Subscribe to RSS
DOI: 10.1055/a-2463-7380
Bedeutung und Mechanismen des Vogelgesangs: Inspiration für die Pneumologie
Meaning and Mechanisms of Birdsong: Inspiration for Pneumology
Zusammenfassung
Im Gegensatz zum Menschen ist der Ort der Lautbildung bei Vögeln nicht der Kehlkopf, sondern der sog. „Stimmkopf“ (wissenschaftliche Name „Syrinx“). Bei einigen Arten ist der Syrinx an der Bifurkation der Trachea in die beiden Hauptbronchien (trachealer Stimmkopf), bei anderen Arten in den Hauptbronchien (bronchialer Stimmkopf) lokalisiert. Bei der Inspiration strömt ein Teil der Luft in die Lunge, der zum Singen benötigte Teil in die der Lunge benachbarten Luftsäcke. Während der Exspiration verlässt die Luft die Luftsäcke, strömt durch die Syrinx, wo dann der Gesang entsteht. Wenn Vögel gleichzeitig zweistimmig singen, werden einzelne Sequenzen simultan im rechten und linken Anteil der Syrinx gebildet.
Die Gesangsanalyse erfolgt mittels Spektrogrammen (sog. Sonagrammen), die den zeitlichen Verlauf des Frequenzspektrums des Vogelgesangs grafisch darstellen.
Der Gesang besteht aus einer oder mehreren Strophen, die ihrerseits aus der variablen bzw. konstanten Abfolge von Motiven oder Silben aufgebaut sind. Einige Singvögel verfügen über ein enormes Silben- und Strophenrepertoire (max. bis zu 7000 Strophen/Tag). Bei den meisten Vogelarten existieren neben dem Gesang auch deutlich einfachere Bettel-, Kontakt-, Droh-, Flug-, Alarm- und Kopulationsrufe.
Der Gesang der männlichen Vögel hat vorwiegend zwei Funktionen: 1. Mithilfe des Gesangs wird um eine mögliche Partnerin geworben. Den Weibchen liefert der Gesang wichtige Informationen über Leistungsfähigkeit und Gesundheitszustand des Bewerbers. 2. Der Gesang dient der Revierverteidigung.
Bei ca. 40 % der Singvogelarten singen auch die Weibchen. Pärchen mancher Singvogelart singen perfekt synchronisiert.
Eine ganze Reihe von Singvögeln imitiert sowohl die Stimmen anderer Singvögel als auch Umgebungsgeräusche und viele Singvögel besitzen regionale Dialekte.
Die Gesangsentwicklung hängt neben genetischen von weiteren Faktoren, wie z. B. Umwelt, Stoffwechsel und hormonellem Einfluss, ab. Sie verläuft schrittweise und beinhaltet initial relativ primitive Sequenzen (sog. „subsongs“), führt dann über komplexere Zwischenformen („plastic songs“) zum vollendeten Gesangsmuster („full songs“).
Jungvögel lernen den Gesang ihrer Art bereits zu einem Zeitpunkt, an dem sie selbst noch gar nicht singen, oft bereits im Alter von 10–50 Tagen durch Prägung von älteren Artgenossen, gewöhnlich den Vätern.
In einem Netzwerk aus sensomotorischen Neuronen im Vorderhorn entwickelt sich der Gesang der Jungvögel auf der Basis der Schablone des Erwachsenengesangs.
Für das Sprachlernen des Menschen bieten Singvögel, insbesondere der Zebrafink, das derzeit beste Modell bzgl. neuronaler Mechanismen des Sprachlernens. Bei Vögeln orchestriert das sog. „High Vocal Center“ (HVC) alle für den Gesang relevanten Hirnregionen, wobei die neuronale Kontrolle des Gesangs sensitiv für Geschlechtshormone ist.
Abstract
In contrast to humans, the location where sound is produced in birds is not the larynx, but rather the so-called “vocal box” (scientific term “Syrinx”). In some species the syrinx is located at the bifurcation point of the trachea into the two main bronchi (tracheal vocal head), while in some in the main bronchi (bronchial vocal head). During inspiration, part of the air flows into the lungs, and the part needed for singing flows into the air sacs adjacent to the lungs. During expiration, air leaves the air sacs and flows through the syrinx, where the song is created. When birds sing in two voices at the same time, individual sequences are formed simultaneously in the right and left parts of the syrinx.
The song analysis is based on spectrograms (so-called sonagrams), which graphically represent the frequency spectrum of bird song.
The song consists of one or more verses, which in turn consist of the variable or constant sequence of motives or syllables. Some songbirds have an enormous repertoire of syllables and verses (max. up to 7000 verses per day). In addition to singing, most bird species also have much simpler begging, contact, threatening, flight, alarm and copulation calls.
Male birds sing primarily for two reasons: 1. They use song to woo a potential partner. This song provides the females with important information about the applicantʼs performance and health. 2. Singing serves to defend the territory.
In around 40 % of songbird species, females also sing. Pairs of some species sing in perfect synchronization.
A number of songbirds imitate both the voices of other songbirds and ambient noises, and many songbirds have regional dialects.
Song development depends on genetics and other factors such as the environment, metabolism and hormonal influences. It proceeds step by step and initially includes relatively primitive sequences (so-called “subsongs”), then leads through more complex intermediate forms (“plastic songs”) and finally to the completed singing pattern (“full songs”).
Young birds learn the song of their species at a time when they are not yet singing themselves, often as nestlings aged 10 to 50 days from older members of the species, usually from their fathers.
The song of young birds develops, based on the template of adult song, in a network of sensory-motor neurons in the forebrain.
Songbirds, especially the zebra finch, currently offer the best model for the neural basis of human language learning. In birds, the so-called “High Vocal Center” orchestrates all brain regions relevant to songs, with the neural control of song being sensitive to sex hormones.
Schlüsselwörter
Vogelgesang - Ventilation - Syrinx - Bedeutung - Entwicklung und Funktion des VogelgesangsPublication History
Article published online:
31 January 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kuhl H, Frankl-Vilches C, Bakker A. et al. An unbiased molecular approach using 3’-UTRs resolves the avian-family level tree of life. Mol Biol Evol 2021; 38: 108-127
- 2 Goller F. The syrinx. Curr Biol 2022; 32: R1095-R1100
- 3 Mackelprang R, Goller F. Ventilation patterns of the songbird lung/air sac system during different behaviors. The Journal of Experimental Biology 2013; 216: 3611-3619
- 4 Suthers RA, Vallet E, Kreutzer M. Bilateral coordination and the motor basis of female preference for sexual signals in canary song. J Exp Biol 2012; 215: 2950-2959
- 5 Duncker HR. Der Atemapparat der Vögel und ihre lokomotorische und metabolische Leistungsfähigkeit. J Ornithol 2000; 141: 1-67
- 6 Smith DG. Male Singing Ability and Territory Integrity in Red-Winged Blackbirds (Ageliaus Phoeniceus). Behaviour 1979; 68: 193-206
- 7 Wild JM. Neural pathways for the control of birdsong production. J Neurobiol 1997; 33: 653-670
- 8 Krakauer AH, Tyrrell M, Lehmann K. et al. Vocal and anatomical evidence for two-voiced sound production in the greater sage-grouse Centrocercus urophasianus. J Exp Biol 2009; 212: 3719-3727
- 9 Elemans CPH, Rasmussen JH, Herbst CT. et al. Universal mechanisms of sound production and control in birds and mammals. Nat Commun 2015; 6: 8978
- 10 Pavan G, Budney G, Klinck H. History of sound recording analysis equipment. In: Erbe C, Thomas JA. Exploring animal behavior through sound: volume I. Springer ASA Press; 2022: 1-36
- 11 Gill L, D’Amelio PB, Adreani NM. et al. A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution. Methods Ecol Evol 2016; 7: 1349-1358
- 12 Amy M, Salvin P, Naguib M. et al. Female signalling to male song in the domestic canary, Serinus canaria. R Soc open sci 2015; 2: 140196
- 13 Gahr M. Seasonal Hormone Fluctuations and Song Structure of Birds. In: Aubin T, Mathevon N. Coding Strategies in Vertebrate Acoustic Communication. Cham: Springer; 2020: 163-201
- 14 Kreutzer M, Vallet E. Differences in the response of captive female canaries to variation in conspecific and heterospecific songs. Behaviour 1991; 117: 106-116
- 15 Gahr M. Seasonal and life-history stage dependent vocal communication of birds. In: Fritsch B, Grothe B. The Senses: A Comprehensive Reference, vol. 2. Elsevier Academic Press; 2020: 163-186
- 16 Gahr M, Güttinger HR. Functional aspects of singing in male and female Uraeginthus bengalus (Estrildidae). Ethology 1986; 72: 123-131
- 17 Hall ML. A Review of Vocal Duetting in Birds. Advances in the Study of Behavior 2009; 40: 67-121
- 18 Dudouit C, Maury C, Bosca J. et al. Vocal performance is equal in spontaneous song of male and female European robins. Animal Behav 2022; 193: 193-103
- 19 Riebel K, Odom KJ, Langmore NE. et al. New insights from female bird song: towards an integrated approach to studying male and female communication roles. Biol Lett 2019; 15: 20190059
- 20 Wickler W, Seibt U. Vocal dueting and the pair bond. II. Unisono dueting of the African forest weaver, Symplectes bicolor. Z Tierpsychol 1980; 52: 217-226
- 21 Hoffmann S, Trost L, Voigt C. et al. Duets in the wild: Inter-individually coordinated motor control enables cooperative behavior. Nature Commun 2019; 10: 2577
- 22 Leitner S, Catchpole C. Song and brain development in canaries raised under different conditions of acoustic and social isolation over two years. Dev Neurobiol 2007; 67: 1478-1487
- 23 Price PH. Developmental determinants of structure in zebra finch song. J Comp Physiol Psychol 1979; 93: 260-277
- 24 Rajan S, Lamers KP, Both C. et al. Translocated wild birds are predisposed to learn songs of their ancestral population. Current Biol 2024; 34: 2535-2540.e4
- 25 Derégnaucourt S, Saar S, Gahr M. Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica). Proc Biol Sci 2009; 276: 2153-2162
- 26 Doupe J, Kuhl PK. Birdsong and human speech: Common Themes and Mechanisms. Ann Rev Neurosci 1999; 22: 567-631
- 27 Konishi M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol 1965; 22: 770-783
- 28 Marler P. Three models of song learning: Evidence from behavior. J Neurobiol 1998; 33: 501-516
- 29 Leitao A, Gahr M. Babbling opens the sensory phase for imitative song learning. PNAS 2024; 121: e2312323121
- 30 Goller M, Shizuka D. Evolutionary origins of vocal mimicry in songbirds. Evolution Letters 2018; 2–4: 417-426
- 31 Güttinger HR, Turner T, Dobmeyer S. et al. Melodiewahrnehmung und Wiedergabe beim Gimpel: Untersuchungen an liederpfeifenden und Kanariengesang imitierenden Gimpeln (Pyrrhula pyrrhula). J Ornithol 2002; 143: 303-318
- 32 Krebs JR, Kroodsma DE. Repertoires and geographical variation in bird song. Advances in the Study of Behavior 1980; 11: 143-177
- 33 Lachlan RF, Verzijden MN, Bernard CS. et al. The progressive loss of syntactical structure in bird song along an island colonization chain. Curr Biol 2013; 23: 1896-1901
- 34 Baptista LF. Dialectal variation in the raincall of the Chaffinch (Fringilla coelebs). Vogelwarte 1990; 35: 249-256
- 35 Wang D, Forstmeier W, Farine DR. et al. Machine learning reveals cryptic dialects that explain mate choice in a songbird. Nat Commun 2022; 13: 1630
- 36 Bolhuis JJ, Gahr M. Neural mechanisms of bird song memory. Nat Rev Neurosci 2006; 7: 347-357
- 37 Konishi M, Akutagawa E. Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain. Nature 1985; 315: 145-147
- 38 Nottebohm F. A brain for all seasons: Cyclical anatomical changes in song control nuclei of the canary brain. Science 1981; 214: 1368-1370
- 39 Frankl-Vilches C, Kuhl H, Werber M. et al. Insights from the canary genome as for the evolution of species-specific hormone-sensitivity of singing behaviour. Genome Biol 2015; 16: 19
- 40 Nottebohm F, Arnold AP. Sexual dimorphism in vocal control areas of the songbird brain. Science 1976; 194: 211-213
- 41 Brainard MS, Doupe AJ. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 2000; 404: 762-766
- 42 Solis MM, Doupe AJ. Contributions of tutor and birdʼs own song experience to neural selectivity in the songbird anterior forebrain. J Neurosci 1999; 19: 4559-4584
- 43 Kempenaers B, Borgstro P, Loes P. et al. Artificial Night Lighting Affects Dawn Song, Extra-Pair Siring Success and Lay Date in Songbirds. Current Biology 2010; 20: 1735-1739
- 44 Senzaki M, Barber JR, Phillips JN. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 2020; 587: 605-609
- 45 Callaghan CT, Chase JM, McGlinn DJ. Anthropogenic habitat modification causes nonlinear multiscale bird diversity declines. Ecography 2024; 2024: e06759
- 46 Brumm H, Goymann W, Derégnaucourt S. et al. Traffic noise disrupts vocal development and suppresses immune function. Sci Adv 2021; 7: eabe2405
- 47 Díaz S, Pascual U, Stenseke M. Assessing natureʼs contributions to people. Science 2018; 359: 270-272
- 48 Camacho-Guzmán A, Avila-Akerberg V, Martinez-Soto J. et al. Connectedness to Nature, Well-Being and Presence of Birds. Fronteiras: J Soc Technol Environment Sci 2023; 12: 248-264
- 49 Methorst J, Rehdanz K, Mueller T. et al. The importance of species diversity for human well-being in Europe. Ecological Economics 2021; 181: 106917
- 50 Stobbe E, Sundermann J, Ascone L. et al. Birdsongs alleviate anxiety and paranoia in healthy participants. Sci Rep 2022; 12: 16414