res 2021; 11 (01) 24 https://pubmed.ncbi.nlm.nih.gov/33687596/
- 888 Allimant C, Kafrouni M, Delicque J. et al. Tumor Targeting and Three-Dimensional Voxel-Based Dosimetry to Predict Tumor Response, Toxicity, and Survival after Yttrium-90 Resin Microsphere Radioembolization in Hepatocellular Carcinoma. J Vasc Interv Radiol 2018; 29 (12) 1662-1670 https://pubmed.ncbi.nlm.nih.gov/30217745/
- 889 Hermann A, Dieudonné A, Ronot M. et al. Relationship of Tumor Radiation-absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with. Radiology 2020; 296 (03) 673-684
- 890 Son M, Ha L, Bang M. et al. Diagnostic and prognostic value of. Sci Rep 2021; 11 (01) 3207 https://pubmed.ncbi.nlm.nih.gov/33547398/
- 891 Celotti A, Solaini L, Montori G. et al. Preoperative biliary drainage in hilar cholangiocarcinoma: Systematic review and meta-analysis. Eur J Surg Oncol 2017; 43: 1628-1635
- 892 Ramanathan R, Borrebach J, Tohme S. et al. Preoperative Biliary Drainage Is Associated with Increased Complications After Liver Resection for Proximal Cholangiocarcinoma. J Gastrointest Surg 2018; 22: 1950-1957 https://link.springer.com/content/pdf/10.1007/s11605-018-3861-3.pdf
- 893 Cai Y, Tang Q, Xiong X. et al. Preoperative biliary drainage versus direct surgery for perihilar cholangiocarcinoma: A retrospective study at a single center. Biosci Trends 2017; 11: 319-325 https://www.jstage.jst.go.jp/article/bst/11/3/11_2017.01107/_pdf
- 894 Farges O, Regimbeau JM, Fuks D. et al. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br J Surg 2013; 100: 274-283 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.8950?download=true
- 895 Xiong JJ, Nunes QM, Huang W. et al. Preoperative biliary drainage in patients with hilar cholangiocarcinoma undergoing major hepatectomy. World J Gastroenterol 2013; 19: 8731-8739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870521/pdf/WJG-19-8731.pdf
- 896 Wang L, Lin N, Xin F. et al. A systematic review of the comparison of the incidence of seeding metastasis between endoscopic biliary drainage and percutaneous transhepatic biliary drainage for resectable malignant biliary obstruction. World J Surg Oncol 2019; 17: 116 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612106/pdf/12957_2019_Article_1656.pdf
- 897 Kishi Y, Shimada K, Nara S. et al. The type of preoperative biliary drainage predicts short-term outcome after major hepatectomy. Langenbecks Arch Surg 2016; 401: 503-511 https://link.springer.com/content/pdf/10.1007/s00423-016-1427-y.pdf
- 898 Sangchan A, Kongkasame W, Pugkhem A. et al. Efficacy of metal and plastic stents in unresectable complex hilar cholangiocarcinoma: a randomized controlled trial. Gastrointest Endosc 2012; 76: 93-99
Korrespondenzadresse
Publication History
Article published online:
07 February 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (03) 1020-1022 https://pubmed.ncbi.nlm.nih.gov/21374666/
- 2 The Global Cancer Observatory. 2021 https://gco.iarc.fr/
- 3 Zentrum für Krebsregisterdaten. 2021 https://www.krebsdaten.de/
- 4 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 https://www.sciencedirect.com/science/article/pii/S0168827818302150
- 5 Sangiovanni A, Prati GM, Fasani P. et al. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology 2006; 43: 1303-1310 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.21176
- 6 Ioannou GN, Splan MF, Weiss NS. et al. Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol 2007; 5: 938-945
- 7 Kanwal F, Kramer JR, Asch SM. et al. Long-Term Risk of Hepatocellular Carcinoma in HCV Patients Treated With Direct Acting Antiviral Agents. Hepatology 2020; 71: 44-55 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30823?download=true
- 8 Kanwal F, Kramer JR, Mapakshi S. et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018; 155: 1828-1837 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279617/pdf/nihms-1504451.pdf
- 9 EASL-EASD-EASO. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402 https://pubmed.ncbi.nlm.nih.gov/27062661/
- 10 Frenette CT, Isaacson AJ, Bargellini I. et al. A Practical Guideline for Hepatocellular Carcinoma Screening in Patients at Risk. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 302-310 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713857/pdf/main.pdf
- 11 Cucchetti A, Cescon M, Erroi V. et al. Cost-effectiveness of liver cancer screening. Best Pract Res Clin Gastroenterol 2013; 27: 961-72
- 12 Brouwer WP, van der Meer AJP, Boonstra A. et al. Prediction of long-term clinical outcome in a diverse chronic hepatitis B population: Role of the PAGE-B score. J Viral Hepat 2017; 24: 1023-1031 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jvh.12727?download=true
- 13 Papatheodoridis G, Dalekos G, Sypsa V. et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J Hepatol 2016; 64: 800-6 https://www.sciencedirect.com/science/article/pii/S0168827815007953?via%3Dihub
- 14 Papatheodoridis GV, Lampertico P, Manolakopoulos S. et al. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53: 348-356
- 15 Yuen MF, Tanaka Y, Fong DY. et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol 2009; 50: 80-88 https://www.sciencedirect.com/science/article/pii/S0168827808005655?via%3Dihub
- 16 Yang HI, Yuen MF, Chan HL. et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol 2011; 12: 568-574 https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(11)70077-8/fulltext
- 17 Wong VW, Chan SL, Mo F. et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J Clin Oncol 2010; 28: 1660-1665
- 18 Yip TC, Wong GL, Wong VW. et al. Reassessing the accuracy of PAGE-B-related scores to predict hepatocellular carcinoma development in patients with chronic hepatitis B. J Hepatol 2020; 72: 847-854 https://www.sciencedirect.com/science/article/abs/pii/S0168827819307172?via%3Dihub
- 19 Marrero JA, Kulik LM, Sirlin CB. et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68: 723-750 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29913?download=true
- 20 Mittal S, El-Serag HB, Sada YH. et al. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2016; 14: 124-131 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690789/pdf/nihms709433.pdf
- 21 EASL-ALEH. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015; 63: 237-264
- 22 Thomas J, Kendall B, Dalais C. et al. Hepatocellular and extrahepatic cancers in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Cancer 2022; 173: 250-262 https://pubmed.ncbi.nlm.nih.gov/35944373/
- 23 Loosen S, Kostev K, Keitel V. et al. An elevated FIB-4 score predicts liver cancer development: A longitudinal analysis from 29,999 patients with NAFLD. J Hepatol 2022; 76 (01) 247-248 https://pubmed.ncbi.nlm.nih.gov/34520785/
- 24 Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156: 1264-1281 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505052/pdf/nihms-1567724.pdf
- 25 Roeb E, Steffen HM, Bantel H. et al. [S2k Guideline non-alcoholic fatty liver disease]. Z Gastroenterol 2015; 53: 668-723 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0035-1553193
- 26 Roeb E, Geier A. Nonalcoholic steatohepatitis (NASH) – current treatment recommendations and future developments. Z Gastroenterol 2019; 57: 508-517 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-0784-8827
- 27 Angulo P, Hui JM, Marchesini G. et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45: 846-854 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21496?download=true
- 28 Tanwar S, Trembling PM, Hogan BJ. et al. Biomarkers of Hepatic Fibrosis in Chronic Hepatitis C: A Comparison of 10 Biomarkers Using 2 Different Assays for Hyaluronic Acid. J Clin Gastroenterol 2017; 51: 268-277 https://www.ingentaconnect.com/content/wk/jcga/2017/00000051/00000003/art00015;jsessionid=4j79pxsus6e3.x-ic-live-03
- 29 Kanwal F, Kramer J, Asch SM. et al. Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents. Gastroenterology 2017; 153: 996-1005 https://pubmed.ncbi.nlm.nih.gov/28642197/
- 30 Masuzaki R, Tateishi R, Yoshida H. et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology 2009; 49: 1954-1961 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.22870
- 31 El-Serag HB, Kanwal F, Richardson P. et al. Risk of hepatocellular carcinoma after sustained virological response in Veterans with hepatitis C virus infection. Hepatology 2016; 64: 130-137 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.28535?download=true
- 32 Ioannou GN, Beste LA, Green PK. et al. Increased Risk for Hepatocellular Carcinoma Persists Up to 10 Years After HCV Eradication in Patients With Baseline Cirrhosis or High FIB-4 Scores. Gastroenterology 2019; 157: 1264-1278 https://www.sciencedirect.com/science/article/abs/pii/S001650851941130X?via%3Dihub
- 33 Omata M, Cheng AL, Kokudo N. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11: 317-370 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491694/pdf/12072_2017_Article_9799.pdf
- 34 Younes R, Bugianesi E. Should we undertake surveillance for HCC in patients with NAFLD?. J Hepatol 2018; 68: 326-334 https://www.journal-of-hepatology.eu/article/S0168-8278(17)32353-X/fulltext
- 35 Simeone JC, Bae JP, Hoogwerf BJ. et al. Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin Epidemiol 2017; 9: 679-688 https://pubmed.ncbi.nlm.nih.gov/29276410/
- 36 Fujiwara N, Friedman SL, Goossens N. et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68: 526-549 https://www.journal-of-hepatology.eu/article/S0168-8278(17)32328-0/pdf
- 37 Gellert-Kristensen H, Richardson T, Davey SmithG. et al. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology 2020; 72 (03) 845-856 https://pubmed.ncbi.nlm.nih.gov/32190914/
- 38 Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta-analysis. Liver Int 2016; 36: 1239-1251 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/liv.13142?download=true
- 39 Papatheodoridis GV, Chan HL, Hansen BE. et al. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J Hepatol 2015; 62: 956-967 https://air.unimi.it/retrieve/handle/2434/437611/717191/1-s2.0-S0168827815000045-main.pdf
- 40 Orci L, Sanduzzi-Zamparelli M, Caballol B. et al. Incidence of Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-analysis, and Meta-regression. Clin Gastroenterol Hepatol 2022; 20 (02) 283-292 https://pubmed.ncbi.nlm.nih.gov/33965578/
- 41 Björkström K, Widman L, Hagström H. Risk of hepatic and extrahepatic cancer in NAFLD: A population-based cohort study. Liver Int 2022; 42 (04) 820-828 https://pubmed.ncbi.nlm.nih.gov/35152526/
- 42 Huang D, Tan D, Ng C. et al. Hepatocellular Carcinoma Incidence in Alcohol-Associated Cirrhosis: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21 (05) 1169-1177 https://pubmed.ncbi.nlm.nih.gov/35940513/
- 43 Lithner F, Wetterberg L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Med Scand 1984; 215 (03) 271-274 https://pubmed.ncbi.nlm.nih.gov/6328897/
- 44 Baravelli C, Sandberg S, Aarsand A. et al. Acute hepatic porphyria and cancer risk: a nationwide cohort study. J Intern Med 2017; 282 (03) 229-240 https://pubmed.ncbi.nlm.nih.gov/28730628/
- 45 Jang H, Yang H, Ko J. et al. Development of Hepatocellular Carcinoma in Patients with Glycogen Storage Disease: a Single Center Retrospective Study. J Korean Med Sci 2020; 35 (01) e5 https://pubmed.ncbi.nlm.nih.gov/31898434/
- 46 Bianchi L. Glycogen storage disease I and hepatocellular tumours. Eur J Pediatr 1993; 152 (Suppl. 01) S63-S70 https://pubmed.ncbi.nlm.nih.gov/8391447/
- 47 de Fost M, Vom DahlS, Weverling G. et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol Dis 36 (01) 53-58 https://pubmed.ncbi.nlm.nih.gov/16246599/
- 48 Regenboog M, van Dussen L, Verheij J. et al. Hepatocellular carcinoma in Gaucher disease: an international case series. J Inherit Metab Dis 2018; 41 (05) 819-827 https://pubmed.ncbi.nlm.nih.gov/29423829/
- 49 Bartlett D, Lloyd C, McKiernan P. et al. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 2014; 37 (05) 745-752 https://pubmed.ncbi.nlm.nih.gov/24515874/
- 50 Poon D, Anderson BO, Chen LT. et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009; 10: 1111-1118
- 51 Chang MH, Chen CJ, Lai MS. et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children Taiwan Childhood Hepatoma Study Group. N Engl J Med 1997; 336: 1855-1859 https://www.nejm.org/doi/pdf/10.1056/NEJM199706263362602?articleTools=true
- 52 Indolfi G, Easterbrook P, Dusheiko G. et al. Hepatitis B virus infection in children and adolescents. Lancet Gastroenterol Hepatol 2019; 4: 466-476 https://www.sciencedirect.com/science/article/abs/pii/S2468125319300421?via%3Dihub
- 53 Inoue M, Yoshimi I, Sobue T. et al. Influence of coffee drinking on subsequent risk of hepatocellular carcinoma: a prospective study in Japan. J Natl Cancer Inst 2005; 97: 293-300 https://pubmed.ncbi.nlm.nih.gov/15713964/
- 54 Bravi F, Tavani A, Bosetti C. et al. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. Eur J Cancer Prev 2017; 26: 368-377
- 55 Aleksandrova K, Bamia C, Drogan D. et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2015; 102: 1498-1508 http://spiral.imperial.ac.uk/bitstream/10044/1/29882/11/Am%20J%20Clin%20Nutr-2015-Aleksandrova-1498-508.pdf
- 56 Setiawan VW, Wilkens LR, Lu SC. et al. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology 2015; 148: 118-125 https://pubmed.ncbi.nlm.nih.gov/25305507/
- 57 Saab S, Mallam D, Cox GA. et al. Impact of coffee on liver diseases: a systematic review. Liver Int 2014; 34: 495-504
- 58 Bhurwal A, Rattan P, Yoshitake S. et al. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J Gastrointestin Liver Dis 2020; 29: 421-428 https://www.jgld.ro/jgld/index.php/jgld/article/download/805/1593
- 59 Kennedy OJ, Roderick P, Buchanan R. et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open 2017; 7: e013739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730000/pdf/bmjopen-2016-013739.pdf
- 60 Filippini T, Malavolti M, Borrelli F. et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev 2020; 3: Cd005004
- 61 Singh S, Fujii LL, Murad MH. et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2013; 11: 1573-1584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900882/pdf/nihms532555.pdf
- 62 Tseng CH. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int 2018; 38: 2018-2027
- 63 Cunha V, Cotrim HP, Rocha R. et al. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: A systematic review. Ann Hepatol 2020; 19: 232-237
- 64 Harris K, Smith L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother 2013; 47: 1348-1352 https://journals.sagepub.com/doi/pdf/10.1177/1060028013503108
- 65 Inzucchi SE, Lipska KJ, Mayo H. et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. Jama 2014; 312: 2668-75 https://jamanetwork.com/journals/jama/articlepdf/2084896/jrv140019.pdf
- 66 Zhang X, Harmsen W, Mettler T. et al. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes. Hepatology 2014; 60 (06) 2008-2016 https://pubmed.ncbi.nlm.nih.gov/24798175/
- 67 Vandenbulcke H, Moreno C, Colle I. et al. Alcohol intake increases the risk of HCC in hepatitis C virus-related compensated cirrhosis: A prospective study. J Hepatol 2016; 65: 543-551
- 68 Roeb E, Canbay A, Bantel H. et al. [Not Available]. Z Gastroenterol 2022; 60 (09) 1346-1421 https://pubmed.ncbi.nlm.nih.gov/36100202/
- 69 Ascha MS, Hanouneh IA, Lopez R. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51: 1972-1978 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20209604
- 70 EASL. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69: 154-181
- 71 Wang ZY, Tao QF, Wang ZH. et al. Antiviral therapy improves post-operative survival outcomes in patients with HBV-related hepatocellular carcinoma of less than 3 cm – A retrospective cohort study. Am J Surg 2020; 219: 717-725 https://www.sciencedirect.com/science/article/abs/pii/S000296101831609X?via%3Dihub
- 72 Jang JW, Yoo SH, Nam HC. et al. Association of Prophylactic Anti-Hepatitis B Virus Therapy With Improved Long-term Survival in Patients With Hepatocellular Carcinoma Undergoing Transarterial Therapy. Clin Infect Dis 2020; 71: 546-555 https://pubmed.ncbi.nlm.nih.gov/31504352/
- 73 Yang Y, Wen F, Li J. et al. A high baseline HBV load and antiviral therapy affect the survival of patients with advanced HBV-related HCC treated with sorafenib. Liver Int 2015; 35: 2147-2154
- 74 Cabibbo G, Celsa C, Calvaruso V. et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol 2019; 71: 265-273 https://www.sciencedirect.com/science/article/abs/pii/S0168827819302211?via%3Dihub
- 75 Dang H, Yeo YH, Yasuda S. et al. Cure With Interferon-Free Direct-Acting Antiviral Is Associated With Increased Survival in Patients With Hepatitis C Virus-Related Hepatocellular Carcinoma From Both East and West. Hepatology 2020; 71: 1910-1922 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30988?download=true
- 76 Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130: 417-422 https://link.springer.com/content/pdf/10.1007%2Fs00432-004-0552-0.pdf
- 77 Trevisani F, Santi V, Gramenzi A. et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis?. Am J Gastroenterol 2007; 102: 2448-2457
- 78 Trevisani F, Santi V, Gramenzi A. et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis?. Am J Gastroenterol 2007; 102: 2448-2457
- 79 Fan R, Papatheodoridis G, Sun J. et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis. J Hepatol 2020; 73 (06) 1368-1378 https://pubmed.ncbi.nlm.nih.gov/32707225/
- 80 Johnson P, Innes H, Hughes D. et al. Evaluation of the aMAP score for hepatocellular carcinoma surveillance: a realistic opportunity to risk stratify. Br J Cancer 2022; 127 (07) 1263-1269 https://pubmed.ncbi.nlm.nih.gov/35798825/
- 81 Pocha C, Dieperink E, McMaken KA. et al. Surveillance for hepatocellular cancer with ultrasonography vs computed tomography – a randomised study. Aliment Pharmacol Ther 2013; 38: 303-312 https://onlinelibrary.wiley.com/doi/pdf/10.1111/apt.12370
- 82 Trinchet JC, Chaffaut C, Bourcier V. et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology 2011; 54: 1987-1997 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.24545
- 83 Tzartzeva K, Obi J, Rich NE. et al. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology 2018; 154: 1706-1718 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927818/pdf/nihms940431.pdf
- 84 Song BG, Sinn DH, Chi S. et al. Additional role of liver stiffness measurement in stratifying residual hepatocellular carcinoma risk predicted by serum biomarkers in chronic hepatitis B patients under antiviral therapy. Eur J Gastroenterol Hepatol 2018; 30: 1447-1452
- 85 Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 2014; 11: e1001624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972088/pdf/pmed.1001624.pdf
- 86 Feng H, Li B, Li Z. et al. PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer 2021; 21 (01) 401 https://pubmed.ncbi.nlm.nih.gov/33849479/
- 87 Ricco G, Cosma C, Bedogni G. et al. Modeling the time-related fluctuations of AFP and PIVKA-II serum levels in patients with cirrhosis undergoing surveillance for hepatocellular carcinoma. Cancer Biomark 2020; 29 (02) 189-196 https://pubmed.ncbi.nlm.nih.gov/32623383/
- 88 Hemken P, Sokoll L, Yang X. et al. Validation of a novel model for the early detection of hepatocellular carcinoma. Clin Proteomics 2019; 16: 2 https://pubmed.ncbi.nlm.nih.gov/30675135/
- 89 Xu F, Zhang L, He W. et al. The Diagnostic Value of Serum PIVKA-II Alone or in Combination with AFP in Chinese Hepatocellular Carcinoma Patients. Dis Markers 2021; 2021: 8868370 https://pubmed.ncbi.nlm.nih.gov/33628341/
- 90 Poté N, Cauchy F, Albuquerque M. et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol 2015; 62 (04) 848-854 https://pubmed.ncbi.nlm.nih.gov/25450201/
- 91 Loglio A, Iavarone M, Facchetti F. et al. The combination of PIVKA-II and AFP improves the detection accuracy for HCC in HBV caucasian cirrhotics on long-term oral therapy. Liver Int 2020; 40 (08) 1987-1996 https://pubmed.ncbi.nlm.nih.gov/32301212/
- 92 Best J, Bechmann L, Sowa J. et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2020; 18 (03) 728-735 https://pubmed.ncbi.nlm.nih.gov/31712073/
- 93 Yang J, Addissie B, Mara K. et al. GALAD Score for Hepatocellular Carcinoma Detection in Comparison with Liver Ultrasound and Proposal of GALADUS Score. Cancer Epidemiol Biomarkers Prev 2019; 28 (03) 531-538 https://pubmed.ncbi.nlm.nih.gov/30464023/
- 94 Schotten C, Ostertag B, Sowa J. et al. GALAD Score Detects Early-Stage Hepatocellular Carcinoma in a European Cohort of Chronic Hepatitis B and C Patients. Pharmaceuticals (Basel) 2021; 14 (08) https://pubmed.ncbi.nlm.nih.gov/34451832/
- 95 Huang C, Fang M, Xiao X. et al. Validation of the GALAD model for early diagnosis and monitoring of hepatocellular carcinoma in Chinese multicenter study. Liver Int 2022; 42 (01) 210-223 https://pubmed.ncbi.nlm.nih.gov/34679250/
- 96 Tayob N, Kanwal F, Alsarraj A. et al. The Performance of AFP, AFP-3, DCP as Biomarkers for Detection of Hepatocellular Carcinoma (HCC): A Phase 3 Biomarker Study in the United States. Clin Gastroenterol Hepatol 2023; 21 (02) 415-423 https://pubmed.ncbi.nlm.nih.gov/35124267/
- 97 Singal A, Tayob N, Mehta A. et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology 2022; 75 (03) 541-549 https://pubmed.ncbi.nlm.nih.gov/34618932/
- 98 Chan H, Vogel A, Berg T. et al. Performance evaluation of the Elecsys PIVKA-II and Elecsys AFP assays for hepatocellular carcinoma diagnosis. JGH Open 2022; 6 (05) 292-300 https://pubmed.ncbi.nlm.nih.gov/35601131/
- 99 Chalasani N, Porter K, Bhattacharya A. et al. Validation of a Novel Multitarget Blood Test Shows High Sensitivity to Detect Early Stage Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2022; 20 (01) 173-182 https://pubmed.ncbi.nlm.nih.gov/34391922/
- 100 Loomba R, Lim JK, Patton H. et al. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2020; 158: 1822-1830
- 101 Petrick JL, Thistle JE, Zeleniuch-Jacquotte A. et al. Body Mass Index, Diabetes and Intrahepatic Cholangiocarcinoma Risk: The Liver Cancer Pooling Project and Meta-analysis. Am J Gastroenterol 2018; 113: 1494-1505 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521884/pdf/nihms-1027973.pdf
- 102 Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020; 69: 1343-1352 https://gut.bmj.com/content/69/7/1343.long
- 103 Singh S, Allen AM, Wang Z. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 2015; 13: 643-654 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208976/pdf/nihms-604814.pdf
- 104 Sterling RK, Lissen E, Clumeck N. et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317-1325
- 105 Taylor RS, Taylor RJ, Bayliss S. et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020; 158: 1611-1625
- 106 Rockey DC, Caldwell SH, Goodman ZD. et al. Liver biopsy. Hepatology 2009; 49: 1017-1044 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22742?download=true
- 107 Silva MA, Hegab B, Hyde C. et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 2008; 57: 1592-6 https://gut.bmj.com/content/gutjnl/57/11/1592.full.pdf
- 108 Müllhaupt B, Durand F, Roskams T. et al. Is tumor biopsy necessary?. Liver Transpl 2011; 17 (Suppl. 02) S14-S25 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22374?download=true
- 109 Fuks D, Cauchy F, Fusco G. et al. Preoperative tumour biopsy does not affect the oncologic course of patients with transplantable HCC. J Hepatol 2014; 61: 589-593
- 110 Paradis V FM. Tumors of the liver and intrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 215-264
- 111 Terminology of nodular hepatocellular lesions. Hepatology 1995; 22: 983-993 https://www.sciencedirect.com/science/article/abs/pii/0270913995903240?via%3Dihub
- 112 Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49: 658-664 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22709?download=true
- 113 Burt AD, Alves V, Bedossa P. et al. Data set for the reporting of intrahepatic cholangiocarcinoma, perihilar cholangiocarcinoma and hepatocellular carcinoma: recommendations from the International Collaboration on Cancer Reporting (ICCR). Histopathology 2018; 73: 369-385 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/his.13520?download=true
- 114 Edmondson HA, Steiner PE. Primary carcinoma of the liver A study of 100 cases among 48,900 necropsies. Cancer 1954; 7: 462-503 https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%28195405%297%3A3%3C462%3A%3AAID-CNCR2820070308%3E3.0.CO%3B2-E
- 115 Nzeako UC, Goodman ZD, Ishak KG. Comparison of tumor pathology with duration of survival of North American patients with hepatocellular carcinoma. Cancer 1995; 76: 579-88 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819950815%2976%3A4%3C579%3A%3AAID-CNCR2820760407%3E3.0.CO%3B2-D?download=true
- 116 Di Tommaso L, Franchi G, Park YN. et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007; 45: 725-734 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21531?download=true
- 117 Di Tommaso L, Destro A, Seok JY. et al. The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J Hepatol 2009; 50: 746-754
- 118 Lee YJ, Lee JM, Lee JS. et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015; 275: 97-109
- 119 Chen N, Motosugi U, Morisaka H. et al. Added Value of a Gadoxetic Acid-enhanced Hepatocyte-phase Image to the LI-RADS System for Diagnosing Hepatocellular Carcinoma. Magn Reson Med Sci 2016; 15: 49-59 https://www.jstage.jst.go.jp/article/mrms/15/1/15_2014-0149/_pdf
- 120 Granito A, Galassi M, Piscaglia F. et al. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther 2013; 37: 355-63 https://www.onlinelibrary.wiley.com/doi/pdf/10.1111/apt.12166
- 121 Haradome H, Grazioli L, Tinti R. et al. Additional value of gadoxetic acid-DTPA-enhanced hepatobiliary phase MR imaging in the diagnosis of early-stage hepatocellular carcinoma: comparison with dynamic triple-phase multidetector CT imaging. J Magn Reson Imaging 2011; 34: 69-78 https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.22588
- 122 Inoue T, Kudo M, Komuta M. et al. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT. J Gastroenterol 2012; 47: 1036-1047 https://link.springer.com/content/pdf/10.1007%2Fs00535-012-0571-6.pdf
- 123 Maiwald B, Lobsien D, Kahn T. et al. Is 3-Tesla Gd-EOB-DTPA-enhanced MRI with diffusion-weighted imaging superior to 64-slice contrast-enhanced CT for the diagnosis of hepatocellular carcinoma?. PLoS One 2014; 9: e111935 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223069/pdf/pone.0111935.pdf
- 124 Park VY, Choi JY, Chung YE. et al. Dynamic enhancement pattern of HCC smaller than 3 cm in diameter on gadoxetic acid-enhanced MRI: comparison with multiphasic MDCT. Liver Int 2014; 34: 1593-1602 https://onlinelibrary.wiley.com/doi/pdf/10.1111/liv.12550
- 125 Sun HY, Lee JM, Shin CI. et al. Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or = 2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Invest Radiol 2010; 45: 96-103 https://www.ncbi.nlm.nih.gov/pubmed/20057319
- 126 Tsurusaki M, Sofue K, Isoda H. et al. Comparison of gadoxetic acid-enhanced magnetic resonance imaging and contrast-enhanced computed tomography with histopathological examinations for the identification of hepatocellular carcinoma: a multicenter phase III study. J Gastroenterol 2016; 51: 71-79 https://link.springer.com/content/pdf/10.1007%2Fs00535-015-1097-5.pdf
- 127 Burrel M, Llovet JM, Ayuso C. et al. MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 2003; 38: 1034-1042 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.1840380430
- 128 Di Martino M, De Filippis G, De Santis A. et al. Hepatocellular carcinoma in cirrhotic patients: prospective comparison of US, CT and MR imaging. Eur Radiol 2013; 23: 887-896 https://link.springer.com/content/pdf/10.1007%2Fs00330-012-2691-z.pdf
- 129 Schellhaas B, Bernatik T, Bohle W. et al. Contrast-Enhanced Ultrasound Algorithms (CEUS-LIRADS/ESCULAP) for the Noninvasive Diagnosis of Hepatocellular Carcinoma – A Prospective Multicenter DEGUM Study. Ultraschall Med 2021; 42 (02) e20 https://pubmed.ncbi.nlm.nih.gov/32717752/
- 130 Strobel D, Jung E, Ziesch M. et al. Real-life assessment of standardized contrast-enhanced ultrasound (CEUS) and CEUS algorithms (CEUS LI-RADS/ESCULAP) in hepatic nodules in cirrhotic patients-a prospective multicenter study. Eur Radiol 2021; 31 (10) 7614-7625 https://pubmed.ncbi.nlm.nih.gov/33855588/
- 131 Schellhaas B, Bernatik T, Dirks K. et al. Contrast-Enhanced Ultrasound Patterns for the Non-invasive Diagnosis of Hepatocellular Carcinoma: A Prospective Multicenter Study in Histologically Proven Liver Lesions in a Real-Life Setting Demonstrating the Benefit of Extended Late Phase Observation. Ultrasound Med Biol 2021; 47 (11) 3170-3180 https://pubmed.ncbi.nlm.nih.gov/34417066/
- 132 Chen X, Li M, Guo R. et al. The diagnostic performance of contrast-enhanced CT versus extracellular contrast agent-enhanced MRI in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (NY) 2022; 47 (06) 2057-2070 https://pubmed.ncbi.nlm.nih.gov/35312822/
- 133 Lee S, Kim Y, Shin J. et al. Liver Imaging Reporting and Data System version 2018 category 5 for diagnosing hepatocellular carcinoma: an updated meta-analysis. Eur Radiol 2024; 34 (03) 1502-1514 https://pubmed.ncbi.nlm.nih.gov/37656177/
- 134 CT/MRT LI-RADS v2018. https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/Translations/LI-RADS-2018-CT-MRI-Core-German.pdf?la=en
- 135 Elsayes K, Kielar A, Elmohr M. et al. White paper of the Society of Abdominal Radiology hepatocellular carcinoma diagnosis disease-focused panel on LI-RADS v2018 for CT and MRI. Abdom Radiol (NY) 2018; 43 (10) 2625-2642 https://pubmed.ncbi.nlm.nih.gov/30155697/
- 136 Castilla-Lievre MA, Franco D, Gervais P. et al. Diagnostic value of combining (1)(1)C-choline and (1)(8)F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016; 43: 852-859 https://www.ncbi.nlm.nih.gov/pubmed/26577938
- 137 Chotipanich C, Kunawudhi A, Promteangtrong C. et al. Diagnosis of Hepatocellular Carcinoma Using C11 Choline PET/CT: Comparison with F18 FDG, ContrastEnhanced MRI and MDCT. Asian Pac J Cancer Prev 2016; 17: 3569-3573 https://www.ncbi.nlm.nih.gov/pubmed/27510010
- 138 Hong G, Suh KS, Suh SW. et al. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. J Hepatol 2016; 64: 852-859 https://www.ncbi.nlm.nih.gov/pubmed/26658686
- 139 Lin CY, Liao CW, Chu LY. et al. Predictive Value of 18F-FDG PET/CT for Vascular Invasion in Patients With Hepatocellular Carcinoma Before Liver Transplantation. Clin Nucl Med 2017; 42: e183-e187 https://www.ncbi.nlm.nih.gov/pubmed/28114226
- 140 Khalili K, Kim TK, Jang HJ. et al. Optimization of imaging diagnosis of 1–2 cm hepatocellular carcinoma: an analysis of diagnostic performance and resource utilization. J Hepatol 2011; 54: 723-8 https://www.sciencedirect.com/science/article/pii/S0168827810008147?via%3Dihub
- 141 Giorgio A, Montesarchio L, Gatti P. et al. Contrast-Enhanced Ultrasound: a Simple and Effective Tool in Defining a Rapid Diagnostic Work-up for Small Nodules Detected in Cirrhotic Patients during Surveillance. J Gastrointestin Liver Dis 2016; 25: 205-211 https://www.ncbi.nlm.nih.gov/pubmed/27308652
- 142 Schellhaas B, Gortz RS, Pfeifer L. et al. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur J Gastroenterol Hepatol 2017; 29: 1036-1044 https://www.ncbi.nlm.nih.gov/pubmed/28562394
- 143 Mitchell DG, Bruix J, Sherman M. et al. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015; 61: 1056-1065 https://www.ncbi.nlm.nih.gov/pubmed/25041904
- 144 Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19: 329-338 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2007-1007122
- 145 Chan AC, Fan ST, Poon RT. et al. Evaluation of the seventh edition of the American Joint Committee on Cancer tumour-node-metastasis (TNM) staging system for patients undergoing curative resection of hepatocellular carcinoma: implications for the development of a refined staging system. HPB (Oxford) 2013; 15: 439-448 https://www.hpbonline.org/article/S1365-182X(15)31417-9/pdf
- 146 Chevret S, Trinchet JC, Mathieu D. et al. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma Groupe d’Etude et de Traitement du Carcinome Hepatocellulaire. J Hepatol 1999; 31: 133-141 https://www.journal-of-hepatology.eu/article/S0168-8278(99)80173-1/fulltext
- 147 Johnson PJ, Berhane S, Kagebayashi C. et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol 2015; 33: 550-558 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322258/pdf/zlj550.pdf
- 148 Kitai S, Kudo M, Minami Y. et al. Validation of a new prognostic staging system for hepatocellular carcinoma: a comparison of the biomarker-combined Japan Integrated Staging Score, the conventional Japan Integrated Staging Score and the BALAD Score. Oncology 2008; 75 (Suppl. 01) 83-90 https://www.karger.com/Article/Abstract/173428
- 149 Leung TW, Tang AM, Zee B. et al. Construction of the Chinese University Prognostic Index for hepatocellular carcinoma and comparison with the TNM staging system, the Okuda staging system, and the Cancer of the Liver Italian Program staging system: a study based on 926 patients. Cancer 2002; 94: 1760-1769 https://onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.10384
- 150 Marrero JA, Fontana RJ, Barrat A. et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 2005; 41: 707-716 https://pubmed.ncbi.nlm.nih.gov/15795889/
- 151 Pinato DJ, Sharma R, Allara E. et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J Hepatol 2017; 66: 338-346 https://www.journal-of-hepatology.eu/article/S0168-8278(16)30535-9/pdf
- 152 Vitale A, Saracino E, Boccagni P. et al. Validation of the BCLC prognostic system in surgical hepatocellular cancer patients. Transplant Proc 2009; 41: 1260-1263 https://www.sciencedirect.com/science/article/pii/S0041134509004850?via%3Dihub
- 153 Yau T, Tang VY, Yao TJ. et al. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-1700 https://www.gastrojournal.org/article/S0016-5085(14)00243-1/pdf
- 154 Sohn JH, Duran R, Zhao Y. et al. Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy. Clin Gastroenterol Hepatol 2017; 15: 746-755 https://www.cghjournal.org/article/S1542-3565(16)31049-7/pdf
- 155 Yang A, Ju W, Yuan X. et al. Comparison between liver resection and liver transplantation on outcomes in patients with solitary hepatocellular carcinoma meeting UNOS criteria: a population-based study of the SEER database. Oncotarget 2017; 8: 97428-97438 https://www.oncotarget.com/article/22134/pdf/
- 156 Krenzien F, Schmelzle M, Struecker B. et al. Liver Transplantation and Liver Resection for Cirrhotic Patients with Hepatocellular Carcinoma: Comparison of Long-Term Survivals. J Gastrointest Surg 2018; 22: 840-848 https://link.springer.com/content/pdf/10.1007/s11605-018-3690-4.pdf
- 157 Cherqui D, Laurent A, Mocellin N. et al. Liver resection for transplantable hepatocellular carcinoma: long-term survival and role of secondary liver transplantation. Ann Surg 2009; 250: 738-746
- 158 Eguchi S, Kanematsu T, Arii S. et al. Recurrence-free survival more than 10 years after liver resection for hepatocellular carcinoma. Br J Surg 2011; 98: 552-557 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.7393?download=true
- 159 Sapisochin G, Goldaracena N, Laurence JM. et al. The extended Toronto criteria for liver transplantation in patients with hepatocellular carcinoma: A prospective validation study. Hepatology 2016; 64: 2077-2088 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.28643
- 160 Mazzaferro V, Battiston C, Sposito C. Pro (With Caution): Extended oncologic indications in liver transplantation. Liver Transpl 2018; 24: 98-103 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/lt.24963
- 161 Mazzaferro V, Regalia E, Doci R. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334: 693-699 https://www.nejm.org/doi/pdf/10.1056/NEJM199603143341104?articleTools=true
- 162 Agopian VG, Harlander-Locke MP, Ruiz RM. et al. Impact of Pretransplant Bridging Locoregional Therapy for Patients With Hepatocellular Carcinoma Within Milan Criteria Undergoing Liver Transplantation: Analysis of 3601 Patients From the US Multicenter HCC Transplant Consortium. Ann Surg 2017; 266: 525-535
- 163 Bundesärztekammer. Richtlinien zur Organtransplantation gem § 16 TPG. Deutsches Ärzteblatt
- 164 von Felden J, Villanueva A. Role of Molecular Biomarkers in Liver Transplantation for Hepatocellular Carcinoma. Liver Transpl 2020; 26: 823-831
- 165 Yao FY, Ferrell L, Bass NM. et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 2001; 33: 1394-1403
- 166 Mazzaferro V, Llovet JM, Miceli R. et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009; 10: 35-43 https://www.sciencedirect.com/science/article/pii/S1470204508702845?via%3Dihub
- 167 Sinha J, Mehta N, Dodge JL. et al. Are There Upper Limits in Tumor Burden for Down-Staging of Hepatocellular Carcinoma to Liver Transplant? Analysis of the All-Comers Protocol. Hepatology 2019; 70: 1185-1196 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.30570
- 168 Lai Q, Vitale A, Halazun K. et al. Identification of an Upper Limit of Tumor Burden for Downstaging in Candidates with Hepatocellular Cancer Waiting for Liver Transplantation: A West-East Collaborative Effort. Cancers (Basel) 2020; 12: 452 https://res.mdpi.com/d_attachment/cancers/cancers-12-00452/article_deploy/cancers-12-00452-v2.pdf
- 169 Mehta N, Guy J, Frenette CT. et al. Excellent Outcomes of Liver Transplantation Following Down-Staging of Hepatocellular Carcinoma to Within Milan Criteria: A Multicenter Study. Clin Gastroenterol Hepatol 2018; 16: 955-964 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053266/pdf/nihms922574.pdf
- 170 Otto G, Herber S, Heise M. et al. Response to transarterial chemoembolization as a biological selection criterion for liver transplantation in hepatocellular carcinoma. Liver Transpl 2006; 12: 1260-1267 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20837?download=true
- 171 Di Sandro S, Sposito C, Lauterio A. et al. Proposal of Prognostic Survival Models before and after Liver Resection for Hepatocellular Carcinoma in Potentially Transplantable Patients. J Am Coll Surg 2018; 226: 1147-1159 https://www.sciencedirect.com/science/article/abs/pii/S1072751518302199?via%3Dihub
- 172 Ferrer-Fàbrega J, Forner A, Liccioni A. et al. Prospective validation of ab initio liver transplantation in hepatocellular carcinoma upon detection of risk factors for recurrence after resection. Hepatology 2016; 63: 839-849 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.28339?download=true
- 173 Scatton O, Goumard C, Cauchy F. et al. Early and resectable HCC: Definition and validation of a subgroup of patients who could avoid liver transplantation. J Surg Oncol 2015; 111: 1007-1015 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.23916?download=true
- 174 de Haas RJ, Lim C, Bhangui P. et al. Curative salvage liver transplantation in patients with cirrhosis and hepatocellular carcinoma: An intention-to-treat analysis. Hepatology 2018; 67: 204-215 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.29468?download=true
- 175 Bhangui P, Allard MA, Vibert E. et al. Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes?. Ann Surg 2016; 264: 155-163 https://www.ingentaconnect.com/content/wk/sla/2016/00000264/00000001/art00029;jsessionid=5ees0b4oapp5t.x-ic-live-02
- 176 Pichlmayr R. Is there a place for liver grafting for malignancy?. Transplant Proc 1988; 20: 478-82
- 177 Roayaie S, Schwartz JD, Sung MW. et al. Recurrence of hepatocellular carcinoma after liver transplant: patterns and prognosis. Liver Transpl 2004; 10: 534-540 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20128?download=true
- 178 Shetty K, Timmins K, Brensinger C. et al. Liver transplantation for hepatocellular carcinoma validation of present selection criteria in predicting outcome. Liver Transpl 2004; 10: 911-918 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20140?download=true
- 179 Lee HW, Song GW, Lee SG. et al. Patient Selection by Tumor Markers in Liver Transplantation for Advanced Hepatocellular Carcinoma. Liver Transpl 2018; 24: 1243-1251 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/lt.25056
- 180 Berry K, Ioannou GN. Serum alpha-fetoprotein level independently predicts posttransplant survival in patients with hepatocellular carcinoma. Liver Transpl 2013; 19: 634-45 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lt.23652
- 181 Vibert E, Azoulay D, Hoti E. et al. Progression of alphafetoprotein before liver transplantation for hepatocellular carcinoma in cirrhotic patients: a critical factor. Am J Transplant 2010; 10: 129-137 https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-6143.2009.02750.x
- 182 Yao FY, Mehta N, Flemming J. et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology 2015; 61: 1968-77 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809192/pdf/nihms667031.pdf
- 183 Hameed B, Mehta N, Sapisochin G. et al. Alpha-fetoprotein level > 1000 ng/mL as an exclusion criterion for liver transplantation in patients with hepatocellular carcinoma meeting the Milan criteria. Liver Transpl 2014; 20: 945-951 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23904?download=true
- 184 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358-380 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.29086
- 185 500 ng/mL in Patients with Hepatocellular Carcinoma Leads to Improved Posttransplant Outcomes. Hepatology 2019; 69: 1193-1205 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30413?download=true
- 186 EASL. EASL Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016; 64: 433-485
- 187 Martin P, DiMartini A, Feng S. et al. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 2014; 59: 1144-1165 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.26972?download=true
- 188 Adani GL, Baccarani U, Lorenzin D. et al. Elderly versus young liver transplant recipients: patient and graft survival. Transplant Proc 2009; 41: 1293-1294
- 189 Cross TJ, Antoniades CG, Muiesan P. et al. Liver transplantation in patients over 60 and 65 years: an evaluation of long-term outcomes and survival. Liver Transpl 2007; 13: 1382-1388 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21181?download=true
- 190 Grąt M, Kornasiewicz O, Grąt K. et al. Short and long-term outcomes after primary liver transplantation in elderly patients. Pol Przegl Chir 2013; 85: 581-588
- 191 Aduen JF, Sujay B, Dickson RC. et al. Outcomes after liver transplant in patients aged 70 years or older compared with those younger than 60 years. Mayo Clin Proc 2009; 84: 973-978 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770908/pdf/mayoclinproc_84_11_004.pdf
- 192 Lipshutz GS, Hiatt J, Ghobrial RM. et al. Outcome of liver transplantation in septuagenarians: a single-center experience. Arch Surg 2007; 142: 775-781 https://jamanetwork.com/journals/jamasurgery/articlepdf/400501/spc70006_775_784.pdf
- 193 Oezcelik A, Dayangac M, Guler N. et al. Living Donor Liver Transplantation in Patients 70 Years or Older. Transplantation 2015; 99: 1436-1440
- 194 Taner CB, Ung RL, Rosser BG. et al. Age is not a contraindication for orthotopic liver transplantation: a single institution experience with recipients older than 75 years. Hepatol Int 2012; 6: 403-407 https://link.springer.com/content/pdf/10.1007/s12072-011-9286-7.pdf
- 195 Huang X, Lu S. Impact of preoperative locoregional therapy on recurrence and patient survival following liver transplantation for hepatocellular carcinoma: a meta-analysis. Scand J Gastroenterol 2017; 52: 143-149 https://www.tandfonline.com/doi/full/10.1080/00365521.2016.1236396
- 196 Kulik L, Heimbach JK, Zaiem F. et al. Therapies for patients with hepatocellular carcinoma awaiting liver transplantation: A systematic review and meta-analysis. Hepatology 2018; 67: 381-400 https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.29485
- 197 Sneiders D, Houwen T, Pengel LHM. et al. Systematic Review and Meta-Analysis of Posttransplant Hepatic Artery and Biliary Complications in Patients Treated With Transarterial Chemoembolization Before Liver Transplantation. Transplantation 2018; 102: 88-96
- 198 Clavien PA, Lesurtel M, Bossuyt PM. et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol 2012; 13: e11-e22 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417764/pdf/nihms392425.pdf
- 199 Beal EW, Dittmar KM, Hanje AJ. et al. Pretransplant Locoregional Therapy for Hepatocellular Carcinoma: Evaluation of Explant Pathology and Overall Survival. Front Oncol 2016; 6: 143
- 200 Cascales-Campos P, Martinez-Insfran LA, Ramirez P. et al. Liver Transplantation in Patients With Hepatocellular Carcinoma Outside the Milan Criteria After Downstaging: Is It Worth It?. Transplant Proc 2018; 50: 591-594 https://www.sciencedirect.com/science/article/abs/pii/S0041134517309284
- 201 Finkenstedt A, Vikoler A, Portenkirchner M. et al. Excellent post-transplant survival in patients with intermediate stage hepatocellular carcinoma responding to neoadjuvant therapy. Liver Int 2016; 36: 688-695 https://onlinelibrary.wiley.com/doi/full/10.1111/liv.12966
- 202 Györi GP, Felsenreich DM, Silberhumer GR. et al. Multimodality locoregional treatment strategies for bridging HCC patients before liver transplantation. Eur Surg 2017; 49: 236-243 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653748/pdf/10353_2017_Article_487.pdf
- 203 Jianyong L, Jinjing Z, Lunan Y. et al. Preoperative adjuvant transarterial chemoembolization cannot improve the long term outcome of radical therapies for hepatocellular carcinoma. Sci Rep 2017; 7: 41624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290748/pdf/srep41624.pdf
- 204 Nicolini D, Agostini A, Montalti R. et al. Radiological response and inflammation scores predict tumour recurrence in patients treated with transarterial chemoembolization before liver transplantation. World J Gastroenterol 2017; 23: 3690-3701 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449426/pdf/WJG-23-3690.pdf
- 205 Gabr A, Abouchaleh N, Ali R. et al. Comparative study of post-transplant outcomes in hepatocellular carcinoma patients treated with chemoembolization or radioembolization. Eur J Radiol 2017; 93: 100-106 https://www.sciencedirect.com/science/article/abs/pii/S0720048X17302012
- 206 Lai Q, Vitale A, Iesari S. et al. The Intention-to-Treat Effect of Bridging Treatments in the Setting of Milan Criteria-In Patients Waiting for Liver Transplantation. Liver Transpl 2019; 25: 1023-1033 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.25492?download=true
- 207 Oligane HC, Xing M, Kim HS. Effect of Bridging Local-Regional Therapy on Recurrence of Hepatocellular Carcinoma and Survival after Orthotopic Liver Transplantation. Radiology 2017; 282: 869-879
- 208 Millonig G, Graziadei IW, Freund MC. et al. Response to preoperative chemoembolization correlates with outcome after liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 2007; 13: 272-279 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21033?download=true
- 209 Cucchetti A, Cescon M, Bigonzi E. et al. Priority of candidates with hepatocellular carcinoma awaiting liver transplantation can be reduced after successful bridge therapy. Liver Transpl 2011; 17: 1344-1354 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22397?download=true
- 210 Lai Q, Avolio AW, Graziadei I. et al. Alpha-fetoprotein and modified response evaluation criteria in solid tumors progression after locoregional therapy as predictors of hepatocellular cancer recurrence and death after transplantation. Liver Transpl 2013; 19: 1108-1118 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23706?download=true
- 211 Kim DJ, Clark PJ, Heimbach J. et al. Recurrence of hepatocellular carcinoma: importance of mRECIST response to chemoembolization and tumor size. Am J Transplant 2014; 14: 1383-1390 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajt.12684?download=true
- 212 Riaz A, Miller FH, Kulik LM. et al. Imaging response in the primary index lesion and clinical outcomes following transarterial locoregional therapy for hepatocellular carcinoma. Jama 2010; 303: 1062-9 https://jamanetwork.com/journals/jama/articlepdf/185545/joc05021_1062_1069.pdf
- 213 Wong T, Lee V, Law A. et al. Prospective Study of Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma on Waitlist for Liver Transplant. Hepatology 2021; 74 (05) 2580-2594 https://pubmed.ncbi.nlm.nih.gov/34091914/
- 214 Sapisochin G, Barry A, Doherty M. et al. Stereotactic body radiotherapy vs TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma An intention-to-treat analysis. J Hepatol 2017; 67 (01) 92-99 https://pubmed.ncbi.nlm.nih.gov/28257902/
- 215 Bush D, Volk M, Smith J. et al. Proton beam radiotherapy versus transarterial chemoembolization for hepatocellular carcinoma: Results of a randomized clinical trial. Cancer 2023; 129 (22) 3554-3563 https://pubmed.ncbi.nlm.nih.gov/37503907/
- 216 Degroote H, Callebout E, Iesari S. et al. Extended criteria for liver transplantation in hepatocellular carcinoma A retrospective, multicentric validation study in Belgium. Surg Oncol 2019; https://pubmed.ncbi.nlm.nih.gov/31630912/
- 217 Parikh ND, Waljee AK, Singal AG. Downstaging hepatocellular carcinoma: A systematic review and pooled analysis. Liver Transpl 2015; 21: 1142-52 https://deepblue.lib.umich.edu/bitstream/handle/2027.42/113108/lt24169.pdf?sequence=1
- 218 Mazzaferro V, Citterio D, Bhoori S. et al. Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): a randomised, controlled, phase 2b/3 trial. Lancet Oncol 2020; 21 (07) 947-956 https://pubmed.ncbi.nlm.nih.gov/32615109/
- 219 Chapman WC, Garcia-Aroz S, Vachharajani N. et al. Liver Transplantation for Advanced Hepatocellular Carcinoma after Downstaging Without Up-Front Stage Restrictions. J Am Coll Surg 2017; 224: 610-621 https://www.sciencedirect.com/science/article/abs/pii/S1072751516317240
- 220 Graziadei I, Zoller H, Fickert P. et al. Indications for liver transplantation in adults: Recommendations of the Austrian Society for Gastroenterology and Hepatology (ÖGGH) in cooperation with the Austrian Society for Transplantation, Transfusion and Genetics (ATX). Wien Klin Wochenschr 2016; 128: 679-690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052293/pdf/508_2016_Article_1046.pdf
- 221 Mazzaferro V, Sposito C, Zhou J. et al. Metroticket 20 Model for Analysis of Competing Risks of Death After Liver Transplantation for Hepatocellular Carcinoma. Gastroenterology 2018; 154: 128-139 https://www.gastrojournal.org/article/S0016-5085(17)36184-X/fulltext
- 222 Halazun KJ, Tabrizian P, Najjar M. et al. Is it Time to Abandon the Milan Criteria?: Results of a Bicoastal US Collaboration to Redefine Hepatocellular Carcinoma Liver Transplantation Selection Policies. Ann Surg 2018; 268: 690-699
- 223 Hong SK, Lee KW, Kim HS. et al. Living donor liver transplantation for hepatocellular carcinoma in Seoul National University. Hepatobiliary Surg Nutr 2016; 5: 453-460
- 224 Kornberg A, Schernhammer M, Friess H. (18)F-FDG-PET for Assessing Biological Viability and Prognosis in Liver Transplant Patients with Hepatocellular Carcinoma. J Clin Transl Hepatol 2017; 5: 224-234
- 225 Assalino M, Terraz S, Grat M. et al. Liver transplantation for hepatocellular carcinoma after successful treatment of macrovascular invasion – a multi-center retrospective cohort study. Transpl Int 2020; 33: 567-575
- 226 Parikh ND, Yopp A, Singal AG. Controversies in criteria for liver transplantation in hepatocellular carcinoma. Curr Opin Gastroenterol 2016; 32: 182-188
- 227 Salem R, Gordon AC, Mouli S. et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016; 151: 1155-1163 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124387/pdf/nihms813288.pdf
- 228 Ettorre GM, Levi SandriGB, Laurenzi A. et al. Yttrium-90 Radioembolization for Hepatocellular Carcinoma Prior to Liver Transplantation. World J Surg 2017; 41: 241-249 https://link.springer.com/content/pdf/10.1007/s00268-016-3682-z.pdf
- 229 Schwacha-Eipper B, Minciuna I, Banz V. et al. Immunotherapy as a downstaging therapy for liver transplantation. Hepatology 2020; https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.31234
- 230 Golse N, Radenne S, Rode A. et al. Liver Transplantation After Neoadjuvant Sorafenib Therapy: Preliminary Experience and Literature Review. Exp Clin Transplant 2018; 16: 227-236
- 231 Hoffmann K, Ganten T, Gotthardtp D. et al. Impact of neo-adjuvant Sorafenib treatment on liver transplantation in HCC patients – a prospective, randomized, double-blind, phase III trial. BMC Cancer 2015; 15: 392 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449604/pdf/12885_2015_Article_1373.pdf
- 232 Berenguer M, Burra P, Ghobrial M. et al. Posttransplant Management of Recipients Undergoing Liver Transplantation for Hepatocellular Carcinoma Working Group Report From the ILTS Transplant Oncology Consensus Conference. Transplantation 2020; 104: 1143-1149
- 233 Verna EC, Patel YA, Aggarwal A. et al. Liver transplantation for hepatocellular carcinoma: Management after the transplant. Am J Transplant 2020; 20: 333-347 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ajt.15697?download=true
- 234 Vivarelli M, Cucchetti A, Piscaglia F. et al. Analysis of risk factors for tumor recurrence after liver transplantation for hepatocellular carcinoma: key role of immunosuppression. Liver Transpl 2005; 11: 497-503 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20391?download=true
- 235 Vivarelli M, Cucchetti A, La Barba G. et al. Liver transplantation for hepatocellular carcinoma under calcineurin inhibitors: reassessment of risk factors for tumor recurrence. Ann Surg 2008; 248: 857-862
- 236 Rodríguez-Perálvarez M, Tsochatzis E, Naveas MC. et al. Reduced exposure to calcineurin inhibitors early after liver transplantation prevents recurrence of hepatocellular carcinoma. J Hepatol 2013; 59: 1193-1199
- 237 Decaens T, Roudot-Thoraval F, Bresson-Hadni S. et al. Role of immunosuppression and tumor differentiation in predicting recurrence after liver transplantation for hepatocellular carcinoma: a multicenter study of 412 patients. World J Gastroenterol 2006; 12: 7319-7325 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087490/pdf/WJG-12-7319.pdf
- 238 Tan PS, Muthiah MD, Koh T. et al. Asian Liver Transplant Network Clinical Guidelines on Immunosuppression in Liver Transplantation. Transplantation 2019; 103: 470-480
- 239 Duvoux C, Toso C. mTOR inhibitor therapy: Does it prevent HCC recurrence after liver transplantation?. Transplant Rev (Orlando) 2015; 29: 168-174
- 240 Tarantino G, Magistri P, Ballarin R. et al. Oncological Impact of M-Tor Inhibitor Immunosuppressive Therapy after Liver Transplantation for Hepatocellular Carcinoma: Review of the Literature. Front Pharmacol 2016; 7: 387 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073152/pdf/fphar-07-00387.pdf
- 241 Teperman L, Moonka D, Sebastian A. et al. Calcineurin inhibitor-free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare-the-nephron trial. Liver Transpl 2013; 19: 675-689 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.23658?download=true
- 242 De Simone P, Metselaar HJ, Fischer L. et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl 2009; 15: 1262-1269 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.21827?download=true
- 243 Fischer L, Saliba F, Kaiser GM. et al. Three-year Outcomes in De Novo Liver Transplant Patients Receiving Everolimus With Reduced Tacrolimus: Follow-Up Results From a Randomized, Multicenter Study. Transplantation 2015; 99: 1455-1462
- 244 Geissler EK, Schnitzbauer AA, Zülke C. et al. Sirolimus Use in Liver Transplant Recipients With Hepatocellular Carcinoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Transplantation 2016; 100: 116-125
- 245 Schnitzbauer A, Filmann N, Adam R. et al. mTOR Inhibition Is Most Beneficial After Liver Transplantation for Hepatocellular Carcinoma in Patients With Active Tumors. Ann Surg 2020; 272 (05) 855-862 https://pubmed.ncbi.nlm.nih.gov/32889867/
- 246 Trevisani F, Frigerio M, Santi V. et al. Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig Liver Dis 2010; 42: 341-347
- 247 Paradis V, Zalinski S, Chelbi E. et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 2009; 49: 851-859 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.22734
- 248 Piscaglia F, Svegliati-Baroni G, Barchetti A. et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016; 63: 827-838 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.28368
- 249 Ertle J, Dechêne A, Sowa JP. et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128: 2436-2443 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.25797?download=true
- 250 Zhou Y, Lei X, Wu L. et al. Outcomes of hepatectomy for noncirrhotic hepatocellular carcinoma: a systematic review. Surg Oncol 2014; 23: 236-242
- 251 Faber W, Sharafi S, Stockmann M. et al. Long-term results of liver resection for hepatocellular carcinoma in noncirrhotic liver. Surgery 2013; 153: 510-517
- 252 Cauchy F, Zalinski S, Dokmak S. et al. Surgical treatment of hepatocellular carcinoma associated with the metabolic syndrome. Br J Surg 2013; 100: 113-121 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.8963?download=true
- 253 Dasari BV, Kamarajah SK, Hodson J. et al. Development and validation of a risk score to predict the overall survival following surgical resection of hepatocellular carcinoma in non-cirrhotic liver. HPB (Oxford) 2020; 22: 383-390 https://www.sciencedirect.com/science/article/abs/pii/S1365182X19306215?via%3Dihub
- 254 Ju M, Yopp AC. The Utility of Anatomical Liver Resection in Hepatocellular Carcinoma: Associated with Improved Outcomes or Lack of Supportive Evidence?. Cancers (Basel) 2019; 11: 1441 https://res.mdpi.com/d_attachment/cancers/cancers-11-01441/article_deploy/cancers-11-01441.pdf
- 255 Moris D, Tsilimigras DI, Kostakis ID. et al. Anatomic versus non-anatomic resection for hepatocellular carcinoma: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 44: 927-938 https://www.sciencedirect.com/science/article/abs/pii/S0748798318310242?via%3Dihub
- 256 Arnaoutakis DJ, Mavros MN, Shen F. et al. Recurrence patterns and prognostic factors in patients with hepatocellular carcinoma in noncirrhotic liver: a multi-institutional analysis. Ann Surg Oncol 2014; 21: 147-154 https://link.springer.com/content/pdf/10.1245/s10434-013-3211-3.pdf
- 257 Lang H, Sotiropoulos GC, Brokalaki EI. et al. Survival and recurrence rates after resection for hepatocellular carcinoma in noncirrhotic livers. J Am Coll Surg 2007; 205: 27-36
- 258 Bège T, Le Treut YP, Hardwigsen J. et al. Prognostic factors after resection for hepatocellular carcinoma in nonfibrotic or moderately fibrotic liver A 116-case European series. J Gastrointest Surg 2007; 11: 619-625 https://link.springer.com/content/pdf/10.1007/s11605-006-0023-9.pdf
- 259 Teegen EM, Mogl MT, Pratschke J. et al. Adrenal Metastasis of Hepatocellular Carcinoma in Patients following Liver Resection or Liver Transplantation: Experience from a Tertiary Referral Center. Int J Surg Oncol 2018; 2018: 4195076 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087597/pdf/IJSO2018-4195076.pdf
- 260 Wang YY, Zhao XH, Ma L. et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma. J Surg Oncol 2018; 118: 440-445 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.25184?download=true
- 261 Rubin TM, Heyne K, Luchterhand A. et al. Kinetic validation of the LiMAx test during 10 000 intravenous (13)C-methacetin breath tests. J Breath Res 2017; 12: 016005 https://iopscience.iop.org/article/10.1088/1752-7163/aa820b
- 262 Stockmann M, Lock JF, Riecke B. et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg 2009; 250: 119-125
- 263 Huang Z, Huang J, Zhou T. et al. Prognostic value of liver stiffness measurement for the liver-related surgical outcomes of patients under hepatic resection: A meta-analysis. PLoS One 2018; 13: e0190512 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764309/pdf/pone.0190512.pdf
- 264 Simonetto DA, Liu M, Kamath PS. Portal Hypertension and Related Complications: Diagnosis and Management. Mayo Clin Proc 2019; 94: 714-726 https://www.sciencedirect.com/science/article/abs/pii/S0025619618310085?via%3Dihub
- 265 Roayaie S, Jibara G, Tabrizian P. et al. The role of hepatic resection in the treatment of hepatocellular cancer. Hepatology 2015; 62: 440-451 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.27745
- 266 Ishizawa T, Hasegawa K, Aoki T. et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology 2008; 134: 1908-1916 https://www.sciencedirect.com/science/article/pii/S0016508508004277?via%3Dihub
- 267 Torzilli G, Belghiti J, Kokudo N. et al. A snapshot of the effective indications and results of surgery for hepatocellular carcinoma in tertiary referral centers: is it adherent to the EASL/AASLD recommendations?: an observational study of the HCC East-West study group. Ann Surg 2013; 257: 929-937
- 268 Koh YX, Tan HL, Lye WK. et al. Systematic review of the outcomes of surgical resection for intermediate and advanced Barcelona Clinic Liver Cancer stage hepatocellular carcinoma: A critical appraisal of the evidence. World J Hepatol 2018; 10: 433-447 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033716/pdf/WJH-10-433.pdf
- 269 Zaydfudim VM, Vachharajani N, Klintmalm GB. et al. Liver Resection and Transplantation for Patients With Hepatocellular Carcinoma Beyond Milan Criteria. Ann Surg 2016; 264: 650-658 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279918/pdf/nihms-835604.pdf
- 270 Tsilimigras DI, Bagante F, Moris D. et al. Recurrence Patterns and Outcomes after Resection of Hepatocellular Carcinoma within and beyond the Barcelona Clinic Liver Cancer Criteria. Ann Surg Oncol 2020; 27: 2321-2331 https://link.springer.com/content/pdf/10.1245/s10434-020-08452-3.pdf
- 271 Pang TC, Lam VW. Surgical management of hepatocellular carcinoma. World J Hepatol 2015; 7: 245-252 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342606/pdf/WJH-7-245.pdf
- 272 Feng X, Su Y, Zheng S. et al. A double blinded prospective randomized trial comparing the effect of anatomic versus non-anatomic resection on hepatocellular carcinoma recurrence. HPB (Oxford) 2017; 19: 667-674
- 273 Wakabayashi G, Cherqui D, Geller DA. et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 2015; 261: 619-629
- 274 Cherqui D, Soubrane O. Laparoscopic Liver Resection: An Ongoing Revolution. Ann Surg 2017; 265: 864-865 https://www.ingentaconnect.com/content/wk/sla/2017/00000265/00000005/art00019
- 275 Andreou A, Struecker B, Raschzok N. et al. Minimal-invasive versus open hepatectomy for hepatocellular carcinoma: Comparison of postoperative outcomes and long-term survivals using propensity score matching analysis. Surg Oncol 2018; 27: 751-758 https://www.sciencedirect.com/science/article/abs/pii/S0960740418302512?via%3Dihub
- 276 Haber PK, Wabitsch S, Krenzien F. et al. Laparoscopic liver surgery in cirrhosis – Addressing lesions in posterosuperior segments. Surg Oncol 2019; 28: 140-144 https://www.sciencedirect.com/science/article/abs/pii/S0960740418304614?via%3Dihub
- 277 Levi SandriGB, Ettorre GM, Aldrighetti L. et al. Laparoscopic liver resection of hepatocellular carcinoma located in unfavorable segments: a propensity score-matched analysis from the I Go MILS (Italian Group of Minimally Invasive Liver Surgery) Registry. Surg Endosc 2019; 33: 1451-1458 https://link.springer.com/content/pdf/10.1007/s00464-018-6426-3.pdf
- 278 Felli E, Cillo U, Pinna AD. et al. Salvage liver transplantation after laparoscopic resection for hepatocellular carcinoma: a multicenter experience. Updates Surg 2015; 67: 215-222 https://link.springer.com/content/pdf/10.1007/s13304-015-0323-2.pdf
- 279 Chen MS, Li JQ, Zheng Y. et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243: 321-328 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448947/pdf/20060300s00006p321.pdf
- 280 Feng K, Yan J, Li X. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol 2012; 57: 794-802 https://www.sciencedirect.com/science/article/pii/S0168827812003613?via%3Dihub
- 281 Huang J, Yan L, Cheng Z. et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg 2010; 252: 903-912
- 282 Ng KKC, Chok KSH, Chan ACY. et al. Randomized clinical trial of hepatic resection versus radiofrequency ablation for early-stage hepatocellular carcinoma. Br J Surg 2017; 104: 1775-1784 https://onlinelibrary.wiley.com/doi/pdf/10.1002/bjs.10677
- 283 Yin L, Li H, Li AJ. et al. Partial hepatectomy vs transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond Milan Criteria: a RCT. J Hepatol 2014; 61: 82-88 https://www.sciencedirect.com/science/article/pii/S0168827814001561?via%3Dihub
- 284 Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010; 30: 52-60 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0030-1247132.pdf
- 285 Wahab MA, Shehta A, Hamed H. et al. Predictors of recurrence in hepatitis C virus related hepatocellular carcinoma after hepatic resection: a retrospective cohort study. Eurasian J Med 2014; 46: 36-41 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261437/pdf/eajm-46-1-36.pdf
- 286 Ramacciato G, Mercantini P, Nigri GR. et al. Univariate and multivariate analysis of prognostic factors in the surgical treatment of hepatocellular carcinoma in cirrhotic patients. Hepatogastroenterology 2006; 53: 898-903
- 287 Di Costanzo GG, Tortora R, D’Adamo G. et al. Radiofrequency ablation versus laser ablation for the treatment of small hepatocellular carcinoma in cirrhosis: a randomized trial. J Gastroenterol Hepatol 2015; 30: 559-565 https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12791
- 288 Cucchetti A, Piscaglia F, Cescon M. et al. An explorative data-analysis to support the choice between hepatic resection and radiofrequency ablation in the treatment of hepatocellular carcinoma. Dig Liver Dis 2014; 46: 257-263
- 289 Nishikawa H, Inuzuka T, Takeda H. et al. Comparison of percutaneous radiofrequency thermal ablation and surgical resection for small hepatocellular carcinoma. BMC Gastroenterol 2011; 11: 143 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260104/pdf/1471-230X-11-143.pdf
- 290 Uhlig J, Sellers CM, Stein SM. et al. Radiofrequency ablation versus surgical resection of hepatocellular carcinoma: contemporary treatment trends and outcomes from the United States National Cancer Database. Eur Radiol 2019; 29: 2679-2689 https://link.springer.com/article/10.1007/s00330-018-5902-4
- 291 Salmi A, Turrini R, Lanzani G. et al. Radiofrequency ablation of hepatocellular carcinoma in patients with and without cirrhosis. J Ultrasound 2009; 12: 118-124 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552707/pdf/main.pdf
- 292 Mohanty S, Rajaram R, Bilimoria KY. et al. Assessment of non-surgical versus surgical therapy for localized hepatocellular carcinoma. J Surg Oncol 2016; 113: 175-180 https://onlinelibrary.wiley.com/doi/abs/10.1002/jso.24113
- 293 Yamauchi R, Takata K, Shinagawa Y. et al. Hepatocellular Carcinoma Arising in a Non-cirrhotic Liver with Secondary Hemochromatosis. Intern Med 2019; 58: 661-665 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443541/pdf/1349-7235-58-0661.pdf
- 294 Livraghi T, Goldberg SN, Lazzaroni S. et al. Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 1999; 210: 655-661
- 295 Lencioni RA, Allgaier HP, Cioni D. et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 2003; 228: 235-240
- 296 Lin S-H, Lin C-J, C-C Lin. et al. Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma ≤ 4 cm. Gastroenterology 2004; 127: 1714-1723 https://www.sciencedirect.com/science/article/abs/pii/S0016508504015720?via%3Dihub
- 297 Bruix J, Sherman M, Llovet JM. et al. Clinical management of hepatocellular carcinoma Conclusions of the Barcelona-2000 EASL conference European Association for the Study of the Liver. J Hepatol 2001; 35: 421-430
- 298 Shiina S, Teratani T, Obi S. et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 2005; 129: 122-130 https://www.sciencedirect.com/science/article/abs/pii/S0016508505006918?via%3Dihub
- 299 Brunello F, Veltri A, Carucci P. et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: A randomized controlled trial. Scand J Gastroenterol 2008; 43: 727-735 https://www.tandfonline.com/doi/pdf/10.1080/00365520701885481?needAccess=true
- 300 Lin SM, Lin CJ, Lin CC. et al. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut 2005; 54: 1151-1156 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774888/pdf/gut05401151.pdf
- 301 Shiina S, Teratani T, Obi S. et al. Nonsurgical treatment of hepatocellular carcinoma: from percutaneous ethanol injection therapy and percutaneous microwave coagulation therapy to radiofrequency ablation. Oncology 2002; 62 (Suppl. 01) 64-68 https://www.karger.com/Article/Pdf/48278
- 302 Hara K, Takeda A, Tsurugai Y. et al. Radiotherapy for Hepatocellular Carcinoma Results in Comparable Survival to Radiofrequency Ablation: A Propensity Score Analysis. Hepatology 2019; 69: 2533-2545 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.30591?download=true
- 303 Peng ZW, Zhang YJ, Chen MS. et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol 2013; 31: 426-432
- 304 Liu H, Wang ZG, Fu SY. et al. Randomized clinical trial of chemoembolization plus radiofrequency ablation versus partial hepatectomy for hepatocellular carcinoma within the Milan criteria. Br J Surg 2016; 103: 348-356 https://bjssjournals.onlinelibrary.wiley.com/doi/full/10.1002/bjs.10061
- 305 Endo K, Kuroda H, Oikawa T. et al. Efficacy of combination therapy with transcatheter arterial chemoembolization and radiofrequency ablation for intermediate-stage hepatocellular carcinoma. Scand J Gastroenterol 2018; 53: 1575-1583 https://www.tandfonline.com/doi/full/10.1080/00365521.2018.1548645
- 306 Fukutomi S, Nomura Y, Nakashima O. et al. Evaluation of hepatocellular carcinoma spread via the portal system by 3-dimensional mapping. HPB (Oxford) 2017; 19: 1119-1125
- 307 Hendriks P, Sudiono D, Schaapman J. et al. Thermal ablation combined with transarterial chemoembolization for hepatocellular carcinoma: What is the right treatment sequence?. Eur J Radiol 2021; 144: 110006 https://pubmed.ncbi.nlm.nih.gov/34717187/
- 308 Smolock AR, Cristescu MM, Hinshaw A. et al. Combination transarterial chemoembolization and microwave ablation improves local tumor control for 3- to 5-cm hepatocellular carcinoma when compared with transarterial chemoembolization alone. Abdom Radiol (NY) 2018; 43: 2497-2504 https://link.springer.com/content/pdf/10.1007/s00261-018-1464-9.pdf
- 309 Bonomo G, Della Vigna P, Monfardini L. et al. Combined therapies for the treatment of technically unresectable liver malignancies: bland embolization and radiofrequency thermal ablation within the same session. Cardiovasc Intervent Radiol 2012; 35: 1372-1379 https://link.springer.com/content/pdf/10.1007/s00270-012-0341-0.pdf
- 310 Lo CM, Ngan H, Tso WK. et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35: 1164-1171 https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1053/jhep.2002.33156
- 311 Lammer J, Malagari K, Vogl T. et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 2010; 33: 41-52 https://www.zora.uzh.ch/id/eprint/24207/1/Lammer_CardiovascInterventRadiol_2010_V.pdf
- 312 Golfieri R, Giampalma E, Renzulli M. et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer 2014; 111: 255-264 https://iris.unito.it/retrieve/handle/2318/149077/25760/art%20Doxorubicina-Tace%202014.pdf
- 313 Yamada R, Bassaco B, Bracewell S. et al. Long-term follow-up after conventional transarterial chemoembolization (c-TACE) with mitomycin for hepatocellular carcinoma (HCC). J Gastrointest Oncol 2019; 10: 348-353
- 314 Llovet JM, Real MI, Montana X. et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359: 1734-1739 https://www.sciencedirect.com/science/article/pii/S014067360208649X?via%3Dihub
- 315 Abdel-Rahman O, Elsayed Z. Yttrium-90 microsphere radioembolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev 2020; 1: Cd011313
- 316 Yang J, Wang J, Zhou H. et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy 2018; 50: 751-760 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0043-124870.pdf
- 317 Ludwig JM, Zhang D, Xing M. et al. Meta-analysis: adjusted indirect comparison of drug-eluting bead transarterial chemoembolization versus (90)Y-radioembolization for hepatocellular carcinoma. Eur Radiol 2017; 27: 2031-2041 https://link.springer.com/content/pdf/10.1007%2Fs00330-016-4548-3.pdf
- 318 Casadei Gardini A, Tamburini E, Inarrairaegui M. et al. Radioembolization versus chemoembolization for unresectable hepatocellular carcinoma: a meta-analysis of randomized trials. Onco Targets Ther 2018; 11: 7315-7321 https://www.dovepress.com/getfile.php?fileID=45631
- 319 Kolligs FT, Bilbao JI, Jakobs T. et al. Pilot randomized trial of selective internal radiation therapy vs chemoembolization in unresectable hepatocellular carcinoma. Liver Int 2015; 35: 1715-1721 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/liv.12750?download=true
- 320 Katsanos K, Kitrou P, Spiliopoulos S. et al. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. PLoS One 2017; 12: e0184597 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608206/pdf/pone.0184597.pdf
- 321 Pitton MB, Kloeckner R, Ruckes C. et al. Randomized comparison of selective internal radiotherapy (SIRT) versus drug-eluting bead transarterial chemoembolization (DEB-TACE) for the treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol 2015; 38: 352-360 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355443/pdf/270_2014_Article_1012.pdf
- 322 Lobo L, Yakoub D, Picado O. et al. Unresectable Hepatocellular Carcinoma: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. Cardiovasc Intervent Radiol 2016; 39: 1580-1588 https://link.springer.com/content/pdf/10.1007/s00270-016-1426-y.pdf
- 323 Salem R, Gilbertsen M, Butt Z. et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol 2013; 11: 1358-1365 https://www.sciencedirect.com/science/article/abs/pii/S1542356513005971?via%3Dihub
- 324 Sangro B, Maini CL, Ettorre GM. et al. Radioembolisation in patients with hepatocellular carcinoma that have previously received liver-directed therapies. Eur J Nucl Med Mol Imaging 2018; 45: 1721-1730 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097757/pdf/259_2018_Article_3968.pdf
- 325 Johnson GE, Monsky WL, Valji K. et al. Yttrium-90 Radioembolization as a Salvage Treatment following Chemoembolization for Hepatocellular Carcinoma. J Vasc Interv Radiol 2016; 27: 1123-1129
- 326 Hilgard P, Hamami M, Fouly AE. et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010; 52: 1741-1749 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.23944?download=true
- 327 Sangro B, Carpanese L, Cianni R. et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 2011; 54: 868-878 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.24451?download=true
- 328 Kulik LM, Carr BI, Mulcahy MF. et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008; 47: 71-81 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.21980?download=true
- 329 Mazzaferro V, Sposito C, Bhoori S. et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology 2013; 57: 1826-1837 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.26014?download=true
- 330 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64
- 331 Rim CH, Kim CY, Yang DS. et al. Comparison of radiation therapy modalities for hepatocellular carcinoma with portal vein thrombosis: A meta-analysis and systematic review. Radiother Oncol 2018; 129: 112-122 https://www.sciencedirect.com/science/article/abs/pii/S0167814017327305?via%3Dihub
- 332 Salem R, Padia S, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46 (08) 1695-1704 https://pubmed.ncbi.nlm.nih.gov/31098749/
- 333 Levillain H, Bagni O, Deroose C. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48 (05) 1570-1584 https://pubmed.ncbi.nlm.nih.gov/33433699/
- 334 Garin E, Tselikas L, Guiu B. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29 https://pubmed.ncbi.nlm.nih.gov/33166497/
- 335 Salem R, Johnson G, Kim E. et al. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021; 74 (05) 2342-2352 https://pubmed.ncbi.nlm.nih.gov/33739462/
- 336 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. The Lancet Oncology 2017; 18: 1624-1636
- 337 Chow PKH, Gandhi M, Tan SB. et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J Clin Oncol 2018; 36: 1913-1921 https://www.ncbi.nlm.nih.gov/pubmed/29498924
- 338 Sapir E, Tao Y, Schipper MJ. et al. Stereotactic Body Radiation Therapy as an Alternative to Transarterial Chemoembolization for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2018; 100: 122-130 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818982/pdf/nihms942371.pdf
- 339 Eriguchi T, Takeda A, Tateishi Y. et al. Comparison of stereotactic body radiotherapy and radiofrequency ablation for hepatocellular carcinoma: Systematic review and meta-analysis of propensity score studies. Hepatol Res 2021; 51 (07) 813-822 https://pubmed.ncbi.nlm.nih.gov/33856722/
- 340 Rim C, Lee J, Kim S. et al. Comparison of radiofrequency ablation and ablative external radiotherapy for the treatment of intrahepatic malignancies: A hybrid meta-analysis. JHEP Rep 2023; 5 (01) 100594 https://pubmed.ncbi.nlm.nih.gov/36561128/
- 341 Craig T, Xiao Y, McNulty S. et al. Insights From Image Guided Radiation Therapy Credentialing for the NRG Oncology RTOG 1112 Liver Stereotactic Body Radiation Therapy Trial. Pract Radiat Oncol 2022; https://pubmed.ncbi.nlm.nih.gov/36581199/
- 342 Rim C, Kim H, Seong J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Radiother Oncol 2019; 131: 135-144 https://pubmed.ncbi.nlm.nih.gov/30773180/
- 343 Brunner T, Bettinger D, Schultheiss M. et al. Efficacy of Stereotactic Body Radiotherapy in Patients With Hepatocellular Carcinoma Not Suitable for Transarterial Chemoembolization (HERACLES: HEpatocellular Carcinoma Stereotactic RAdiotherapy CLinical Efficacy Study). Front Oncol 2021; 11: 653141 https://pubmed.ncbi.nlm.nih.gov/33816309/
- 344 Omata M, Cheng A, Kokudo N. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11 (04) 317-370 https://pubmed.ncbi.nlm.nih.gov/28620797/
- 345 Vogel A, Cervantes A, Chau I. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29: iv238-iv255
- 346 Guckenberger M, Baus W, Blanck O. et al. Definition and quality requirements for stereotactic radiotherapy: consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2020; 196 (05) 417-420 https://pubmed.ncbi.nlm.nih.gov/32211940/
- 347 Mizumoto M, Tokuuye K, Sugahara S. et al. Proton beam therapy for hepatocellular carcinoma adjacent to the porta hepatis. Int J Radiat Oncol Biol Phys 2008; 71: 462-467
- 348 Fukumitsu N, Sugahara S, Nakayama H. et al. A prospective study of hypofractionated proton beam therapy for patients with hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2009; 74: 831-836
- 349 Sugahara S, Oshiro Y, Nakayama H. et al. Proton beam therapy for large hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2010; 76: 460-466
- 350 Kim T, Park J, Kim Y. et al. Phase I dose-escalation study of proton beam therapy for inoperable hepatocellular carcinoma. Cancer Res Treat 2015; 47 (01) 34-45 https://pubmed.ncbi.nlm.nih.gov/25381830/
- 351 Nakayama H, Sugahara S, Fukuda K. et al. Proton beam therapy for hepatocellular carcinoma located adjacent to the alimentary tract. Int J Radiat Oncol Biol Phys 2011; 80: 992-995
- 352 Bush DA, Smith JC, Slater JD. et al. Randomized Clinical Trial Comparing Proton Beam Radiation Therapy with Transarterial Chemoembolization for Hepatocellular Carcinoma: Results of an Interim Analysis. Int J Radiat Oncol Biol Phys 2016; 95: 477-482
- 353 Hong TS, Wo JY, Yeap BY. et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J Clin Oncol 2016; 34: 460-468 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872014/pdf/JCO642710.pdf
- 354 Mizumoto M, Oshiro Y, Okumura T. et al. Proton Beam Therapy for Hepatocellular Carcinoma: A Review of the University of Tsukuba Experience. Int J Part Ther 2016; 2 (04) 570-578 https://pubmed.ncbi.nlm.nih.gov/31772968/
- 355 Mohnike K, Wieners G, Schwartz F. et al. Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys 2010; 78: 172-179
- 356 Mohnike K, Steffen IG, Seidensticker M. et al. Radioablation by Image-Guided (HDR) Brachytherapy and Transarterial Chemoembolization in Hepatocellular Carcinoma: A Randomized Phase II Trial. Cardiovasc Intervent Radiol 2019; 42: 239-249 https://link.springer.com/content/pdf/10.1007/s00270-018-2127-5.pdf
- 357 Collettini F, Schreiber N, Schnapauff D. et al. CT-guided high-dose-rate brachytherapy of unresectable hepatocellular carcinoma. Strahlenther Onkol 2015; 191: 405-412 https://link.springer.com/content/pdf/10.1007/s00066-014-0781-3.pdf
- 358 Comito T, Loi M, Franzese C. et al. Stereotactic Radiotherapy after Incomplete Transarterial (Chemo-) Embolization (TAE/TACE) versus Exclusive TAE or TACE for Treatment of Inoperable HCC: A Phase III Trial (NCT02323360). Curr Oncol 2022; 29 (11) 8802-8813 https://pubmed.ncbi.nlm.nih.gov/36421345/
- 359 Buckstein M, Kim E, Özbek U. et al. Combination Transarterial Chemoembolization and Stereotactic Body Radiation Therapy for Unresectable Single Large Hepatocellular Carcinoma: Results From a Prospective Phase 2 Trial. Int J Radiat Oncol Biol Phys 2022; 114 (02) 221-230 https://pubmed.ncbi.nlm.nih.gov/35643250/
- 360 Yoon S, Ryoo B, Lee S. et al. Efficacy and Safety of Transarterial Chemoembolization Plus External Beam Radiotherapy vs Sorafenib in Hepatocellular Carcinoma With Macroscopic Vascular Invasion: A Randomized Clinical Trial. JAMA Oncol 2018; 4 (05) 661-669 https://pubmed.ncbi.nlm.nih.gov/29543938/
- 361 Huo Y, Eslick G. Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared With Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol 2015; 1 (06) 756-765 https://pubmed.ncbi.nlm.nih.gov/26182200/
- 362 Bargellini I, Bozzi E, Campani D. et al. Modified RECIST to assess tumor response after transarterial chemoembolization of hepatocellular carcinoma: CT-pathologic correlation in 178 liver explants. Eur J Radiol 2013; 82 (05) e212-e218 https://pubmed.ncbi.nlm.nih.gov/23332890/
- 363 Yu H, Bai Y, Xie X. et al. RECIST 11 versus mRECIST for assessment of tumour response to molecular targeted therapies and disease outcomes in patients with hepatocellular carcinoma: a systematic review and meta-analysis. BMJ Open 2022; 12 (06) e052294 https://pubmed.ncbi.nlm.nih.gov/35649603/
- 364 Kim D, Kim B, Choi J. et al. LI-RADS Treatment Response versus Modified RECIST for Diagnosing Viable Hepatocellular Carcinoma after Locoregional Therapy: A Systematic Review and Meta-Analysis of Comparative Studies. Taehan Yongsang Uihakhoe Chi 2022; 83 (02) 331-343 https://pubmed.ncbi.nlm.nih.gov/36237934/
- 365 Santillan C, Chernyak V, Sirlin C. LI-RADS categories: concepts, definitions, and criteria. Abdom Radiol (NY) 2018; 43: 101-110
- 366 Santillan C, Fowler K, Kono Y. et al. LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents. Abdom Radiol (NY) 2018; 43: 75-81
- 367 Takahashi S, Kudo M, Chung H. et al. Initial treatment response is essential to improve survival in patients with hepatocellular carcinoma who underwent curative radiofrequency ablation therapy. Oncology 2007; 72 (Suppl. 01) 98-103 https://www.karger.com/Article/Pdf/111714
- 368 Guglielmi A, Ruzzenente A, Pachera S. et al. Comparison of seven staging systems in cirrhotic patients with hepatocellular carcinoma in a cohort of patients who underwent radiofrequency ablation with complete response. Am J Gastroenterol 2008; 103: 597-604
- 369 Yoon JH, Lee EJ, Cha SS. et al. Comparison of gadoxetic acid-enhanced MR imaging versus four-phase multi-detector row computed tomography in assessing tumor regression after radiofrequency ablation in subjects with hepatocellular carcinomas. J Vasc Interv Radiol 2010; 21: 348-356
- 370 Vauthey JN, Dixon E, Abdalla EK. et al. Pretreatment assessment of hepatocellular carcinoma: expert consensus statement. HPB (Oxford) 2010; 12: 289-299 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951814/pdf/hpb0012-0289.pdf
- 371 Schima W, Ba-Ssalamah A, Kurtaran A. et al. Post-treatment imaging of liver tumours. Cancer Imaging 2007; 7 Spec No A: S28-36 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727978/pdf/ci079047.pdf
- 372 Frieser M, Kiesel J, Lindner A. et al. Efficacy of contrast-enhanced US versus CT or MRI for the therapeutic control of percutaneous radiofrequency ablation in the case of hepatic malignancies. Ultraschall Med 2011; 32: 148-153 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0029-1245934.pdf
- 373 Schacherer D, Girlich C, Jung ME. et al. Transabdominal ultrasound with echoenhancement by contrast media in the diagnosis of hepatocellular carcinoma. Dig Dis 2009; 27: 109-113 https://www.karger.com/Article/Pdf/218342
- 374 Lencioni R, Piscaglia F, Bolondi L. Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma. J Hepatol 2008; 48: 848-857 https://www.sciencedirect.com/science/article/pii/S0168827808001244?via%3Dihub
- 375 Crocetti L, de Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Intervent Radiol 2010; 33: 11-17 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816824/pdf/270_2009_Article_9736.pdf
- 376 Tsai MC, Wang JH, Hung CH. et al. Favorable alpha-fetoprotein decrease as a prognostic surrogate in patients with hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol 2010; 25: 605-612 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1440-1746.2009.06115.x?download=true
- 377 Lencioni R. New data supporting modified RECIST (mRECIST) for Hepatocellular Carcinoma. Clin Cancer Res 2013; 19: 1312-1314 https://clincancerres.aacrjournals.org/content/clincanres/19/6/1312.full.pdf
- 378 Vincenzi B, Di Maio M, Silletta M. et al. Prognostic Relevance of Objective Response According to EASL Criteria and mRECIST Criteria in Hepatocellular Carcinoma Patients Treated with Loco-Regional Therapies: A Literature-Based Meta-Analysis. PLoS One 2015; 10: e0133488 https://iris.unito.it/retrieve/handle/2318/1572009/162002/pone.0133488.pdf
- 379 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020; 382: 1894-1905 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1915745?articleTools=true
- 380 Cheng AL, Kang YK, Chen Z. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34 https://www.sciencedirect.com/science/article/pii/S1470204508702857?via%3Dihub
- 381 Kudo M, Finn RS, Qin S. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 2018; 391: 1163-1173
- 382 Bruix J, Qin S, Merle P. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 2017; 389: 56-66
- 383 Abou-Alfa GK, Meyer T, Cheng AL. et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med 2018; 379: 54-63 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1717002?articleTools=true
- 384 Zhu AX, Kang YK, Yen CJ. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019; 20: 282-296
- 385 Facciorusso A, Tartaglia N, Villani R. et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Am J Transl Res 2021; 13 (04) 2379-2387 https://pubmed.ncbi.nlm.nih.gov/34017396/
- 386 Abou-Alfa Ghassan K, Lau G, Kudo M. et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence 2022; 1: EVIDoa2100070 https://doi.org/10.1056/EVIDoa2100070
- 387 Llovet JM, Ricci S, Mazzaferro V. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 https://www.nejm.org/doi/pdf/10.1056/NEJMoa0708857?articleTools=true
- 388 Zhu AX, Kang Y, Yen C. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2019; 20: 282-296
- 389 Cheng A, Qin S, Ikeda M. et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76 (04) 862-873 https://pubmed.ncbi.nlm.nih.gov/34902530/
- 390 Galle P, Finn R, Qin S. et al. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial. Lancet Oncol 2021; 22 (07) 991-1001 https://pubmed.ncbi.nlm.nih.gov/34051880/
- 391 Yau T, Park J, Finn R. et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022; 23 (01) 77-90 https://pubmed.ncbi.nlm.nih.gov/34914889/
- 392 Qin S, Kudo M, Meyer T. et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2023; 9 (12) 1651-1659 https://pubmed.ncbi.nlm.nih.gov/37796513/
- 393 Cainap C, Qin S, Huang WT. et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 2015; 33: 172-179 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279237/pdf/zlj172.pdf
- 394 Johnson PJ, Qin S, Park JW. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 2013; 31: 3517-3524
- 395 Zhu AX, Rosmorduc O, Evans TR. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2015; 33: 559-566 http://diposit.ub.edu/dspace/bitstream/2445/117402/1/649304.pdf
- 396 Cheng AL, Kang YK, Lin DY. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013; 31: 4067-4075
- 397 Llovet J, Kudo M, Merle P. et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24 (12) 1399-1410 https://pubmed.ncbi.nlm.nih.gov/38039993/
- 398 Marrero JA, Kudo M, Venook AP. et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J Hepatol 2016; 65: 1140-1147 https://www.journal-of-hepatology.eu/article/S0168-8278(16)30346-4/pdf
- 399 Ganten TM, Stauber RE, Schott E. et al. Sorafenib in Patients with Hepatocellular Carcinoma-Results of the Observational INSIGHT Study. Clin Cancer Res 2017; 23: 5720-5728 https://clincancerres.aacrjournals.org/content/clincanres/23/19/5720.full.pdf
- 400 Leal CRG, Magalhães C, Barbosa D. et al. Survival and tolerance to sorafenib in Child-Pugh B patients with hepatocellular carcinoma: a prospective study. Invest New Drugs 2018; 36: 911-918 https://link.springer.com/article/10.1007/s10637-018-0621-x
- 401 Pressiani T, Boni C, Rimassa L. et al. Sorafenib in patients with Child-Pugh class A and B advanced hepatocellular carcinoma: a prospective feasibility analysis. Ann Oncol 2013; 24: 406-411 https://www.annalsofoncology.org/article/S0923-7534(19)36863-2/pdf
- 402 Ogasawara S, Chiba T, Ooka Y. et al. Sorafenib treatment in Child-Pugh A and B patients with advanced hepatocellular carcinoma: safety, efficacy and prognostic factors. Invest New Drugs 2015; 33: 729-739 https://link.springer.com/article/10.1007%2Fs10637-015-0237-3
- 403 Rimini M, Persano M, Tada T. et al. Survival outcomes from atezolizumab plus bevacizumab versus Lenvatinib in Child Pugh B unresectable hepatocellular carcinoma patients. J Cancer Res Clin Oncol 2023; 149 (10) 7565-7577 https://pubmed.ncbi.nlm.nih.gov/36976353/
- 404 Kudo M, Matilla A, Santoro A. et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol 2021; 75 (03) 600-609 https://pubmed.ncbi.nlm.nih.gov/34051329/
- 405 El-Khoueiry A, Meyer T, Cheng A. et al. Safety and efficacy of cabozantinib for patients with advanced hepatocellular carcinoma who advanced to Child-Pugh B liver function at study week 8: a retrospective analysis of the CELESTIAL randomised controlled trial. BMC Cancer 2022; 22 (01) 377 https://pubmed.ncbi.nlm.nih.gov/35397508/
- 406 Huynh J, Cho M, Kim E. et al. Lenvatinib in patients with unresectable hepatocellular carcinoma who progressed to Child-Pugh B liver function. Ther Adv Med Oncol 2022; 14: 17588359221116608 https://pubmed.ncbi.nlm.nih.gov/36051472/
- 407 Xie E, Yeo Y, Scheiner B. et al. Immune Checkpoint Inhibitors for Child-Pugh Class B Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncol 2023; 9 (10) 1423-1431 https://pubmed.ncbi.nlm.nih.gov/37615958/
- 408 D’Alessio A, Fulgenzi C, Nishida N. et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology 2022; 76 (04) 1000-1012 https://pubmed.ncbi.nlm.nih.gov/35313048/
- 409 Jost-Brinkmann F, Demir M, Wree A. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: Results from a German real-world cohort. Aliment Pharmacol Ther 2023; 57 (11) 1313-1325 https://pubmed.ncbi.nlm.nih.gov/36883351/
- 410 de Castro T, Jochheim L, Bathon M. et al. Atezolizumab and bevacizumab in patients with advanced hepatocellular carcinoma with impaired liver function and prior systemic therapy: a real-world experience. Ther Adv Med Oncol 2022; 14: 17588359221080298 https://pubmed.ncbi.nlm.nih.gov/35251317/
- 411 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18: 1624-1636 https://www.sciencedirect.com/science/article/abs/pii/S1470204517306836
- 412 Lencioni R, Llovet JM, Han G. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol 2016; 64: 1090-1098 https://www.ncbi.nlm.nih.gov/pubmed/26809111
- 413 Meyer T, Fox R, Ma YT. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 2017; 2: 565-575 https://www.thelancet.com/pdfs/journals/langas/PIIS2468-1253(17)30156-5.pdf
- 414 Cai R, Song R, Pang P. et al. Transcatheter arterial chemoembolization plus sorafenib versus transcatheter arterial chemoembolization alone to treat advanced hepatocellular carcinoma: a meta-analysis. BMC Cancer 2017; 17 (01) 714 https://pubmed.ncbi.nlm.nih.gov/29110700/
- 415 Dai Y, Jiang H, Jiang H. et al. Optimal timing of combining sorafenib with trans-arterial chemoembolization in patients with hepatocellular carcinoma: A meta-analysis. Transl Oncol 2021; 14 (12) 101238 https://pubmed.ncbi.nlm.nih.gov/34628285/
- 416 Duan R, Gong F, Wang Y. et al. Transarterial chemoembolization (TACE) plus tyrosine kinase inhibitors versus TACE in patients with hepatocellular carcinoma: a systematic review and meta-analysis. World J Surg Oncol 2023; 21 (01) 120 https://pubmed.ncbi.nlm.nih.gov/37004052/
- 417 Zhao S, Zhang T, Dou W. et al. A comparison of transcatheter arterial chemoembolization used with and without apatinib for intermediate- to advanced-stage hepatocellular carcinoma: a systematic review and meta-analysis. Ann Transl Med 2020; 8 (08) 542 https://pubmed.ncbi.nlm.nih.gov/32411765/
- 418 Gu H, Li J, You N. et al. Efficacy and safety of apatinib combined with transarterial chemoembolization (TACE) in treating patients with recurrent hepatocellular carcinoma. Ann Transl Med 2020; 8 (24) 1677 https://pubmed.ncbi.nlm.nih.gov/33490189/
- 419 Kudo M, Ueshima K, Ikeda M. et al. Final Results of TACTICS: A Randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022; 11 (04) 354-367 https://pubmed.ncbi.nlm.nih.gov/35978604/
- 420 Kudo M, Ueshima K, Ikeda M. et al. Final Results of TACTICS: A Randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022; 11 (04) 354-367 https://pubmed.ncbi.nlm.nih.gov/35978604/
- 421 Ding X, Sun W, Li W. et al. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line treatment for hepatocellular carcinoma with portal vein tumor thrombus: A prospective randomized study. Cancer 2021; 127 (20) 3782-3793 https://pubmed.ncbi.nlm.nih.gov/34237154/
- 422 Cai M, Huang W, Huang J. et al. Transarterial Chemoembolization Combined With Lenvatinib Plus PD-1 Inhibitor for Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study. Front Immunol 2022; 13: 848387 https://pubmed.ncbi.nlm.nih.gov/35300325/
- 423 Marinelli B, Kim E, D’Alessio A. et al. Integrated use of PD-1 inhibition and transarterial chemoembolization for hepatocellular carcinoma: evaluation of safety and efficacy in a retrospective, propensity score-matched study. J Immunother Cancer 2022; 10 (06) https://pubmed.ncbi.nlm.nih.gov/35710293/
- 424 Fan W, Zhu B, Yue S. et al. Idarubicin-Loaded DEB-TACE plus Lenvatinib versus Lenvatinib for patients with advanced hepatocellular carcinoma: A propensity score-matching analysis. Cancer Med 2023; 12 (01) 61-72 https://pubmed.ncbi.nlm.nih.gov/35698292/
- 425 Ricke J, Klümpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71: 1164-1174 https://www.journal-of-hepatology.eu/article/S0168-8278(19)30472-6/fulltext
- 426 Kudo M, Ueshima K, Ikeda M. et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020; 69: 1492-1501 https://www.ncbi.nlm.nih.gov/pubmed/31801872
- 427 Kudo M, Ikeda M, Ueshima K. et al. Response Evaluation Criteria in Cancer of the Liver version 5 (RECICL 2019 revised version). Hepatol Res 2019; 49: 981-989 https://www.ncbi.nlm.nih.gov/pubmed/31231916
- 428 Kudo M, Ueshima K, Ikeda M. et al. TACTICS: Final overall survival (OS) data from a randomized, open label, multicenter, phase II trial of transcatheter arterial chemoembolization (TACE) therapy in combination with sorafenib as compared with TACE alone in patients (pts) with hepatocellular carcinoma (HCC). Journal of Clinical Oncology 2021; 39: 270-270 https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.3_suppl.270
- 429 Bruix J, Qin S, Merle P. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389: 56-66 https://www.sciencedirect.com/science/article/pii/S0140673616324539?via%3Dihub
- 430 Finn R, Ryoo B, Merle P. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2020; 38 (03) 193-202 https://pubmed.ncbi.nlm.nih.gov/31790344/
- 431 Rao Q, Li M, Xu W. et al. Clinical benefits of PD-1/PD-L1 inhibitors in advanced hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int 2020; 14 (05) 765-775 https://pubmed.ncbi.nlm.nih.gov/32572818/
- 432 Parikh N, Marshall A, Betts K. et al. Network meta-analysis of nivolumab plus ipilimumab in the second-line setting for advanced hepatocellular carcinoma. J Comp Eff Res 2021; 10 (05) 343-352 https://pubmed.ncbi.nlm.nih.gov/33442996/
- 433 He S, Jiang W, Fan K. et al. The Efficacy and Safety of Programmed Death-1 and Programmed Death Ligand 1 Inhibitors for the Treatment of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11: 626984 https://pubmed.ncbi.nlm.nih.gov/33833987/
- 434 Kudo M, Finn R, Edeline J. et al. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer 2022; 167: 1-12 https://pubmed.ncbi.nlm.nih.gov/35364421/
- 435 Yau T, Kang Y, Kim T. et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol 2020; 6 (11) e204564 https://pubmed.ncbi.nlm.nih.gov/33001135/
- 436 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase ½ dose escalation and expansion trial. Lancet 2017; 389: 2492-2502 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539326/pdf/nihms-1623792.pdf
- 437 Zhu AX, Finn RS, Edeline J. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19: 940-952 https://www.ncbi.nlm.nih.gov/pubmed/29875066
- 438 Finn RS, Ryoo BY, Merle P. et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2020; 38: 193-202 https://www.ncbi.nlm.nih.gov/pubmed/31790344
- 439 Qin S, Chen Z, Fang W. et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. Journal of Clinical Oncology 2022; 40: 383 https://doi.org/10.1200/JCO.2022.40.4_suppl.383
- 440 Dinh T, Utria A, Barry K. et al. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19 (05) 328-342 https://pubmed.ncbi.nlm.nih.gov/35190728/
- 441 Honeyman J, Simon E, Robine N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 2014; 343: 1010-1014 https://pubmed.ncbi.nlm.nih.gov/24578576/
- 442 Ramai D, Ofosu A, Lai J. et al. Fibrolamellar Hepatocellular Carcinoma: A Population-Based Observational Study. Dig Dis Sci 2021; 66 (01) 308-314 https://pubmed.ncbi.nlm.nih.gov/32052215/
- 443 Rimassa L, Personeni N, Czauderna C. et al. Systemic treatment of HCC in special populations. J Hepatol 2021; 74 (04) 931-943 https://pubmed.ncbi.nlm.nih.gov/33248171/
- 444 Wege H, Schulze K, von Felden J. et al. Rare variants of primary liver cancer: Fibrolamellar, combined, and sarcomatoid hepatocellular carcinomas. Eur J Med Genet 2021; 64 (11) 104313 https://pubmed.ncbi.nlm.nih.gov/34418585/
- 445 Da Fonseca L, Yamamoto V, Trinconi Cunha M. et al. Treatment Outcomes in Patients with Advanced Fibrolamellar Hepatocellular Carcinoma Under Systemic Treatment: Analysis of Clinical Characteristics, Management, and Radiomics. J Hepatocell Carcinoma 2023; 10: 1923-1933 https://pubmed.ncbi.nlm.nih.gov/37933267/
- 446 Chakrabarti S, Tella S, Kommalapati A. et al. Clinicopathological features and outcomes of fibrolamellar hepatocellular carcinoma. J Gastrointest Oncol 2019; 10 (03) 554-561 https://pubmed.ncbi.nlm.nih.gov/31183207/
- 447 Gras P, Truant S, Boige V. et al. Prolonged Complete Response after GEMOX Chemotherapy in a Patient with Advanced Fibrolamellar Hepatocellular Carcinoma. Case Rep Oncol 2012; 5 (01) 169-172 https://pubmed.ncbi.nlm.nih.gov/22666208/
- 448 Patt Y, Hassan M, Lozano R. et al. Phase II trial of systemic continuous fluorouracil and subcutaneous recombinant interferon Alfa-2b for treatment of hepatocellular carcinoma. J Clin Oncol 2003; 21 (03) 421-427 https://pubmed.ncbi.nlm.nih.gov/12560429/
- 449 Kim A, Gani F, Layman A. et al. Multiple Immune-Suppressive Mechanisms in Fibrolamellar Carcinoma. Cancer Immunol Res 2019; 7 (05) 805-812 https://pubmed.ncbi.nlm.nih.gov/30902819/
- 450 Chen K, Popovic A, Hsiehchen D. et al. Clinical Outcomes in Fibrolamellar Hepatocellular Carcinoma Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14 (21) https://pubmed.ncbi.nlm.nih.gov/36358766/
- 451 Berger R, Dinstag G, Tirosh O. et al. Fibrolamellar carcinoma transcriptomic-based treatment prediction: complete response after nivolumab and ipilimumab. J Immunother Cancer 2022; 10 (12) https://pubmed.ncbi.nlm.nih.gov/36600603/
- 452 De Toni E, Roessler D. Using dual checkpoint blockade to treat fibrolamellar hepatocellular carcinoma. Gut 2020; 69 (11) 2056-2058 https://pubmed.ncbi.nlm.nih.gov/32051207/
- 453 Kang S, Magliocca J, Sellers M. et al. Successful Liver Transplantation of Recurrent Fibrolamellar Carcinoma following Clinical and Pathologic Complete Response to Triple Immunochemotherapy: A Case Report. Oncol Res Treat 2022; 45 (07) 430-437 https://pubmed.ncbi.nlm.nih.gov/35537414/
- 454 Gottlieb S, O’Grady C, Gliksberg A. et al. Early Experiences with Triple Immunochemotherapy in Adolescents and Young Adults with High-Risk Fibrolamellar Carcinoma. Oncology 2021; 99 (05) 310-317 https://pubmed.ncbi.nlm.nih.gov/33690232/
- 455 Bauer J, Köhler N, Maringer Y. et al. The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat Commun 2022; 13 (01) 6401 https://pubmed.ncbi.nlm.nih.gov/36302754/
- 456 Nagtegaal I, Odze R, Klimstra D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76 (02) 182-188 https://pubmed.ncbi.nlm.nih.gov/31433515/
- 457 Eschrich J, Kobus Z, Geisel D. et al. The Diagnostic Approach towards Combined Hepatocellular-Cholangiocarcinoma-State of the Art and Future Perspectives. Cancers (Basel) 2023; 15 (01) https://pubmed.ncbi.nlm.nih.gov/36612297/
- 458 Gigante E, Paradis V, Ronot M. et al. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3 (01) 100174 https://pubmed.ncbi.nlm.nih.gov/33205035/
- 459 Xue R, Chen L, Zhang C. et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019; 35 (06) 932-947 https://pubmed.ncbi.nlm.nih.gov/31130341/
- 460 Gigante E, Hobeika C, Le Bail B. et al. Systemic Treatments with Tyrosine Kinase Inhibitor and Platinum-Based Chemotherapy in Patients with Unresectable or Metastatic Hepatocholangiocarcinoma. Liver Cancer 2022; 11 (05) 460-473 https://pubmed.ncbi.nlm.nih.gov/36158591/
- 461 Pomej K, Balcar L, Shmanko K. et al. Clinical characteristics and outcome of patients with combined hepatocellular-cholangiocarcinoma-a European multicenter cohort. ESMO Open 2023; 8 (01) 100783 https://pubmed.ncbi.nlm.nih.gov/36753993/
- 462 Jang Y, Kim E, Kim H. et al. Clinical outcomes of immune checkpoint inhibitors in unresectable or metastatic combined hepatocellular-cholangiocarcinoma. J Cancer Res Clin Oncol 2023; 149 (10) 7547-7555 https://pubmed.ncbi.nlm.nih.gov/36971796/
- 463 Rizell M, Åberg F, Perman M. et al. Checkpoint Inhibition Causing Complete Remission of Metastatic Combined Hepatocellular-Cholangiocarcinoma after Hepatic Resection. Case Rep Oncol 2020; 13 (01) 478-484 https://pubmed.ncbi.nlm.nih.gov/32508620/
- 464 Satake T, Shibuki T, Watanabe K. et al. Case Report: Atezolizumab plus bevacizumab for combined hepatocellular-cholangiocarcinoma. Front Oncol 2023; 13: 1234113 https://pubmed.ncbi.nlm.nih.gov/37546425/
- 465 Kim E, Yoo C, Kang H. et al. Clinical outcomes of systemic therapy in patients with unresectable or metastatic combined hepatocellular-cholangiocarcinoma. Liver Int 2021; 41 (06) 1398-1408 https://pubmed.ncbi.nlm.nih.gov/33548073/
- 466 Kobayashi S, Terashima T, Shiba S. et al. Multicenter retrospective analysis of systemic chemotherapy for unresectable combined hepatocellular and cholangiocarcinoma. Cancer Sci 2018; 109 (08) 2549-2557 https://pubmed.ncbi.nlm.nih.gov/29856900/
- 467 Rogers J, Bolonesi R, Rashid A. et al. Systemic therapy for unresectable, mixed hepatocellular-cholangiocarcinoma: treatment of a rare malignancy. J Gastrointest Oncol 2017; 8 (02) 347-351 https://pubmed.ncbi.nlm.nih.gov/28480073/
- 468 Trikalinos N, Zhou A, Doyle M. et al. Systemic Therapy for Combined Hepatocellular-Cholangiocarcinoma: A Single-Institution Experience. J Natl Compr Canc Netw 2018; 16 (10) 1193-1199 https://pubmed.ncbi.nlm.nih.gov/30323089/
- 469 Salimon M, Prieux-Klotz C, Tougeron D. et al. Gemcitabine plus platinum-based chemotherapy for first-line treatment of hepatocholangiocarcinoma: an AGEO French multicentre retrospective study. Br J Cancer 2018; 118 (03) 325-330 https://pubmed.ncbi.nlm.nih.gov/29169182/
- 470 Qin S, Chen M, Cheng A. et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet 2023; 402: 1835-1847 https://pubmed.ncbi.nlm.nih.gov/37871608/
- 471 Bruix J, Takayama T, Mazzaferro V. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 2015; 16: 1344-1354 https://www.sciencedirect.com/science/article/pii/S1470204515001989?via%3Dihub
- 472 Vogel A, Grant R, Meyer T. et al. Adjuvant and neoadjuvant therapies for hepatocellular carcinoma. Hepatology 2023; https://pubmed.ncbi.nlm.nih.gov/38108634/
- 473 Ho W, Zhu Q, Durham J. et al. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. Nat Cancer 2021; 2 (09) 891-903 https://pubmed.ncbi.nlm.nih.gov/34796337/
- 474 Kaseb A, Hasanov E, Cao H. et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 208-218 https://pubmed.ncbi.nlm.nih.gov/35065057/
- 475 Marron T, Fiel M, Hamon P. et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 219-229 https://pubmed.ncbi.nlm.nih.gov/35065058/
- 476 Xia Y, Tang W, Qian X. et al. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase II clinical trial. J Immunother Cancer 2022; 10 (04) https://pubmed.ncbi.nlm.nih.gov/35379737/
- 477 Katzenstein HM, Krailo MD, Malogolowkin MH. et al. Hepatocellular carcinoma in children and adolescents: results from the Pediatric Oncology Group and the Children’s Cancer Group intergroup study. J Clin Oncol 2002; 20: 2789-2797
- 478 Czauderna P, Mackinlay G, Perilongo G. et al. Hepatocellular carcinoma in children: results of the first prospective study of the International Society of Pediatric Oncology group. J Clin Oncol 2002; 20: 2798-2804 https://www.ncbi.nlm.nih.gov/pubmed/12065556
- 479 Schmid I, von Schweinitz D. Pediatric hepatocellular carcinoma: challenges and solutions. J Hepatocell Carcinoma 2017; 4: 15-21 https://pubmed.ncbi.nlm.nih.gov/28144610/
- 480 Schmid I, Häberle B, Albert MH. et al. Sorafenib and cisplatin/doxorubicin (PLADO) in pediatric hepatocellular carcinoma. Pediatr Blood Cancer 2012; 58: 539-544 https://onlinelibrary.wiley.com/doi/abs/10.1002/pbc.23295
- 481 Villani A, Davidson S, Kanwar N. et al. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. Nat Cancer 2023; 4 (02) 203-221 https://pubmed.ncbi.nlm.nih.gov/36585449/
- 482 Schroeder C, Faust U, Krauße L. et al. Clinical trio genome sequencing facilitates the interpretation of variants in cancer predisposition genes in paediatric tumour patients. Eur J Hum Genet 2023; 31 (10) 1139-1146 https://pubmed.ncbi.nlm.nih.gov/37507557/
- 483 Cohen-Gogo S, Denburg A, Villani A. et al. Precision oncology for children: A primer for paediatricians. Paediatr Child Health 2023; 28 (05) 278-284 https://pubmed.ncbi.nlm.nih.gov/37484033/
- 484 Parsons D, Roy A, Yang Y. et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol 2016; 2 (05) 616-624 https://pubmed.ncbi.nlm.nih.gov/26822237/
- 485 Atchison EA, Gridley G, Carreon JD. et al. Risk of cancer in a large cohort of US veterans with diabetes. Int J Cancer 2011; 128: 635-643 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.25362?download=true
- 486 de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. Liver Int 2012; 32: 441-448 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1478-3231.2011.02614.x?download=true
- 487 El-Serag HB, Engels EA, Landgren O. et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of US veterans. Hepatology 2009; 49: 116-123 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22606?download=true
- 488 Huang Y, You L, Xie W. et al. Smoking and risk of cholangiocarcinoma: a systematic review and meta-analysis. Oncotarget 2017; 8: 100570-100581 https://www.oncotarget.com/article/20141/pdf/
- 489 Jing W, Jin G, Zhou X. et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur J Cancer Prev 2012; 21: 24-31
- 490 Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol 2012; 57: 69-76 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804834/pdf/nihms363811.pdf
- 491 Wongjarupong N, Assavapongpaiboon B, Susantitaphong P. et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol 2017; 17: 149 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721586/pdf/12876_2017_Article_696.pdf
- 492 Park JY, Hong SP, Kim YJ. et al. Long-term follow up of gallbladder polyps. J Gastroenterol Hepatol 2009; 24: 219-222 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1440-1746.2008.05689.x?download=true
- 493 Nagaraja V, Eslick GD. Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther 2014; 39: 745-750 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/apt.12655?download=true
- 494 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383: 2168-2179 https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(13)61903-0.pdf
- 495 Rizvi S, Khan SA, Hallemeier CL. et al. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15: 95-111
- 496 Valle JW, Borbath I, Khan SA. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27: v28-v37 https://pubmed.ncbi.nlm.nih.gov/27664259/
- 497 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145: 1215-1229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862291/pdf/nihms535439.pdf
- 498 Kamsa-ard S, Kamsa-ard S, Luvira V. et al. Risk Factors for Cholangiocarcinoma in Thailand: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2018; 19: 605-614 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980830/pdf/APJCP-19-605.pdf
- 499 Qian MB, Utzinger J, Keiser J. et al. Clonorchiasis. Lancet 2016; 387: 800-810
- 500 Qian MB, Zhou XN. Global burden of cancers attributable to liver flukes. Lancet Glob Health 2017; 5: e139
- 501 You MS, Lee SH, Kang J. et al. Natural Course and Risk of Cholangiocarcinoma in Patients with Recurrent Pyogenic Cholangitis: A Retrospective Cohort Study. Gut Liver 2019; 13: 373-379 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529165/pdf/gnl-13-373.pdf
- 502 Ten Hove A, de Meijer VE, Hulscher JBF. et al. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg 2018; 105: 482-490 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900735/pdf/BJS-105-482.pdf
- 503 Fahrner R, Dennler SG, Inderbitzin D. Risk of malignancy in Caroli disease and syndrome: A systematic review. World J Gastroenterol 2020; 26: 4718-4728 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445861/pdf/WJG-26-4718.pdf
- 504 Claessen MM, Vleggaar FP, Tytgat KM. et al. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol 2009; 50: 158-164
- 505 Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology 2011; 54: 173-184 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.24351?download=true
- 506 McGee EE, Jackson SS, Petrick JL. et al. Smoking, Alcohol, and Biliary Tract Cancer Risk: A Pooling Project of 26 Prospective Studies. J Natl Cancer Inst 2019; 111: 1263-1278 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910180/pdf/djz103.pdf
- 507 Clements O, Eliahoo J, Kim JU. et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J Hepatol 2020; 72: 95-103
- 508 Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol 2019; 8: 31 http://cco.amegroups.com/article/view/28517/25064
- 509 Rawla P, Sunkara T, Thandra KC. et al. Epidemiology of gallbladder cancer. Clin Exp Hepatol 2019; 5: 93-102 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728871/pdf/CEH-5-36699.pdf
- 510 Kratzer W, Schmid A, Akinli AS. et al. [Gallbladder polyps: prevalence and risk factors]. Ultraschall Med 2011; 32 (Suppl. 01) S68-S73 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0029-1245265.pdf
- 511 Schnelldorfer T. Porcelain gallbladder: a benign process or concern for malignancy?. J Gastrointest Surg 2013; 17: 1161-1168 https://link.springer.com/content/pdf/10.1007/s11605-013-2170-0.pdf
- 512 DesJardins H, Duy L, Scheirey C. et al. Porcelain Gallbladder: Is Observation a Safe Option in Select Populations?. J Am Coll Surg 2018; 226: 1064-1069 https://www.sciencedirect.com/science/article/abs/pii/S1072751518301571?via%3Dihub
- 513 Patel S, Roa JC, Tapia O. et al. Hyalinizing cholecystitis and associated carcinomas: clinicopathologic analysis of a distinctive variant of cholecystitis with porcelain-like features and accompanying diagnostically challenging carcinomas. Am J Surg Pathol 2011; 35: 1104-1113
- 514 Gutt C, Jenssen C, Barreiros AP. et al. [Updated S3-Guideline for Prophylaxis, Diagnosis and Treatment of Gallstones German Society for Digestive and Metabolic Diseases (DGVS) and German Society for Surgery of the Alimentary Tract (DGAV) – AWMF Registry 021/008]. Z Gastroenterol 2018; 56: 912-966 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0644-2972.pdf
- 515 Eaton JE, Thackeray EW, Lindor KD. Likelihood of malignancy in gallbladder polyps and outcomes following cholecystectomy in primary sclerosing cholangitis. Am J Gastroenterol 2012; 107: 431-439
- 516 [Practice guideline autoimmune liver diseases – AWMF-Reg No 021-27]. Z Gastroenterol 2017; 55: 1135-1226 https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-120199
- 517 Wiles R, Thoeni RF, Barbu ST. et al. Management and follow-up of gallbladder polyps: Joint guidelines between the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), European Association for Endoscopic Surgery and other Interventional Techniques (EAES), International Society of Digestive Surgery - European Federation (EFISDS) and European Society of Gastrointestinal Endoscopy (ESGE). Eur Radiol 2017; 27: 3856-3866 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544788/pdf/330_2017_Article_4742.pdf
- 518 Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: Epidemiology, prevention, and surveillance strategies. World J Gastroenterol 2019; 25: 659-671 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378537/pdf/WJG-25-659.pdf
- 519 Charatcharoenwitthaya P, Enders FB, Halling KC. et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 2008; 48: 1106-1117 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.22441?download=true
- 520 Naitoh I, Nakazawa T, Kato A. et al. Predictive factors for positive diagnosis of malignant biliary strictures by transpapillary brush cytology and forceps biopsy. J Dig Dis 2016; 17: 44-51 https://onlinelibrary.wiley.com/doi/abs/10.1111/1751-2980.12311
- 521 Navaneethan U, Njei B, Lourdusamy V. et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc 2015; 81: 168-176 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824293/pdf/nihms773255.pdf
- 522 Klimstra DS LA. Tumors of the gallbladder and extrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 265-294
- 523 Moeini A, Sia D, Zhang Z. et al. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 2017; 66: 952-961
- 524 Paradis V SP. Other tumours of the digestive system. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.). Lyon: Digestive System Tumours. International Agency for Research on Cancer; 2019: 499-510
- 525 C W. TNM-Klassifikation maligner Tumoren. 8 Auflage, korrigierter Nachdruck. Weinheim: Wiley-VCH; 2020
- 526 Wagner G HP. Organspezifische Tumordokumentation – Prinzipien und Verschlüsselungsanweisungen für Klinik und Praxis. Online-version: deutsche Krebsgesellschaft. Frankfurt (Main). 1995
- 527 Khuntikeo N, Chamadol N, Yongvanit P. et al. Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 2015; 15: 459 https://www.ncbi.nlm.nih.gov/pubmed/26054405
- 528 Li R, Zhang X, Ma KS. et al. Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdom Imaging 2013; 38: 112-119 https://link.springer.com/content/pdf/10.1007%2Fs00261-012-9854-x.pdf
- 529 Xu HX, Chen LD, Liu LN. et al. Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. Br J Radiol 2012; 85: 1029-1037 https://www.ncbi.nlm.nih.gov/pubmed/22374276
- 530 Wildner D, Bernatik T, Greis C. et al. CEUS in hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in 320 patients – early or late washout matters: a subanalysis of the DEGUM multicenter trial. Ultraschall Med 2015; 36: 132-139 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0034-1399147.pdf
- 531 Bach AM, Hann LE, Brown KT. et al. Portal vein evaluation with US: comparison to angiography combined with CT arterial portography. Radiology 1996; 201: 149-154 https://www.ncbi.nlm.nih.gov/pubmed/8816536
- 532 Wennmacker SZ, Lamberts MP, Di Martino M. et al. Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps. Cochrane Database Syst Rev 2018; 8: CD012233 https://www.ncbi.nlm.nih.gov/pubmed/30109701
- 533 Zhang Y, Uchida M, Abe T. et al. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr 1999; 23: 670-677 https://www.ncbi.nlm.nih.gov/pubmed/10524843
- 534 Johnson PT, Fishman EK. Routine use of precontrast and delayed acquisitions in abdominal CT: time for change. Abdom Imaging 2013; 38: 215-223 https://www.ncbi.nlm.nih.gov/pubmed/23132390
- 535 Fabrega-Foster K, Ghasabeh MA, Pawlik TM. et al. Multimodality imaging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2017; 6: 67-78 https://www.ncbi.nlm.nih.gov/pubmed/28503554
- 536 Valls C, Guma A, Puig I. et al. Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging 2000; 25: 490-496 https://www.ncbi.nlm.nih.gov/pubmed/10931983
- 537 Kim JH, Won HJ, Shin YM. et al. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. Am J Roentgenol 2011; 196: W205-W209 https://www.ajronline.org/doi/pdfplus/10.2214/Am J Roentgenol.10.4937
- 538 Bridgewater J, Galle PR, Khan SA. et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014; 60: 1268-1289 https://www.ncbi.nlm.nih.gov/pubmed/24681130
- 539 Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging 2015; 42: 1165-1179 https://www.ncbi.nlm.nih.gov/pubmed/25447417
- 540 Murakami T, Nakamura H, Tsuda K. et al. Contrast-enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. J Magn Reson Imaging 1995; 5: 165-170 https://www.ncbi.nlm.nih.gov/pubmed/7766977
- 541 Hamrick-Turner J, Abbitt PL, Ros PR. Intrahepatic cholangiocarcinoma: MR appearance. Am J Roentgenol 1992; 158: 77-79 https://www.ncbi.nlm.nih.gov/pubmed/1309221
- 542 Fan ZM, Yamashita Y, Harada M. et al. Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. Am J Roentgenol 1993; 161: 313-317 https://www.ncbi.nlm.nih.gov/pubmed/8392787
- 543 https://www.ncbi.nlm.nih.gov/pubmed/24559750
- 544 Chung YE, Kim MJ, Park YN. et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009; 29: 683-700 https://www.ncbi.nlm.nih.gov/pubmed/19448110
- 545 Park HJ, Kim YK, Park MJ. et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 2013; 38: 793-801 https://www.ncbi.nlm.nih.gov/pubmed/22829097
- 546 Fattach HE, Dohan A, Guerrache Y. et al. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging. Eur J Radiol 2015; 84: 1444-1451 https://www.ncbi.nlm.nih.gov/pubmed/26022518
- 547 Navaneethan U, Njei B, Venkatesh PG. et al. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf) 2015; 3: 209-215 https://www.ncbi.nlm.nih.gov/pubmed/25169922
- 548 Pahade JK, Juice D, Staib L. et al. Is there an added value of a hepatobiliary phase with gadoxetate disodium following conventional MRI with an extracellular gadolinium agent in a single imaging session for detection of primary hepatic malignancies?. Abdom Radiol (NY) 2016; 41: 1270-1284 https://link.springer.com/content/pdf/10.1007%2Fs00261-016-0635-9.pdf
- 549 Park HJ, Kim SH, Jang KM. et al. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures. Eur Radiol 2014; 24: 947-958 https://www.ncbi.nlm.nih.gov/pubmed/24487774
- 550 Lee J, Kim SH, Kang TW. et al. Mass-forming Intrahepatic Cholangiocarcinoma: Diffusion-weighted Imaging as a Preoperative Prognostic Marker. Radiology 2016; 281: 119-128 https://www.ncbi.nlm.nih.gov/pubmed/27115053
- 551 Rupp C, Hippchen T, Bruckner T. et al. Effect of scheduled endoscopic dilatation of dominant strictures on outcome in patients with primary sclerosing cholangitis. Gut 2019; 68: 2170-2178 https://www.ncbi.nlm.nih.gov/pubmed/30910856
- 552 Zhang H, Zhu J, Ke F. et al. Radiological Imaging for Assessing the Respectability of Hilar Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Biomed Res Int 2015; 2015: 497942 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569758/pdf/BMRI2015-497942.pdf
- 553 Lamarca A, Barriuso J, Chander A. et al. 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol 2019; 71 (01) 115-129 https://pubmed.ncbi.nlm.nih.gov/30797051/
- 554 Feng ST, Wu L, Cai H. et al. Cholangiocarcinoma: spectrum of appearances on Gd-EOB-DTPA-enhanced MR imaging and the effect of biliary function on signal intensity. BMC Cancer 2015; 15: 38 https://www.ncbi.nlm.nih.gov/pubmed/25655565
- 555 Kim SH, Lee CH, Kim BH. et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2012; 36: 704-709 https://www.ncbi.nlm.nih.gov/pubmed/23192208
- 556 Kiefer LS, Sekler J, Gückel B. et al. Impact of 18F-FDG-PET/CT on Clinical Management in Patients with Cholangiocellular Carcinoma. BJR|Open 2021; 3: 20210008 https://doi.org/10.1259/bjro.20210008
- 557 De Moura DTH, Moura EGH, Bernardo WM. et al. Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis. Endosc Ultrasound 2018; 7: 10-19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838722/pdf/EUS-7-10.pdf
- 558 Heimbach JK, Sanchez W, Rosen CB. et al. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford) 2011; 13: 356-360 https://www.ncbi.nlm.nih.gov/pubmed/21492336
- 559 El Chafic AH, Dewitt J, Leblanc JK. et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy 2013; 45: 883-889 https://www.ncbi.nlm.nih.gov/pubmed/24165813
- 560 Korc P, Sherman S. ERCP tissue sampling. Gastrointest Endosc 2016; 84: 557-571 https://www.ncbi.nlm.nih.gov/pubmed/27156656
- 561 Fogel EL, deBellis M, McHenry L. et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest Endosc 2006; 63: 71-77 https://www.ncbi.nlm.nih.gov/pubmed/16377319
- 562 Shieh FK, Luong-Player A, Khara HS. et al. Improved endoscopic retrograde cholangiopancreatography brush increases diagnostic yield of malignant biliary strictures. World J Gastrointest Endosc 2014; 6: 312-317 https://www.ncbi.nlm.nih.gov/pubmed/25031790
- 563 Glasbrenner B, Ardan M, Boeck W. et al. Prospective evaluation of brush cytology of biliary strictures during endoscopic retrograde cholangiopancreatography. Endoscopy 1999; 31: 712-717 https://www.ncbi.nlm.nih.gov/pubmed/10604612
- 564 Macken E, Drijkoningen M, Van Aken E. et al. Brush cytology of ductal strictures during ERCP. Acta Gastroenterol Belg 2000; 63: 254-9 https://www.ncbi.nlm.nih.gov/pubmed/11189981
- 565 Mansfield JC, Griffin SM, Wadehra V. et al. A prospective evaluation of cytology from biliary strictures. Gut 1997; 40: 671-677 https://www.ncbi.nlm.nih.gov/pubmed/9203949
- 566 Trikudanathan G, Navaneethan U, Njei B. et al. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc 2014; 79: 783-789 https://www.ncbi.nlm.nih.gov/pubmed/24140129
- 567 Draganov PV, Chauhan S, Wagh MS. et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: a prospective, long-term follow-up study. Gastrointest Endosc 2012; 75: 347-353 https://www.ncbi.nlm.nih.gov/pubmed/22248602
- 568 Sugiyama M, Atomi Y, Wada N. et al. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 1996; 91: 465-467 https://www.ncbi.nlm.nih.gov/pubmed/8633492
- 569 Jailwala J, Fogel EL, Sherman S. et al. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc 2000; 51: 383-390 https://www.ncbi.nlm.nih.gov/pubmed/10744806
- 570 Hartman DJ, Slivka A, Giusto DA. et al. Tissue yield and diagnostic efficacy of fluoroscopic and cholangioscopic techniques to assess indeterminate biliary strictures. Clin Gastroenterol Hepatol 2012; 10: 1042-1046 https://www.ncbi.nlm.nih.gov/pubmed/22677575
- 571 Pugliese V, Conio M, Nicolo G. et al. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study. Gastrointest Endosc 1995; 42: 520-526 https://www.ncbi.nlm.nih.gov/pubmed/8674921
- 572 Kitajima Y, Ohara H, Nakazawa T. et al. Usefulness of transpapillary bile duct brushing cytology and forceps biopsy for improved diagnosis in patients with biliary strictures. J Gastroenterol Hepatol 2007; 22: 1615-1620 https://www.ncbi.nlm.nih.gov/pubmed/17573833
- 573 Navaneethan U, Hasan MK, Lourdusamy V. et al. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc 2015; 82: 608-614 https://www.ncbi.nlm.nih.gov/pubmed/26071061
- 574 Gerges C, Beyna T, Tang RSY. et al. Digital single-operator peroral cholangioscopy-guided biopsy versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized multicenter trial (with video). Gastrointest Endosc 2019; https://www.ncbi.nlm.nih.gov/pubmed/31778656
- 575 Aabakken L, Karlsen TH, Albert J. et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy 2017; 49: 588-608 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0043-107029.pdf
- 576 Bagante F, Spolverato G, Weiss M. et al. Assessment of the Lymph Node Status in Patients Undergoing Liver Resection for Intrahepatic Cholangiocarcinoma: the New Eighth Edition AJCC Staging System. J Gastrointest Surg 2018; 22: 52-59 https://link.springer.com/content/pdf/10.1007/s11605-017-3426-x.pdf
- 577 Bagante F, Spolverato G, Weiss M. et al. Surgical Management of Intrahepatic Cholangiocarcinoma in Patients with Cirrhosis: Impact of Lymphadenectomy on Peri-Operative Outcomes. World J Surg 2018; 42: 2551-2560 https://link.springer.com/content/pdf/10.1007/s00268-017-4453-1.pdf
- 578 Ebata T, Mizuno T, Yokoyama Y. et al. Surgical resection for Bismuth type IV perihilar cholangiocarcinoma. Br J Surg 2018; 105: 829-838 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.10556?download=true
- 579 El-Diwany R, Pawlik TM, Ejaz A. Intrahepatic Cholangiocarcinoma. Surg Oncol Clin N Am 2019; 28: 587-599 https://www.sciencedirect.com/science/article/abs/pii/S1055320719300444?via%3Dihub
- 580 Lang H, Sotiropoulos GC, Sgourakis G. et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg 2009; 208: 218-228
- 581 Schnitzbauer AA, Eberhard J, Bartsch F. et al. The MEGNA Score and Preoperative Anemia are Major Prognostic Factors After Resection in the German Intrahepatic Cholangiocarcinoma Cohort. Ann Surg Oncol 2020; 27: 1147-1155 https://link.springer.com/content/pdf/10.1245/s10434-019-07968-7.pdf
- 582 Zhang XF, Bagante F, Chakedis J. et al. Perioperative and Long-Term Outcome for Intrahepatic Cholangiocarcinoma: Impact of Major Versus Minor Hepatectomy. J Gastrointest Surg 2017; 21: 1841-1850 https://link.springer.com/content/pdf/10.1007/s11605-017-3499-6.pdf
- 583 Bartsch F, Tripke V, Baumgart J. et al. Extended resection of intrahepatic cholangiocarcinoma: A retrospective single-center cohort study. Int J Surg 2019; 67: 62-69 https://www.sciencedirect.com/science/article/abs/pii/S1743919119301116?via%3Dihub
- 584 Mizuno T, Ebata T, Nagino M. Advanced hilar cholangiocarcinoma: An aggressive surgical approach for the treatment of advanced hilar cholangiocarcinoma: Perioperative management, extended procedures, and multidisciplinary approaches. Surg Oncol 2020; 33: 201-206 https://www.sciencedirect.com/science/article/abs/pii/S0960740419302439?via%3Dihub
- 585 Rassam F, Roos E, van Lienden KP. et al. Modern work-up and extended resection in perihilar cholangiocarcinoma: the AMC experience. Langenbecks Arch Surg 2018; 403: 289-307 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986829/pdf/423_2018_Article_1649.pdf
- 586 Primrose JN, Fox RP, Palmer DH. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019; 20: 663-673 https://www.sciencedirect.com/science/article/abs/pii/S147020451830915X?via%3Dihub
- 587 Le RoyB, Gelli M, Pittau G. et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br J Surg 2018; 105: 839-847 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.10641?download=true
- 588 Chang Y, Li Q, Wu Q. et al. Impact of surgical strategies on the survival of gallbladder cancer patients: analysis of 715 cases. World J Surg Oncol 2020; 18: 142 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320575/pdf/12957_2020_Article_1915.pdf
- 589 Coimbra FJF, Torres OJM, Alikhanov R. et al. BRAZILIAN CONSENSUS ON INCIDENTAL GALLBLADDER CARCINOMA. Arq Bras Cir Dig 2020; 33: e1496 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357549/pdf/0102-6720-abcd-33-01-e1496.pdf
- 590 Sikora SS, Singh RK. Surgical strategies in patients with gallbladder cancer: nihilism to optimism. J Surg Oncol 2006; 93: 670-681 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.20535?download=true
- 591 Søreide K, Guest RV, Harrison EM. et al. Systematic review of management of incidental gallbladder cancer after cholecystectomy. Br J Surg 2019; 106: 32-45 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.11035?download=true
- 592 Benson AB, Abrams TA, Ben-Josef E. et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw 2009; 7: 350-391 https://jnccn.org/downloadpdf/journals/jnccn/7/4/article-p350.pdf
- 593 Yuza K, Sakata J, Prasoon P. et al. Long-term outcomes of surgical resection for T1b gallbladder cancer: an institutional evaluation. BMC Cancer 2020; 20: 20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945689/pdf/12885_2019_Article_6507.pdf
- 594 Lee SE, Jang JY, Kim SW. et al. Surgical strategy for T1 gallbladder cancer: a nationwide multicenter survey in South Korea. Ann Surg Oncol 2014; 21: 3654-3660 https://link.springer.com/content/pdf/10.1245/s10434-014-3527-7.pdf
- 595 Bartsch F, Paschold M, Baumgart J. et al. Surgical Resection for Recurrent Intrahepatic Cholangiocarcinoma. World J Surg 2019; 43: 1105-1116 https://link.springer.com/content/pdf/10.1007/s00268-018-04876-x.pdf
- 596 Spolverato G, Kim Y, Alexandrescu S. et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann Surg Oncol 2016; 23: 235-243 https://link.springer.com/content/pdf/10.1245/s10434-015-4642-9.pdf
- 597 Seidensticker R, Seidensticker M, Doegen K. et al. Extensive Use of Interventional Therapies Improves Survival in Unresectable or Recurrent Intrahepatic Cholangiocarcinoma. Gastroenterol Res Pract 2016; 2016: 8732521 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758109/pdf/GRP2016-8732521.pdf
- 598 Xu C, Li L, Xu W. et al. Ultrasound-guided percutaneous microwave ablation versus surgical resection for recurrent intrahepatic cholangiocarcinoma: intermediate-term results. Int J Hyperthermia 2019; 36: 351-358 https://www.tandfonline.com/doi/pdf/10.1080/02656736.2019.1571247?needAccess=true
- 599 Zhang SJ, Hu P, Wang N. et al. Thermal ablation versus repeated hepatic resection for recurrent intrahepatic cholangiocarcinoma. Ann Surg Oncol 2013; 20: 3596-3602 https://link.springer.com/content/pdf/10.1245/s10434-013-3035-1.pdf
- 600 Amini N, Ejaz A, Spolverato G. et al. Temporal trends in liver-directed therapy of patients with intrahepatic cholangiocarcinoma in the United States: a population-based analysis. J Surg Oncol 2014; 110: 163-170 https://www.ncbi.nlm.nih.gov/pubmed/24676600
- 601 Butros SR, Shenoy-Bhangle A, Mueller PR. et al. Radiofrequency ablation of intrahepatic cholangiocarcinoma: feasability, local tumor control, and long-term outcome. Clin Imaging 2014; 38: 490-494 https://www.clinicalimaging.org/article/S0899-7071(14)00040-0/fulltext
- 602 Fu Y, Yang W, Wu W. et al. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2012; 23: 642-649 https://www.jvir.org/article/S1051-0443(12)00208-4/fulltext
- 603 Han K, Ko HK, Kim KW. et al. Radiofrequency ablation in the treatment of unresectable intrahepatic cholangiocarcinoma: systematic review and meta-analysis. J Vasc Interv Radiol 2015; 26: 943-948 https://www.jvir.org/article/S1051-0443(15)00250-X/fulltext
- 604 Kolarich AR, Shah JL, George TJ. et al. Non-surgical management of patients with intrahepatic cholangiocarcinoma in the United States, 2004-2015: an NCDB analysis. J Gastrointest Oncol 2018; 9: 536-545 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006029/pdf/jgo-09-03-536.pdf
- 605 Takahashi EA, Kinsman KA, Schmit GD. et al. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression. Abdom Radiol (NY) 2018; 43: 3487-3492 https://link.springer.com/content/pdf/10.1007/s00261-018-1656-3.pdf
- 606 Kim JH, Won HJ, Shin YM. et al. Radiofrequency ablation for recurrent intrahepatic cholangiocarcinoma after curative resection. Eur J Radiol 2011; 80: e221-e225 https://www.ejradiology.com/article/S0720-048X(10)00476-6/fulltext
- 607 Goldaracena N, Gorgen A, Sapisochin G. Current status of liver transplantation for cholangiocarcinoma. Liver Transpl 2018; 24: 294-303
- 608 Facciuto ME, Singh MK, Lubezky N. et al. Tumors with intrahepatic bile duct differentiation in cirrhosis: implications on outcomes after liver transplantation. Transplantation 2015; 99: 151-157
- 609 Vilchez V, Shah MB, Daily MF. et al. Long-term outcome of patients undergoing liver transplantation for mixed hepatocellular carcinoma and cholangiocarcinoma: an analysis of the UNOS database. HPB (Oxford) 2016; 18: 29-34 https://www.hpbonline.org/article/S1365-182X(15)00002-7/pdf
- 610 Sapisochin G, de Lope CR, Gastaca M. et al. Intrahepatic cholangiocarcinoma or mixed hepatocellular-cholangiocarcinoma in patients undergoing liver transplantation: a Spanish matched cohort multicenter study. Ann Surg 2014; 259: 944-952
- 611 Sapisochin G, Facciuto M, Rubbia-Brandt L. et al. Liver transplantation for „very early“ intrahepatic cholangiocarcinoma: International retrospective study supporting a prospective assessment. Hepatology 2016; 64: 1178-1188
- 612 Lunsford KE, Javle M, Heyne K. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol 2018; 3: 337-348 https://www.thelancet.com/journals/langas/article/PIIS2468-1253(18)30045-1/fulltext
- 613 Becker NS, Rodriguez JA, Barshes NR. et al. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg 2008; 12: 117-122 https://link.springer.com/content/pdf/10.1007/s11605-007-0335-4.pdf
- 614 Darwish MuradS, Kim WR, Harnois DM. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012; 143: 88-98 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846443/pdf/nihms507180.pdf
- 615 Rosen CB, Heimbach JK, Gores GJ. Surgery for cholangiocarcinoma: the role of liver transplantation. HPB (Oxford) 2008; 10: 186-189 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504373/pdf/MHPB10-186.pdf
- 616 Gulamhusein AF, Sanchez W. Liver transplantation in the management of perihilar cholangiocarcinoma. Hepat Oncol 2015; 2: 409-421 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095165/pdf/hep-02-409.pdf
- 617 Ethun CG, Lopez-Aguiar AG, Anderson DJ. et al. Transplantation Versus Resection for Hilar Cholangiocarcinoma: An Argument for Shifting Treatment Paradigms for Resectable Disease. Ann Surg 2018; 267: 797-805 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002861/pdf/nihms955692.pdf
- 618 Mantel HT, Westerkamp AC, Adam R. et al. Strict Selection Alone of Patients Undergoing Liver Transplantation for Hilar Cholangiocarcinoma Is Associated with Improved Survival. PLoS One 2016; 11: e0156127 https://air.unimi.it/retrieve/handle/2434/465540/799026/journal.pone.0156127.PDF
- 619 Weber SM, Ribero D, O’Reilly EM. et al. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford) 2015; 17: 669-680
- 620 NCCN Guidelines for Hepatobiliary Cancers Version 3. 2019.
- 621 Ray CE, Edwards A, Smith MT. et al. Metaanalysis of survival, complications, and imaging response following chemotherapy-based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2013; 24: 1218-1226
- 622 Koch C, Franzke C, Bechstein WO. et al. Poor Prognosis of Advanced Cholangiocarcinoma: Real-World Data from a Tertiary Referral Center. Digestion 2019; 1-8
- 623 Gusani NJ, Balaa FK, Steel JL. et al. Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J Gastrointest Surg 2008; 12: 129-137 https://link.springer.com/content/pdf/10.1007/s11605-007-0312-y.pdf
- 624 Boehm LM, Jayakrishnan TT, Miura JT. et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol 2015; 111: 213-220 https://onlinelibrary.wiley.com/doi/full/10.1002/jso.23781
- 625 Kiefer MV, Albert M, McNally M. et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer 2011; 117: 1498-1505 https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.25625
- 626 Vogl TJ, Naguib NN, Nour-Eldin NE. et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int J Cancer 2012; 131: 733-740 https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.26407
- 627 Cucchetti A, Cappelli A, Mosconi C. et al. Improving patient selection for selective internal radiation therapy of intra-hepatic cholangiocarcinoma: A meta-regression study. Liver Int 2017; 37: 1056-1064 https://onlinelibrary.wiley.com/doi/full/10.1111/liv.13382
- 628 Gangi A, Shah J, Hatfield N. et al. Intrahepatic Cholangiocarcinoma Treated with Transarterial Yttrium-90 Glass Microsphere Radioembolization: Results of a Single Institution Retrospective Study. J Vasc Interv Radiol 2018; 29: 1101-1108 https://www.sciencedirect.com/science/article/pii/S1051044318310868?via%3Dihub
- 629 Manceau V, Palard X, Rolland Y. et al. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and (90)Y-loaded glass microsphere selective internal radiation therapy. Eur J Nucl Med Mol Imaging 2018; 45: 1731-1741 https://link.springer.com/content/pdf/10.1007%2Fs00259-018-3990-7.pdf
- 630 Reimer P, Virarkar MK, Binnenhei M. et al. Prognostic Factors in Overall Survival of Patients with Unresectable Intrahepatic Cholangiocarcinoma Treated by Means of Yttrium-90 Radioembolization: Results in Therapy-Naïve Patients. Cardiovasc Intervent Radiol 2018; 41: 744-752 https://link.springer.com/content/pdf/10.1007/s00270-017-1871-2.pdf
- 631 Yang L, Shan J, Shan L. et al. Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: a systematic review. J Gastrointest Oncol 2015; 6: 570-588 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570915/pdf/jgo-06-05-570.pdf
- 632 Zhen Y, Liu B, Chang Z. et al. A pooled analysis of transarterial radioembolization with yttrium-90 microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma. Onco Targets Ther 2019; 12: 4489-4498 https://pubmed.ncbi.nlm.nih.gov/31239717/
- 633 Mosconi C, Solaini L, Vara G. et al. Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma-a Systemic Review and Meta-Analysis. Cardiovasc Intervent Radiol 2021; 44 (05) 728-738 https://pubmed.ncbi.nlm.nih.gov/33709272/
- 634 Hyder O, Marsh JW, Salem R. et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol 2013; 20: 3779-3786 https://link.springer.com/content/pdf/10.1245/s10434-013-3127-y.pdf
- 635 Marquardt S, Kirstein MM, Brüning R. et al. Percutaneous hepatic perfusion (chemosaturation) with melphalan in patients with intrahepatic cholangiocarcinoma: European multicentre study on safety, short-term effects and survival. Eur Radiol 2019; 29: 1882-1892 https://link.springer.com/content/pdf/10.1007/s00330-018-5729-z.pdf
- 636 Edeline J, Touchefeu Y, Guiu B. et al. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol 2019; 6: 51-59 https://jamanetwork.com/journals/jamaoncology/articlepdf/2753557/jamaoncology_edeline_2019_oi_190074.pdf
- 637 Konstantinidis IT, Groot KoerkampB, Do RK. et al. Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016; 122: 758-65 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.29824?download=true
- 638 Al-Adra DP, Gill RS, Axford SJ. et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol 2015; 41: 120-127
- 639 Wronka KM, Grąt M, Stypułkowski J. et al. Relevance of Preoperative Hyperbilirubinemia in Patients Undergoing Hepatobiliary Resection for Hilar Cholangiocarcinoma. J Clin Med 2019; 8: 458 https://res.mdpi.com/d_attachment/jcm/jcm-08-00458/article_deploy/jcm-08-00458.pdf
- 640 Al MahjoubA, Menahem B, Fohlen A. et al. Preoperative Biliary Drainage in Patients with Resectable Perihilar Cholangiocarcinoma: Is Percutaneous Transhepatic Biliary Drainage Safer and More Effective than Endoscopic Biliary Drainage?. A Meta-Analysis. J Vasc Interv Radiol 2017; 28: 576-582
- 641 Hameed A, Pang T, Chiou J. et al. Percutaneous vs endoscopic pre-operative biliary drainage in hilar cholangiocarcinoma – a systematic review and meta-analysis. HPB (Oxford) 2016; 18: 400-410 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857062/pdf/main.pdf
- 642 Coelen RJS, Roos E, Wiggers JK. et al. Endoscopic versus percutaneous biliary drainage in patients with resectable perihilar cholangiocarcinoma: a multicentre, randomised controlled trial. Lancet Gastroenterol Hepatol 2018; 3: 681-690 https://www.sciencedirect.com/science/article/abs/pii/S2468125318302346?via%3Dihub
- 643 Ba Y, Yue P, Leung JW. et al. Percutaneous transhepatic biliary drainage may be the preferred preoperative drainage method in hilar cholangiocarcinoma. Endosc Int Open 2020; 8: E203-E210 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0990-9114.pdf
- 644 Maeda T, Ebata T, Yokoyama Y. et al. Preoperative course of patients undergoing endoscopic nasobiliary drainage during the management of resectable perihilar cholangiocarcinoma. J Hepatobiliary Pancreat Sci 2019; 26: 341-347 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jhbp.640?download=true
- 645 Nakai Y, Yamamoto R, Matsuyama M. et al. Multicenter study of endoscopic preoperative biliary drainage for malignant hilar biliary obstruction: E-POD hilar study. J Gastroenterol Hepatol 2018; 33: 1146-1153 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.14050?download=true
- 646 Komaya K, Ebata T, Yokoyama Y. et al. Verification of the oncologic inferiority of percutaneous biliary drainage to endoscopic drainage: A propensity score matching analysis of resectable perihilar cholangiocarcinoma. Surgery 2017; 161: 394-404
- 647 Kim KM, Park JW, Lee JK. et al. A Comparison of Preoperative Biliary Drainage Methods for Perihilar Cholangiocarcinoma: Endoscopic versus Percutaneous Transhepatic Biliary Drainage. Gut Liver 2015; 9: 791-799 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625710/pdf/gnl-09-791.pdf
- 648 Kennedy TJ, Yopp A, Qin Y. et al. Role of preoperative biliary drainage of liver remnant prior to extended liver resection for hilar cholangiocarcinoma. HPB (Oxford) 2009; 11: 445-451 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742615/pdf/hpb0011-0445.pdf
- 649 Miura S, Kanno A, Fukase K. et al. Preoperative biliary drainage of the hepatic lobe to be resected does not affect liver hypertrophy after percutaneous transhepatic portal vein embolization. Surg Endosc 2020; 34: 667-674 https://link.springer.com/content/pdf/10.1007/s00464-019-06813-y.pdf
- 650 Hintze RE, Abou-Rebyeh H, Adler A. et al. Magnetic resonance cholangiopancreatography-guided unilateral endoscopic stent placement for Klatskin tumors. Gastrointest Endosc 2001; 53: 40-46
- 651 Abraham NS, Barkun JS, Barkun AN. Palliation of malignant biliary obstruction: a prospective trial examining impact on quality of life. Gastrointest Endosc 2002; 56: 835-841
- 652 Paik WH, Park YS, Hwang JH. et al. Palliative treatment with self-expandable metallic stents in patients with advanced type III or IV hilar cholangiocarcinoma: a percutaneous versus endoscopic approach. Gastrointest Endosc 2009; 69: 55-62
- 653 Saluja SS, Gulati M, Garg PK. et al. Endoscopic or percutaneous biliary drainage for gallbladder cancer: a randomized trial and quality of life assessment. Clin Gastroenterol Hepatol 2008; 6: 944-950 https://www.sciencedirect.com/science/article/abs/pii/S1542356508003418?via%3Dihub
- 654 Schima W, Prokesch R, Osterreicher C. et al. Biliary Wallstent endoprosthesis in malignant hilar obstruction: long-term results with regard to the type of obstruction. Clin Radiol 1997; 52: 213-219
- 655 Uberoi R, Das N, Moss J. et al. British Society of Interventional Radiology: Biliary Drainage and Stenting Registry (BDSR). Cardiovasc Intervent Radiol 2012; 35: 127-138 https://link.springer.com/content/pdf/10.1007/s00270-011-0103-4.pdf
- 656 Smith AC, Dowsett JF, Russell RC. et al. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bileduct obstruction. Lancet 1994; 344: 1655-1660
- 657 Speer AG, Cotton PB, Russell RC. et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet 1987; 2: 57-62
- 658 Almadi MA, Barkun A, Martel M. Plastic vs Self-Expandable Metal Stents for Palliation in Malignant Biliary Obstruction: A Series of Meta-Analyses. Am J Gastroenterol 2017; 112: 260-273
- 659 Lee TH, Moon JH, Choi JH. et al. Prospective comparison of endoscopic bilateral stent-in-stent versus stent-by-stent deployment for inoperable advanced malignant hilar biliary stricture. Gastrointest Endosc 2019; 90: 222-230 https://www.sciencedirect.com/science/article/abs/pii/S0016510719301737?via%3Dihub
- 660 Sharaiha RZ, Kumta NA, Desai AP. et al. Endoscopic ultrasound-guided biliary drainage versus percutaneous transhepatic biliary drainage: predictors of successful outcome in patients who fail endoscopic retrograde cholangiopancreatography. Surg Endosc 2016; 30: 5500-5505 https://link.springer.com/content/pdf/10.1007/s00464-016-4913-y.pdf
- 661 Paik WH, Lee TH, Park DH. et al. EUS-Guided Biliary Drainage Versus ERCP for the Primary Palliation of Malignant Biliary Obstruction: A Multicenter Randomized Clinical Trial. Am J Gastroenterol 2018; 113: 987-997
- 662 Bang JY, Navaneethan U, Hasan M. et al. Stent placement by EUS or ERCP for primary biliary decompression in pancreatic cancer: a randomized trial (with videos). Gastrointest Endosc 2018; 88: 9-17
- 663 Dumonceau JM, Tringali A, Papanikolaou IS. et al. Endoscopic biliary stenting: indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated October 2017. Endoscopy 2018; 50: 910-930 https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0659-9864.pdf
- 664 Moole H, Dharmapuri S, Duvvuri A. et al. Endoscopic versus Percutaneous Biliary Drainage in Palliation of Advanced Malignant Hilar Obstruction: A Meta-Analysis and Systematic Review. Can J Gastroenterol Hepatol 2016; 2016: 4726078 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014937/pdf/CJGH2016-4726078.pdf
- 665 Zhao XQ, Dong JH, Jiang K. et al. Comparison of percutaneous transhepatic biliary drainage and endoscopic biliary drainage in the management of malignant biliary tract obstruction: a meta-analysis. Dig Endosc 2015; 27: 137-145 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/den.12320?download=true
- 666 Born P, Rösch T, Triptrap A. et al. Long-term results of percutaneous transhepatic biliary drainage for benign and malignant bile duct strictures. Scand J Gastroenterol 1998; 33: 544-549 https://www.tandfonline.com/doi/pdf/10.1080/00365529850172142?needAccess=true
- 667 De Palma GD, Galloro G, Siciliano S. et al. Unilateral versus bilateral endoscopic hepatic duct drainage in patients with malignant hilar biliary obstruction: results of a prospective, randomized, and controlled study. Gastrointest Endosc 2001; 53: 547-553
- 668 Chang WH, Kortan P, Haber GB. Outcome in patients with bifurcation tumors who undergo unilateral versus bilateral hepatic duct drainage. Gastrointest Endosc 1998; 47: 354-362
- 669 Bulajic M, Panic N, Radunovic M. et al. Clinical outcome in patients with hilar malignant strictures type II Bismuth-Corlette treated by minimally invasive unilateral versus bilateral endoscopic biliary drainage. Hepatobiliary Pancreat Dis Int 2012; 11: 209-214
- 670 Cheng JL, Bruno MJ, Bergman JJ. et al. Endoscopic palliation of patients with biliary obstruction caused by nonresectable hilar cholangiocarcinoma: efficacy of self-expandable metallic Wallstents. Gastrointest Endosc 2002; 56: 33-39
- 671 Vienne A, Hobeika E, Gouya H. et al. Prediction of drainage effectiveness during endoscopic stenting of malignant hilar strictures: the role of liver volume assessment. Gastrointest Endosc 2010; 72: 728-735
- 672 Rees J, Mytton J, Evison F. et al. The outcomes of biliary drainage by percutaneous transhepatic cholangiography for the palliation of malignant biliary obstruction in England between 2001 and 2014: a retrospective cohort study. BMJ Open 2020; 10: e033576 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045186/pdf/bmjopen-2019-033576.pdf
- 673 Harvey PR, Baldwin S, Mytton J. et al. Higher volume providers are associated with improved outcomes following ERCP for the palliation of malignant biliary obstruction. EClinicalMedicine 2020; 18: 100212 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948226/pdf/main.pdf
- 674 Tal AO, Vermehren J, Friedrich-Rust M. et al. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J Gastrointest Endosc 2014; 6: 13-19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921441/pdf/WJGE-6-13.pdf
- 675 Moole H, Tathireddy H, Dharmapuri S. et al. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: A systematic review and meta-analysis. World J Gastroenterol 2017; 23: 1278-1288 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323453/pdf/WJG-23-1278.pdf
- 676 Zoepf T, Jakobs R, Rosenbaum A. et al. Photodynamic therapy with 5-aminolevulinic acid is not effective in bile duct cancer. Gastrointest Endosc 2001; 54: 763-766
- 677 Ortner ME, Caca K, Berr F. et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 2003; 125: 1355-1363 https://www.sciencedirect.com/science/article/abs/pii/S0016508503013623?via%3Dihub
- 678 Zoepf T, Jakobs R, Arnold JC. et al. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol 2005; 100: 2426-2430
- 679 Pereira SP, Jitlal M, Duggan M. et al. PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer. ESMO Open 2018; 3: e000379 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069917/pdf/esmoopen-2018-000379.pdf
- 680 Gonzalez-Carmona MA, Bolch M, Jansen C. et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49: 437-447 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/apt.15050?download=true
- 681 Wentrup R, Winkelmann N, Mitroshkin A. et al. Photodynamic Therapy Plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma. Gut Liver 2016; 10: 470-475 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849702/pdf/gnl-10-470.pdf
- 682 Strand DS, Cosgrove ND, Patrie JT. et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc 2014; 80: 794-804
- 683 Dolak W, Schwaighofer H, Hellmich B. et al. Photodynamic therapy with polyhematoporphyrin for malignant biliary obstruction: A nationwide retrospective study of 150 consecutive applications. United European Gastroenterol J 2017; 5: 104-110 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384559/pdf/10.1177_2050640616654037.pdf
- 684 Kahaleh M, Mishra R, Shami VM. et al. Unresectable cholangiocarcinoma: comparison of survival in biliary stenting alone versus stenting with photodynamic therapy. Clin Gastroenterol Hepatol 2008; 6: 290-297 https://www.sciencedirect.com/science/article/abs/pii/S1542356507011469?via%3Dihub
- 685 Ben-Josef E, Normolle D, Ensminger WD. et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol 2005; 23: 8739-8747
- 686 Brunner TB, Blanck O, Lewitzki V. et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 2019; 132: 42-47 https://www.sciencedirect.com/science/article/abs/pii/S0167814018336089?via%3Dihub
- 687 Tao R, Krishnan S, Bhosale PR. et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. J Clin Oncol 2016; 34: 219-226 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980564/pdf/JCO613778.pdf
- 688 Lee J, Yoon WS, Koom WS. et al. Efficacy of stereotactic body radiotherapy for unresectable or recurrent cholangiocarcinoma: a meta-analysis and systematic review. Strahlenther Onkol 2019; 195: 93-102 https://link.springer.com/content/pdf/10.1007/s00066-018-1367-2.pdf
- 689 Frakulli R, Buwenge M, Macchia G. et al. Stereotactic body radiation therapy in cholangiocarcinoma: a systematic review. Br J Radiol 2019; 92: 20180688 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580923/pdf/bjr.20180688.pdf
- 690 Barney BM, Olivier KR, Miller RC. et al. Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiat Oncol 2012; 7: 67 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464963/pdf/1748-717X-7-67.pdf
- 691 Tse RV, Hawkins M, Lockwood G. et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 2008; 26: 657-664
- 692 Weiner AA, Olsen J, Ma D. et al. Stereotactic body radiotherapy for primary hepatic malignancies – Report of a phase I/II institutional study. Radiother Oncol 2016; 121: 79-85 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543719/pdf/nihms872134.pdf
- 693 Kopek N, Holt MI, Hansen AT. et al. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol 2010; 94: 47-52
- 694 Schnapauff D, Denecke T, Grieser C. et al. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2012; 35: 581-587 https://link.springer.com/content/pdf/10.1007/s00270-011-0249-0.pdf
- 695 Jeong H, Kim K, Jeong J. et al. Adjuvant gemcitabine plus cisplatin versus capecitabine in node-positive extrahepatic cholangiocarcinoma: the STAMP randomized trial. Hepatology 2023; 77 (05) 1540-1549 https://pubmed.ncbi.nlm.nih.gov/37070950/
- 696 Vogel A, Wege H, Caca K. et al. The diagnosis and treatment of cholangiocarcinoma. Dtsch Arztebl Int 2014; 111: 748-754 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239580/pdf/Dtsch_Arztebl_Int-111-0748.pdf
- 697 Horgan AM, Amir E, Walter T. et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol 2012; 30: 1934-1940
- 698 Bridgewater J, Fletcher P, Palmer D. et al. Long-Term Outcomes and Exploratory Analyses of the Randomized Phase III BILCAP Study. J Clin Oncol 2022; 40 (18) 2048-2057 https://pubmed.ncbi.nlm.nih.gov/35316080/
- 699 Edeline J, Bonnetain F, Phelip JM. et al. Gemox versus surveillance following surgery of localized biliary tract cancer: Results of the PRODIGE 12-ACCORD 18 (UNICANCER GI) phase III trial. Journal of Clinical Oncology 2017; 35: 225-225 http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.4_suppl.225
- 700 Edeline J, Hirano S, Bertaut A. et al. Individual patient data meta-analysis of adjuvant gemcitabine-based chemotherapy for biliary tract cancer: combined analysis of the BCAT and PRODIGE-12 studies. Eur J Cancer 2022; 164: 80-87 https://pubmed.ncbi.nlm.nih.gov/35182925/
- 701 Luvira V, Satitkarnmanee E, Pugkhem A. et al. Postoperative adjuvant chemotherapy for resectable cholangiocarcinoma. Cochrane Database Syst Rev 2021; 9 (09) CD012814 https://pubmed.ncbi.nlm.nih.gov/34515993/
- 702 Oh D, Ruth HeA, Qin S. et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evidence 2022; 1: EVIDoa2200015 https://doi.org/10.1056/EVIDoa2200015
- 703 Valle J, Wasan H, Palmer DH. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281 https://www.nejm.org/doi/pdf/10.1056/NEJMoa0908721?articleTools=true
- 704 Okusaka T, Nakachi K, Fukutomi A. et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer 2010; 103: 469-474 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939781/pdf/6605779a.pdf
- 705 Valle JW, Furuse J, Jitlal M. et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol 2014; 25: 391-398
- 706 Park JO, Oh DY, Hsu C. et al. Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review. Cancer Res Treat 2015; 47: 343-361 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509359/pdf/crt-2014-308.pdf
- 707 Markussen A, Jensen L, Diness L. et al. Treatment of Patients with Advanced Biliary Tract Cancer with Either Oxaliplatin, Gemcitabine, and Capecitabine or Cisplatin and Gemcitabine-A Randomized Phase II Trial. Cancers (Basel) 2020; 12 (07) https://pubmed.ncbi.nlm.nih.gov/32698410/
- 708 Valle JW, Borbath I, Khan SA. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27: v28-v37 https://www.ncbi.nlm.nih.gov/pubmed/27664259
- 709 Kelley R, Ueno M, Yoo C. et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; https://pubmed.ncbi.nlm.nih.gov/37075781/
- 710 Abou-Alfa GK, Macarulla T, Javle MM. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Oncology 2020; 21: 796-807
- 711 Abou-Alfa GK, Sahai V, Hollebecque A. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. The Lancet Oncology 2020; 21: 671-684
- 712 Lamarca A, Palmer DH, Wasan HS. et al. ABC-06 | A randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. Journal of Clinical Oncology 2019; 37: 4003-4003 https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.4003
- 713 Goyal L, Meric-Bernstam F, Hollebecque A. et al. Futibatinib for. N Engl J Med 2023; 388 (03) 228-239 https://pubmed.ncbi.nlm.nih.gov/36652354/
- 714 Valle JW, Lamarca A, Goyal L. et al. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017; 7: 943-962 https://cancerdiscovery.aacrjournals.org/content/candisc/7/9/943.full.pdf
- 715 Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15: 731-747 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419506/pdf/nihms-1016874.pdf
- 716 Solomon JP, Linkov I, Rosado A. et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2019; https://www.ncbi.nlm.nih.gov/pubmed/31375766
- 717 Ross JS, Wang K, Gay L. et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014; 19: 235-242 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958461/pdf/theoncologist_13352.pdf
- 718 Drilon A, Laetsch TW, Kummar S. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378: 731-739 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1714448?articleTools=true
- 719 Oh DY, Bang YJ. HER2-targeted therapies – a role beyond breast cancer. Nat Rev Clin Oncol 2019; https://www.ncbi.nlm.nih.gov/pubmed/31548601
- 720 Javle M, Borad M, Azad N. et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021; 22 (09) 1290-1300 https://pubmed.ncbi.nlm.nih.gov/34339623/
- 721 Nakamura Y, Mizuno N, Sunakawa Y. et al. Tucatinib and Trastuzumab for Previously Treated Human Epidermal Growth Factor Receptor 2-Positive Metastatic Biliary Tract Cancer (SGNTUC-019): A Phase II Basket Study. J Clin Oncol 2023; 41 (36) 5569-5578 https://pubmed.ncbi.nlm.nih.gov/37751561/
- 722 Meric-Bernstam F, Makker V, Oaknin A. et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J Clin Oncol 2024; 42 (01) 47-58 https://pubmed.ncbi.nlm.nih.gov/37870536/
- 723 Harding J, Piha-Paul S, Shah R. et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers. Nat Commun 2023; 14 (01) 630 https://pubmed.ncbi.nlm.nih.gov/36746967/
- 724 Hyman DM, Puzanov I, Subbiah V. et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 2015; 373: 726-736 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1502309?articleTools=true
- 725 Salama AKS, Li SL, Macrae ER. et al. Dabrafenib and trametinib in patients with tumors with BRAF V600E/K mutations: Results from the molecular analysis for therapy choice (MATCH) Arm H. Journal of Clinical Oncology 2019; 37: URL
- 726 Lavingia V, Fakih M. Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review. J Gastrointest Oncol 2016; 7: E98-E102 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177579/pdf/jgo-07-06-E98.pdf
- 727 Kocsis J, Árokszállási A, András C. et al. Combined dabrafenib and trametinib treatment in a case of chemotherapy-refractory extrahepatic BRAF V600E mutant cholangiocarcinoma: dramatic clinical and radiological response with a confusing synchronic new liver lesion. J Gastrointest Oncol 2017; 8: E32-E38 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401859/pdf/jgo-08-02-E32.pdf
- 728 Bunyatov T, Zhao A, Kovalenko J. et al. Personalised approach in combined treatment of cholangiocarcinoma: a case report of healing from cholangiocellular carcinoma at stage IV. J Gastrointest Oncol 2019; 10: 815-820 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657318/pdf/jgo-10-04-815.pdf
- 729 Subbiah V, Lassen U, Élez E. et al. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol 2020; 21 (09) 1234-1243 https://pubmed.ncbi.nlm.nih.gov/32818466/
- 730 Abou-Alfa G, Sahai V, Hollebecque A. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020; 21 (05) 671-684 https://pubmed.ncbi.nlm.nih.gov/32203698/
- 731 Wu Q, Ellis H, Siravegna G. et al. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma. Clin Cancer Res 2024; 30 (01) 198-208 https://pubmed.ncbi.nlm.nih.gov/37843855/
- 732 Rengan A, Denlinger C. Robust Response to Futibatinib in a Patient With Metastatic FGFR-Addicted Cholangiocarcinoma Previously Treated Using Pemigatinib. J Natl Compr Canc Netw 2022; 20 (05) 430-435 https://pubmed.ncbi.nlm.nih.gov/35378504/
- 733 Meric-Bernstam F, Bahleda R, Hierro C. et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring. Cancer Discov 2022; 12 (02) 402-415 https://pubmed.ncbi.nlm.nih.gov/34551969/
- 734 Mazzaferro V, El-Rayes BF, Droz DitBusset M. et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer 2019; 120: 165-171 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342954/pdf/41416_2018_Article_334.pdf
- 735 Bahleda R, Italiano A, Hierro C. et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res 2019; 25: 4888-4897 https://clincancerres.aacrjournals.org/content/clincanres/25/16/4888.full.pdf
- 736 Subbiah V, Sahai V, Maglic D. et al. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations. Cancer Discov 2023; 13 (09) 2012-2031 https://pubmed.ncbi.nlm.nih.gov/37270847/
- 737 Cleary J, Raghavan S, Wu Q. et al. Cancer Discov. 2021; 11 (10) 2488-2505 https://pubmed.ncbi.nlm.nih.gov/33926920/
- 738 Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2018; https://www.ncbi.nlm.nih.gov/pubmed/30367139
- 739 Maio M, Ascierto P, Manzyuk L. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann Oncol 2022; 33 (09) 929-938 https://pubmed.ncbi.nlm.nih.gov/35680043/
- 740 Lamarca A, Palmer D, Wasan H. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021; 22 (05) 690-701 https://pubmed.ncbi.nlm.nih.gov/33798493/
- 741 Marabelle A, Le DT, Ascierto PA. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology https://ascopubs.org/doi/abs/10.1200/JCO.19.02105
- 742 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413 https://science.sciencemag.org/content/sci/357/6349/409.full.pdf
- 743 Le DT, Uram JN, Wang H. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372: 2509-2520 https://www.nejm.org/doi/pdf/10.1056/NEJMoa1500596?articleTools=true
- 744 Goeppert B, Roessler S, Renner M. et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer 2019; 120: 109-114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325153/pdf/41416_2018_Article_199.pdf
- 745 Cloyd J, Chun Y, Ikoma N. et al. Clinical and Genetic Implications of DNA Mismatch Repair Deficiency in Biliary Tract Cancers Associated with Lynch Syndrome. J Gastrointest Cancer 2018; 49 (01) 93-96 https://pubmed.ncbi.nlm.nih.gov/29238914/
- 746 Zalevskaja K, Mecklin J, Seppälä T. Clinical characteristics of pancreatic and biliary tract cancers in Lynch syndrome: A retrospective analysis from the Finnish National Lynch Syndrome Research Registry. Front Oncol 2023; 13: 1123901 https://pubmed.ncbi.nlm.nih.gov/36816932/
- 747 Zhu A, Macarulla T, Javle M. et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol 2021; 7 (11) 1669-1677 https://pubmed.ncbi.nlm.nih.gov/34554208/
- 748 Choi I, Kim K, Lee J. et al. A randomised phase II study of oxaliplatin/5-FU (mFOLFOX) versus irinotecan/5-FU (mFOLFIRI) chemotherapy in locally advanced or metastatic biliary tract cancer refractory to first-line gemcitabine/cisplatin chemotherapy. Eur J Cancer 2021; 154: 288-295 https://pubmed.ncbi.nlm.nih.gov/34303267/
- 749 Yoo C, Kim K, Jeong J. et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol 2021; https://pubmed.ncbi.nlm.nih.gov/34656226/
- 750 Zheng Y, Tu X, Zhao P. et al. A randomised phase II study of second-line XELIRI regimen versus irinotecan monotherapy in advanced biliary tract cancer patients progressed on gemcitabine and cisplatin. Br J Cancer 2018; 119 (03) 291-295 https://pubmed.ncbi.nlm.nih.gov/29955136/
- 751 Vogel A, Wenzel P, Folprecht G. et al. 53MO Nal-IRI and 5-FU/LV compared to 5-FU/LV in patients with cholangio- and gallbladder carcinoma previously treated with gemcitabine-based therapies (NALIRICC – AIO-HEP-0116). Annals of Oncology 2022; 33: S563 https://doi.org/10.1016/j.annonc.2022.07.081
- 752 Ramaswamy A, Ostwal V, Sharma A. et al. Efficacy of Capecitabine Plus Irinotecan vs Irinotecan Monotherapy as Second-line Treatment in Patients With Advanced Gallbladder Cancer: A Multicenter Phase 2 Randomized Clinical Trial (GB-SELECT). JAMA Oncol 2021; 7 (03) 436-439 https://pubmed.ncbi.nlm.nih.gov/33270098/
- 753 Schütte K, Tippelt B, Schulz C. et al. Malnutrition is a prognostic factor in patients with hepatocellular carcinoma (HCC). Clin Nutr 2015; 34: 1122-1127
- 754 Huang TH, Hsieh CC, Kuo LM. et al. Malnutrition associated with an increased risk of postoperative complications following hepatectomy in patients with hepatocellular carcinoma. HPB (Oxford) 2019; 21: 1150-1155
- 755 Arends J, Bachmann P, Baracos V. et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr 2017; 36: 11-48
- 756 Ciuni R, Biondi A, Grosso G. et al. Nutritional aspects in patient undergoing liver resection. Updates Surg 2011; 63: 249-252 https://link.springer.com/content/pdf/10.1007/s13304-011-0121-4.pdf
- 757 Cederholm T, Jensen GL, Correia M. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 2019; 10: 207-217 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438340/pdf/JCSM-10-207.pdf
- 758 Badran H, Elsabaawy MM, Ragab A. et al. Baseline Sarcopenia is Associated with Lack of Response to Therapy, Liver Decompensation and High Mortality in Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2020; 21: 3285-3290 http://journal.waocp.org/article_89349_cc643ce4770cf7eeca5890c5d5c453d5.pdf
- 759 Fujiwara N, Nakagawa H, Kudo Y. et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 2015; 63: 131-140
- 760 Kim N, Yu JI, Park HC. et al. Incorporating sarcopenia and inflammation with radiation therapy in patients with hepatocellular carcinoma treated with nivolumab. Cancer Immunol Immunother 2020; https://link.springer.com/content/pdf/10.1007/s00262-020-02794-3.pdf
- 761 Mardian Y, Yano Y, Ratnasari N. et al. „Sarcopenia and intramuscular fat deposition are associated with poor survival in Indonesian patients with hepatocellular carcinoma: a retrospective study“. BMC Gastroenterol 2019; 19: 229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937974/pdf/12876_2019_Article_1152.pdf
- 762 Voron T, Tselikas L, Pietrasz D. et al. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Ann Surg 2015; 261: 1173-1183
- 763 Plauth M, Bernal W, Dasarathy S. et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr 2019; 38: 485-521 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686849/pdf/nihms-1529826.pdf
- 764 Haun MW, Estel S, Rucker G. et al. Early palliative care for adults with advanced cancer. Cochrane Database Syst Rev 2017; 6: CD011129 http://www.ncbi.nlm.nih.gov/pubmed/28603881
- 765 Adler K, Schlieper D, Kindgen-Milles D. et al. [Integration of palliative care into intensive care: Systematic review]. Anaesthesist 2017; 66: 660-666 http://www.ncbi.nlm.nih.gov/pubmed/28589374
- 766 Dalgaard KM, Bergenholtz H, Nielsen ME. et al. Early integration of palliative care in hospitals: A systematic review on methods, barriers, and outcome. Palliat Support Care 2014; 12: 495-513 http://www.ncbi.nlm.nih.gov/pubmed/24621947
- 767 Davis MP, Temel JS, Balboni T. et al. A review of the trials which examine early integration of outpatient and home palliative care for patients with serious illnesses. Ann Palliat Med 2015; 4: 99-121 http://www.ncbi.nlm.nih.gov/pubmed/26231807
- 768 Hui D, Kim YJ, Park JC. et al. Integration of oncology and palliative care: a systematic review. Oncologist 2015; 20: 77-83 http://www.ncbi.nlm.nih.gov/pubmed/25480826
- 769 Hui D, Meng YC, Bruera S. et al. Referral Criteria for Outpatient Palliative Cancer Care: A Systematic Review. Oncologist 2016; 21: 895-901 http://www.ncbi.nlm.nih.gov/pubmed/27185614
- 770 Tassinari D, Drudi F, Monterubbianesi MC. et al. Early Palliative Care in Advanced Oncologic and Non-Oncologic Chronic Diseases: A Systematic Review of Literature. Rev Recent Clin Trials 2016; 11: 63-71 http://www.ncbi.nlm.nih.gov/pubmed/26464077
- 771 Gärtner U, Braun GD, Held K. et al. [Physical complaints, stress and quality of life of oncologic patients Effects and patient assessment in inpatient rehabilitation]. Med Klin (Munich) 1996; 91: 501-508
- 772 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK. Palliativmedizin für Patienten mit einer nicht-heilbaren Krebserkrankung. Version 2.2. 2020 https://www.leitlinienprogramm-onkologie.de/leitlinien/palliativmedizin/
- 773 Hamano J, Morita T, Inoue S. et al. Surprise Questions for Survival Prediction in Patients With Advanced Cancer: A Multicenter Prospective Cohort Study. Oncologist 2015; 20: 839-844 http://www.ncbi.nlm.nih.gov/pubmed/26054631
- 774 Moroni M, Zocchi D, Bolognesi D. et al. The „surprise“ question in advanced cancer patients: A prospective study among general practitioners. Palliat Med 2014; 28: 959-964 http://www.ncbi.nlm.nih.gov/pubmed/24662237
- 775 Moss AH, Lunney JR, Culp S. et al. Prognostic significance of the „surprise“ question in cancer patients. J Palliat Med 2010; 13: 837-840 http://www.ncbi.nlm.nih.gov/pubmed/20636154
- 776 Murray S, Boyd K. Using the „surprise question“ can identify people with advanced heart failure and COPD who would benefit from a palliative care approach. Palliat Med 2011; 25: 382 http://www.ncbi.nlm.nih.gov/pubmed/21610113
- 777 Kremer AE, Beuers U, Oude-Elferink RP. et al. Pathogenesis and treatment of pruritus in cholestasis. Drugs 2008; 68: 2163-2182 http://www.ncbi.nlm.nih.gov/pubmed/18840005
- 778 Stander S, Raap U, Weisshaar E. et al. Pathogenesis of pruritus. J Dtsch Dermatol Ges 2011; 9: 456-463 http://www.ncbi.nlm.nih.gov/pubmed/21208378
- 779 Stander S, Zeidler C, Augustin M. et al. S2k-Leitlinie zur Diagnostik und Therapie des chronischen Pruritus – Update – Kurzversion. J Dtsch Dermatol Ges 2017; 15: 860-873 http://www.ncbi.nlm.nih.gov/pubmed/28763608
- 780 Bachs L, Pares A, Elena M. et al. Comparison of rifampicin with phenobarbitone for treatment of pruritus in biliary cirrhosis. Lancet 1989; 1: 574-576 http://www.ncbi.nlm.nih.gov/pubmed/2564110
- 781 Ghent CN, Carruthers SG. Treatment of pruritus in primary biliary cirrhosis with rifampin Results of a double-blind, crossover, randomized trial. Gastroenterology 1988; 94: 488-493 http://www.ncbi.nlm.nih.gov/pubmed/3275568
- 782 Terg R, Coronel E, Sorda J. et al. Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo-controlled study. J Hepatol 2002; 37: 717-722 http://www.ncbi.nlm.nih.gov/pubmed/12445410
- 783 Bergasa NV, Talbot TL, Alling DW. et al. A controlled trial of naloxone infusions for the pruritus of chronic cholestasis. Gastroenterology 1992; 102: 544-549 http://www.ncbi.nlm.nih.gov/pubmed/1732125
- 784 Mayo MJ, Handem I, Saldana S. et al. Sertraline as a first-line treatment for cholestatic pruritus. Hepatology 2007; 45: 666-674 http://www.ncbi.nlm.nih.gov/pubmed/17326161
- 785 Lindor KD. Ursodiol for primary sclerosing cholangitis Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 1997; 336: 691-695 http://www.ncbi.nlm.nih.gov/pubmed/9041099
- 786 Talwalkar JA, Souto E, Jorgensen RA. et al. Natural history of pruritus in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2003; 1: 297-302 http://www.ncbi.nlm.nih.gov/pubmed/15017671
- 787 Zapata R, Sandoval L, Palma J. et al. Ursodeoxycholic acid in the treatment of intrahepatic cholestasis of pregnancy A 12-year experience. Liver Int 2005; 25: 548-554 http://www.ncbi.nlm.nih.gov/pubmed/15910492
- 788 Lemyze M, Dharancy S, Nevière R. et al. Aerobic capacity in patients with chronic liver disease: Very modest effect of liver transplantation. Presse Med 2010; 39: e174-e181
- 789 Epstein SK, Freeman RB, Khayat A. et al. Aerobic capacity is associated with 100-day outcome after hepatic transplantation. Liver Transpl 2004; 10: 418-424 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20088?download=true
- 790 van Ginneken BT, van den Berg-Emons RJ, Kazemier G. et al. Physical fitness, fatigue, and quality of life after liver transplantation. Eur J Appl Physiol 2007; 100: 345-353 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914221/pdf/421_2007_Article_435.pdf
- 791 van den Berg-Emons R, van Ginneken B, Wijffels M. et al. Fatigue is a major problem after liver transplantation. Liver Transpl 2006; 12: 928-933 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.20684?download=true
- 792 van Ginneken BT, van den Berg-Emons HJ, Metselaar HJ. et al. Effects of a rehabilitation programme on daily functioning, participation, health-related quality of life, anxiety and depression in liver transplant recipients. Disabil Rehabil 2010; 32: 2107-2112 https://www.tandfonline.com/doi/abs/10.3109/09638288.2010.482174
- 793 Schwibbe G. [Changes in quality of life in oncological patients in the course of an inpatient after-care program]. Rehabilitation (Stuttg) 1991; 30: 55-62
- 794 Fan SY, Eiser C, Ho MC. et al. Health-related quality of life in patients with hepatocellular carcinoma: the mediation effects of illness perceptions and coping. Psychooncology 2013; 22: 1353-1360 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.3146?download=true
- 795 Fan SY, Eiser C, Ho MC. Health-related quality of life in patients with hepatocellular carcinoma: a systematic review. Clin Gastroenterol Hepatol 2010; 8: 559-564 https://www.sciencedirect.com/science/article/abs/pii/S1542356510002533?via%3Dihub
- 796 Qiao CX, Zhai XF, Ling CQ. et al. Health-related quality of life evaluated by tumor node metastasis staging system in patients with hepatocellular carcinoma. World J Gastroenterol 2012; 18: 2689-2694 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370007/pdf/WJG-18-2689.pdf
- 797 Steel JL, Geller DA, Gamblin TC. et al. Depression, immunity, and survival in patients with hepatobiliary carcinoma. J Clin Oncol 2007; 25: 2397-2405
- 798 Lee HH, Chiu CC, Lin JJ. et al. Impact of preoperative anxiety and depression on quality of life before and after resection of hepatocellular carcinoma. J Affect Disord 2019; 246: 361-367 https://www.sciencedirect.com/science/article/abs/pii/S0165032718318639?via%3Dihub
- 799 Huang TW, Lin CC. The mediating effects of depression on sleep disturbance and fatigue: symptom clusters in patients with hepatocellular carcinoma. Cancer Nurs 2009; 32: 398-403
- 800 Ahn MH, Park S, Lee HB. et al. Suicide in cancer patients within the first year of diagnosis. Psychooncology 2015; 24: 601-607 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.3705?download=true
- 801 Chiu CC, Lee KT, Wang JJ. et al. Health-Related Quality of Life before and after Surgical Resection of Hepatocellular Carcinoma: A Prospective Study. Asian Pac J Cancer Prev 2018; 19: 65-72 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844638/pdf/APJCP-19-65.pdf
- 802 Shun SC, Chen CH, Sheu JC. et al. Quality of life and its associated factors in patients with hepatocellular carcinoma receiving one course of transarterial chemoembolization treatment: a longitudinal study. Oncologist 2012; 17: 732-739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360913/pdf/onc732.pdf
- 803 Shun SC, Lai YH, Hung H. et al. The Role of Age in Change in Unmet Supportive Care Needs in Hepatocellular Carcinoma Patients During Transition From Hospital to Home. Cancer Nurs 2017; 40: 245-254
- 804 Wang ZX, Liu SL, Sun CH. et al. Psychological intervention reduces postembolization pain during hepatic arterial chemoembolization therapy: a complementary approach to drug analgesia. World J Gastroenterol 2008; 14: 931-935 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687062/pdf/WJG-14-931.pdf
- 805 Sanson-Fisher R, Girgis A, Boyes A. et al. The unmet supportive care needs of patients with cancer Supportive Care Review Group. Cancer 2000; 88: 226-37 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291097-0142%2820000101%2988%3A1%3C226%3A%3AAID-CNCR30%3E3.0.CO%3B2-P?download=true
- 806 Kleeberg UR, Tews JT, Ruprecht T. et al. Patient satisfaction and quality of life in cancer outpatients: results of the PASQOC study. Support Care Cancer 2005; 13: 303-310 https://link.springer.com/content/pdf/10.1007/s00520-004-0727-x.pdf
- 807 Fallowfield L, Jenkins V. Communicating sad, bad, and difficult news in medicine. Lancet 2004; 363: 312-319
- 808 de Haes H, Teunissen S. Communication in palliative care: a review of recent literature. Curr Opin Oncol 2005; 17: 345-350
- 809 Ong LM, Visser MR, Lammes FB. et al. Doctor-patient communication and cancer patients’ quality of life and satisfaction. Patient Educ Couns 2000; 41: 145-156
- 810 Fukui S, Ogawa K, Ohtsuka M. et al. A randomized study assessing the efficacy of communication skill training on patients’ psychologic distress and coping: nurses’ communication with patients just after being diagnosed with cancer. Cancer 2008; 113: 1462-1470 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.23710?download=true
- 811 Lienard A, Merckaert I, Libert Y. et al. Factors that influence cancer patients’ and relatives’ anxiety following a three-person medical consultation: impact of a communication skills training program for physicians. Psychooncology 2008; 17: 488-496 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pon.1262?download=true
- 812 Razavi D, Merckaert I, Marchal S. et al. How to optimize physicians’ communication skills in cancer care: results of a randomized study assessing the usefulness of posttraining consolidation workshops. J Clin Oncol 2003; 21: 3141-3149
- 813 Butow P, Juraskova I, Chang S. et al. Shared decision making coding systems: how do they compare in the oncology context?. Patient Educ Couns 2010; 78: 261-268
- 814 Edwards A, Elwyn G. Inside the black box of shared decision making: distinguishing between the process of involvement and who makes the decision. Health Expect 2006; 9: 307-320 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5060371/pdf/HEX-9-307.pdf
- 815 Gordon EJ, Bergeron A, McNatt G. et al. Are informed consent forms for organ transplantation and donation too difficult to read?. Clin Transplant 2012; 26: 275-283 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1399-0012.2011.01480.x?download=true
- 816 Rodrigue JR, Hanto DW, Curry MP. Patients’ expectations and success criteria for liver transplantation. Liver Transpl 2011; 17: 1309-1317 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lt.22355?download=true
- 817 Volk ML, Tocco RS, Pelletier SJ. et al. Patient decision making about organ quality in liver transplantation. Liver Transpl 2011; 17: 1387-1393 https://deepblue.lib.umich.edu/bitstream/handle/2027.42/88081/22437_ftp.pdf?sequence=1
- 818 Butow PN, Tattersall MH, Goldstein D. Communication with cancer patients in culturally diverse societies. Ann N Y Acad Sci 1997; 809: 317-329 https://nyaspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1749-6632.1997.tb48095.x?download=true
- 819 Dowsett SM, Saul JL, Butow PN. et al. Communication styles in the cancer consultation: preferences for a patient-centred approach. Psychooncology 2000; 9: 147-156 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291099-1611%28200003/04%299%3A2%3C147%3A%3AAID-PON443%3E3.0.CO%3B2-X?download=true
- 820 Epstein RM. Making communication research matter: what do patients notice, what do patients want, and what do patients need?. Patient Educ Couns 2006; 60: 272-278
- 821 Zachariae R, Pedersen CG, Jensen AB. et al. Association of perceived physician communication style with patient satisfaction, distress, cancer-related self-efficacy, and perceived control over the disease. Br J Cancer 2003; 88: 658-665 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376357/pdf/88-6600798a.pdf
- 822 Fogarty LA, Curbow BA, Wingard JR. et al. Can 40 seconds of compassion reduce patient anxiety?. J Clin Oncol 1999; 17: 371-379
- 823 Strasser F, Palmer JL, Willey J. et al. Impact of physician sitting versus standing during inpatient oncology consultations: patients’ preference and perception of compassion and duration A randomized controlled trial. J Pain Symptom Manage 2005; 29: 489-497
- 824 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK. Entwicklung von leitlinienbasierten Qualitätsindikatoren Methodenpapier für das Leitlinienprogramm Onkologie, Version 21. 2017 https://www.leitlinienprogramm-onkologie.de/methodik/grundlegende-informationen-zur-methodik
- 825 Ashoori N, Bamberg F, Paprottka P. et al. Multimodality treatment for early-stage hepatocellular carcinoma: a bridging therapy for liver transplantation. Digestion 2012; 86: 338-348
- 826 Boteon A, Boteon YL, Vinuela EF. et al. The impact of transarterial chemoembolization induced complications on outcomes after liver transplantation: A propensity-matched study. Clin Transplant 2018; 32: e13255
- 827 Habibollahi P, Shamchi SP, Choi JM. et al. Association of Complete Radiologic and Pathologic Response following Locoregional Therapy before Liver Transplantation with Long-Term Outcomes of Hepatocellular Carcinoma: A Retrospective Study. J Vasc Interv Radiol 2019; 30: 323-329 https://www.sciencedirect.com/science/article/pii/S105104431831741X?via%3Dihub
- 828 Lu DS, Yu NC, Raman SS. et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. Hepatology 2005; 41: 1130-1137
- 829 Nicolini A, Martinetti L, Crespi S. et al. Transarterial chemoembolization with epirubicin-eluting beads versus transarterial embolization before liver transplantation for hepatocellular carcinoma. J Vasc Interv Radiol 2010; 21: 327-332
- 830 Sandow T, Pavlus J, Field D. et al. Bridging Hepatocellular Carcinoma to Transplant: Transarterial Chemoembolization Response, Tumor Biology, and Recurrence after Transplantation in a 12-Year Transplant Cohort. J Vasc Interv Radiol 2019; 30: 995-1003
- 831 Tan CHN, Yu Y, Tan YRN. et al. Bridging therapies to liver transplantation for hepatocellular carcinoma: A bridge to nowhere?. Ann Hepatobiliary Pancreat Surg 2018; 22: 27-35
- 832 Werner JD, Frangakis C, Ruck JM. et al. Neoadjuvant Transarterial Chemoembolization Improves Survival After Liver Transplant in Patients With Hepatocellular Carcinoma. Exp Clin Transplant 2019; 17: 638-643
- 833 Sapisochin G, Barry A, Doherty M. et al. Stereotactic body radiotherapy vs TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma An intention-to-treat analysis. J Hepatol 2017; 67: 92-99
- 834 Wang JH, Wang CC, Hung CH. et al. Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J Hepatol 2012; 56: 412-418 https://www.journal-of-hepatology.eu/article/S0168-8278(11)00524-1/fulltext
- 835 Peng ZW, Lin XJ, Zhang YJ. et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology 2012; 262: 1022-1033
- 836 Hasegawa K, Kokudo N, Makuuchi M. et al. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. J Hepatol 2013; 58: 724-729 https://www.sciencedirect.com/science/article/pii/S016882781200877X?via%3Dihub
- 837 Fang Y, Chen W, Liang X. et al. Comparison of long-term effectiveness and complications of radiofrequency ablation with hepatectomy for small hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29: 193-200 https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12441
- 838 Miura JT, Johnston FM, Tsai S. et al. Surgical resection versus ablation for hepatocellular carcinoma ≤ 3 cm: a population-based analysis. HPB (Oxford) 2015; 17: 896-901 https://www.hpbonline.org/article/S1365-182X(15)31122-9/pdf
- 839 Zhang M, Ma H, Zhang J. et al. Comparison of microwave ablation and hepatic resection for hepatocellular carcinoma: a meta-analysis. Onco Targets Ther 2017; 10: 4829-4839 https://pubmed.ncbi.nlm.nih.gov/29042794/
- 840 Zhang QB, Zhang XG, Jiang RD. et al. Microwave ablation versus hepatic resection for the treatment of hepatocellular carcinoma and oesophageal variceal bleeding in cirrhotic patients. Int J Hyperthermia 2017; 33: 255-262 https://www.tandfonline.com/doi/pdf/10.1080/02656736.2016.1257824?needAccess=true
- 841 Liu PH, Hsu CY, Hsia CY. et al. Surgical Resection Versus Radiofrequency Ablation for Single Hepatocellular Carcinoma ≤ 2 cm in a Propensity Score Model. Ann Surg 2016; 263: 538-545 https://www.ingentaconnect.com/content/wk/sla/2016/00000263/00000003/art00040;jsessionid=1n53m5b4ljd7b.x-ic-live-01
- 842 Takayasu K, Arii S, Sakamoto M. et al. Impact of resection and ablation for single hypovascular hepatocellular carcinoma ≤ 2 cm analysed with propensity score weighting. Liver Int 2018; 38: 484-493 https://onlinelibrary.wiley.com/doi/abs/10.1111/liv.13670
- 843 Hung HH, Chiou YY, Hsia CY. et al. Survival rates are comparable after radiofrequency ablation or surgery in patients with small hepatocellular carcinomas. Clin Gastroenterol Hepatol 2011; 9: 79-86 https://www.cghjournal.org/article/S1542-3565(10)00847-5/pdf
- 844 Ogihara M, Wong LL, Machi J. Radiofrequency ablation versus surgical resection for single nodule hepatocellular carcinoma: long-term outcomes. HPB (Oxford) 2005; 7: 214-221
- 845 Lü MD, Kuang M, Liang LJ. et al. [Surgical resection versus percutaneous thermal ablation for early-stage hepatocellular carcinoma: a randomized clinical trial]. Zhonghua Yi Xue Za Zhi 2006; 86: 801-805
- 846 Lupo L, Panzera P, Giannelli G. et al. Single hepatocellular carcinoma ranging from 3 to 5 cm: radiofrequency ablation or resection?. HPB (Oxford) 2007; 9: 429-434
- 847 Abu-Hilal M, Primrose JN, Casaril A. et al. Surgical resection versus radiofrequency ablation in the treatment of small unifocal hepatocellular carcinoma. J Gastrointest Surg 2008; 12: 1521-1526
- 848 Tashiro H, Aikata H, Waki K. et al. Treatment strategy for early hepatocellular carcinomas: comparison of radiofrequency ablation with or without transcatheter arterial chemoembolization and surgical resection. J Surg Oncol 2011; 104: 3-9
- 849 Kim JW, Shin SS, Kim JK. et al. Radiofrequency ablation combined with transcatheter arterial chemoembolization for the treatment of single hepatocellular carcinoma of 2 to 5 cm in diameter: comparison with surgical resection. Korean J Radiol 2013; 14: 626-635
- 850 Tang C, Shen J, Feng W. et al. Combination Therapy of Radiofrequency Ablation and Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Retrospective Study. Medicine (Baltimore) 2016; 95: e3754 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902444/pdf/medi-95-e3754.pdf
- 851 Bholee AK, Peng K, Zhou Z. et al. Radiofrequency ablation combined with transarterial chemoembolization versus hepatectomy for patients with hepatocellular carcinoma within Milan criteria: a retrospective case-control study. Clin Transl Oncol 2017; 19: 844-852
- 852 Pan T, Mu LW, Wu C. et al. Comparison of Combined Transcatheter Arterial Chemoembolization and CT-guided Radiofrequency Ablation with Surgical Resection in Patients with Hepatocellular Carcinoma within the Up-to-seven Criteria: A Multicenter Case-matched Study. J Cancer 2017; 8: 3506-3513 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687165/pdf/jcav08p3506.pdf
- 853 Zhang R, Shen L, Zhao L. et al. Combined transarterial chemoembolization and microwave ablation versus transarterial chemoembolization in BCLC stage B hepatocellular carcinoma. Diagn Interv Radiol 2018; 24: 219-224 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045511/pdf/dir-24-4-219.pdf
- 854 Lin DY, Liaw YF, Lee TY. et al. Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma--a randomized controlled trial. Gastroenterology 1988; 94: 453-456 https://www.sciencedirect.com/science/article/abs/pii/0016508588904362?via%3Dihub
- 855 Pelletier G, Roche A, Ink O. et al. A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. J Hepatol 1990; 11: 181-184
- 856 A comparison of lipiodol chemoembolization and conservative treatment for unresectable hepatocellular carcinoma. N Engl J Med 1995; 332: 1256-1261 https://www.nejm.org/doi/pdf/10.1056/NEJM199505113321903?articleTools=true
- 857 Bruix J, Llovet JM, Castells A. et al. Transarterial embolization versus symptomatic treatment in patients with advanced hepatocellular carcinoma: results of a randomized, controlled trial in a single institution. Hepatology 1998; 27: 1578-1583 https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.510270617?download=true
- 858 Pelletier G, Ducreux M, Gay F. et al. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial Groupe CHC. J Hepatol 1998; 29: 129-134
- 859 Stefanini GF, Amorati P, Biselli M. et al. Efficacy of transarterial targeted treatments on survival of patients with hepatocellular carcinoma An Italian experience. Cancer 1995; 75: 2427-2434 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819950515%2975%3A10%3C2427%3A%3AAID-CNCR2820751007%3E3.0.CO%3B2-J?download=true
- 860 Bronowicki JP, Vetter D, Dumas F. et al. Transcatheter oily chemoembolization for hepatocellular carcinoma A 4-year study of 127 French patients. Cancer 1994; 74: 16-24 https://acsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1097-0142%2819940701%2974%3A1%3C16%3A%3AAID-CNCR2820740105%3E3.0.CO%3B2-V?download=true
- 861 Kim JH, Yoon HK, Kim SY. et al. Transcatheter arterial chemoembolization vs chemoinfusion for unresectable hepatocellular carcinoma in patients with major portal vein thrombosis. Aliment Pharmacol Ther 2009; 29: 1291-1298 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2036.2009.04016.x?download=true
- 862 Herber S, Otto G, Schneider J. et al. Transarterial chemoembolization (TACE) for inoperable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2007; 30: 1156-1165 https://link.springer.com/content/pdf/10.1007/s00270-007-9032-7.pdf
- 863 Chung GE, Lee JH, Kim HY. et al. Transarterial chemoembolization can be safely performed in patients with hepatocellular carcinoma invading the main portal vein and may improve the overall survival. Radiology 2011; 258: 627-634
- 864 Georgiades CS, Hong K, D’Angelo M. et al. Safety and efficacy of transarterial chemoembolization in patients with unresectable hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 2005; 16: 1653-1659 https://www.sciencedirect.com/science/article/pii/S1051044307607933?via%3Dihub
- 865 Okazaki M, Higashihara H, Koganemaru H. et al. Transcatheter arterial embolization for inoperable hepatocellular carcinoma. Jpn J Clin Radiol 1991; 36: 535-539
- 866 Sacco R, Bargellini I, Bertini M. et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol 2011; 22: 1545-1552
- 867 van Malenstein H, Maleux G, Vandecaveye V. et al. A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie 2011; 34: 368-376 https://www.karger.com/Article/Pdf/329602
- 868 Dhanasekaran R, Kooby DA, Staley CA. et al. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J Surg Oncol 2010; 101: 476-480 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jso.21522?download=true
- 869 Ferrer Puchol MD, la Parra C, Esteban E. et al. [Comparison of doxorubicin-eluting bead transarterial chemoembolization (DEB-TACE) with conventional transarterial chemoembolization (TACE) for the treatment of hepatocellular carcinoma]. Radiologia 2011; 53: 246-253 https://www.sciencedirect.com/science/article/abs/pii/S0033833810003449?via%3Dihub
- 870 Wiggermann P, Sieron D, Brosche C. et al. Transarterial Chemoembolization of Child-A hepatocellular carcinoma: drug-eluting bead TACE (DEB TACE) vs TACE with cisplatin/lipiodol (cTACE). Med Sci Monit 2011; 17: Cr189-Cr195 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539521/pdf/medscimonit-17-4-cr189.pdf
- 871 Song MJ, Chun HJ, Song DS. et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol 2012; 57: 1244-1250
- 872 Megías VericatJE, García MarcosR, López BrizE. et al. Trans-arterial chemoembolization with doxorubicin-eluting particles versus conventional trans-arterial chemoembolization in unresectable hepatocellular carcinoma: A study of effectiveness, safety and costs. Radiologia 2015; 57: 496-504 https://www.sciencedirect.com/science/article/abs/pii/S0033833815000764?via%3Dihub
- 873 Kloeckner R, Weinmann A, Prinz F. et al. Conventional transarterial chemoembolization versus drug-eluting bead transarterial chemoembolization for the treatment of hepatocellular carcinoma. BMC Cancer 2015; 15: 465 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460638/pdf/12885_2015_Article_1480.pdf
- 874 Facciorusso A, Mariani L, Sposito C. et al. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Gastroenterol Hepatol 2016; 31: 645-653 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.13147?download=true
- 875 Baur J, Ritter CO, Germer CT. et al. Transarterial chemoembolization with drug-eluting beads versus conventional transarterial chemoembolization in locally advanced hepatocellular carcinoma. Hepat Med 2016; 8: 69-74 https://pubmed.ncbi.nlm.nih.gov/27382341/
- 876 Gao S, Yang Z, Zheng Z. et al. Doxorubicin-eluting bead versus conventional TACE for unresectable hepatocellular carcinoma: a meta-analysis. Hepatogastroenterology 2013; 60: 813-820
- 877 Huang K, Zhou Q, Wang R. et al. Doxorubicin-eluting beads versus conventional transarterial chemoembolization for the treatment of hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29: 920-925 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.12439?download=true
- 878 Zhou X, Tang Z, Wang J. et al. Doxorubicin-eluting beads versus conventional transarterialchemoembolization for the treatment of hepatocellular carcinoma: a meta-analysis. Int J Clin Exp Med 2014; 7: 3892-3903
- 879 Zou JH, Zhang L, Ren ZG. et al. Efficacy and safety of cTACE versus DEB-TACE in patients with hepatocellular carcinoma: a meta-analysis. J Dig Dis 2016; 17: 510-517 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1751-2980.12380?download=true
- 880 Facciorusso A, Di Maso M, Muscatiello N. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma: A meta-analysis. Dig Liver Dis 2016; 48: 571-577
- 881 Chiesa C, Maccauro M, Romito R. et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011; 55 (02) 168-197 https://pubmed.ncbi.nlm.nih.gov/21386789/
- 882 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53 (02) 255-263 https://pubmed.ncbi.nlm.nih.gov/22302962/
- 883 Garin E, Rolland Y, Pracht M. et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with. Liver Int 2017; 37 (01) 101-110 https://pubmed.ncbi.nlm.nih.gov/27514012/
- 884 Kappadath S, Mikell J, Balagopal A. et al. Hepatocellular Carcinoma Tumor Dose Response After. Int J Radiat Oncol Biol Phys 2018; 102 (02) 451-461 https://pubmed.ncbi.nlm.nih.gov/30191875/
- 885 Chan K, Alessio A, Johnson G. et al. Prospective Trial Using Internal Pair-Production Positron Emission Tomography to Establish the Yttrium-90 Radioembolization Dose Required for Response of Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2018; 101 (02) 358-365 https://pubmed.ncbi.nlm.nih.gov/29559288/
- 886 d’Abadie P, Walrand S, Hesse M. et al. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42 (07) 747-754 https://pubmed.ncbi.nlm.nih.gov/33741864/
- 887 Nodari G, Popoff R, Riedinger J. et al. Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy. EJNMMI Res 2021; 11 (01) 24 https://pubmed.ncbi.nlm.nih.gov/33687596/
- 888 Allimant C, Kafrouni M, Delicque J. et al. Tumor Targeting and Three-Dimensional Voxel-Based Dosimetry to Predict Tumor Response, Toxicity, and Survival after Yttrium-90 Resin Microsphere Radioembolization in Hepatocellular Carcinoma. J Vasc Interv Radiol 2018; 29 (12) 1662-1670 https://pubmed.ncbi.nlm.nih.gov/30217745/
- 889 Hermann A, Dieudonné A, Ronot M. et al. Relationship of Tumor Radiation-absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with. Radiology 2020; 296 (03) 673-684
- 890 Son M, Ha L, Bang M. et al. Diagnostic and prognostic value of. Sci Rep 2021; 11 (01) 3207 https://pubmed.ncbi.nlm.nih.gov/33547398/
- 891 Celotti A, Solaini L, Montori G. et al. Preoperative biliary drainage in hilar cholangiocarcinoma: Systematic review and meta-analysis. Eur J Surg Oncol 2017; 43: 1628-1635
- 892 Ramanathan R, Borrebach J, Tohme S. et al. Preoperative Biliary Drainage Is Associated with Increased Complications After Liver Resection for Proximal Cholangiocarcinoma. J Gastrointest Surg 2018; 22: 1950-1957 https://link.springer.com/content/pdf/10.1007/s11605-018-3861-3.pdf
- 893 Cai Y, Tang Q, Xiong X. et al. Preoperative biliary drainage versus direct surgery for perihilar cholangiocarcinoma: A retrospective study at a single center. Biosci Trends 2017; 11: 319-325 https://www.jstage.jst.go.jp/article/bst/11/3/11_2017.01107/_pdf
- 894 Farges O, Regimbeau JM, Fuks D. et al. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br J Surg 2013; 100: 274-283 https://bjssjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bjs.8950?download=true
- 895 Xiong JJ, Nunes QM, Huang W. et al. Preoperative biliary drainage in patients with hilar cholangiocarcinoma undergoing major hepatectomy. World J Gastroenterol 2013; 19: 8731-8739 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870521/pdf/WJG-19-8731.pdf
- 896 Wang L, Lin N, Xin F. et al. A systematic review of the comparison of the incidence of seeding metastasis between endoscopic biliary drainage and percutaneous transhepatic biliary drainage for resectable malignant biliary obstruction. World J Surg Oncol 2019; 17: 116 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612106/pdf/12957_2019_Article_1656.pdf
- 897 Kishi Y, Shimada K, Nara S. et al. The type of preoperative biliary drainage predicts short-term outcome after major hepatectomy. Langenbecks Arch Surg 2016; 401: 503-511 https://link.springer.com/content/pdf/10.1007/s00423-016-1427-y.pdf
- 898 Sangchan A, Kongkasame W, Pugkhem A. et al. Efficacy of metal and plastic stents in unresectable complex hilar cholangiocarcinoma: a randomized controlled trial. Gastrointest Endosc 2012; 76: 93-99







