Subscribe to RSS

DOI: 10.1055/a-2464-7776
Neoteric Solvents for Metal-Catalyzed Coupling Reactions
Abstract
Catalysis is a green methodology aimed at optimizing synthetic procedures by simplifying the design of target molecules and reducing energy and material consumption. However, catalytic reactions often rely on polar aprotic solvents, such as dimethylformamide (DMF) or acetonitrile, which present environmental and health issues. In response, manufacturers and researchers are exploring greener alternatives derived from residual biomass, which reduce the negative environmental impact of traditional solvents. These new classes of solvents are termed ‘neoteric’ in order to distinguish them from traditional solvents with well-established applications. This graphical review highlights key findings on the use of these new solvents in metal-catalyzed coupling reactions.
#
Biosketches


Vincenzo Langellotti graduated in chemical sciences in 2022. He is currently a Ph.D. student at the University of Naples Federico II and his thesis is focused on the design of catalytic systems for the conversion of residual biomass into value-added chemicals and as vectors for energy.


Massimo Melchiorre graduated in chemical sciences in 2018. He is board member of ISusChem SRL., an innovative start-up and university spin-off at the Department of Chemical Sciences of the University of Naples Federico II. Research at ISusChem SRL involves biomass conversion and the development of bio-based products.


Maria Elena Cucciolito graduated in industrial chemistry at the University of Naples Federico II in 1987 and received her Ph.D. in 1992 with Prof. Achille Panunzi. Her research activity is in the fields of (1) five-coordinate olefin complexes of Pt(II) and Pd(II), (2) the reactivity and stereochemistry of allylic complexes of Pt(II) and Pd(II), and (3) the reactivity of alkenes coordinated to electrophilic complexes of Pt(II) and Pd(II).


Roberto Esposito received his Ph.D. in chemical sciences in 2018 at the University of Naples Federico II under the supervision of Prof. F. Ruffo. He is a researcher at the Department of Chemical Science of the University of Naples Federico II, and his main research topics are (1) W(VI)-, Zn(II)- and Fe(III)-based catalysts for the conversion of biomasses, and (2) the chemistry of tetra-coordinated and penta-coordinated complexes of Pt(II).


Francesco Ruffo received his Ph.D. from the University of Naples Federico II in 1994 under the supervision of Prof. Achille Panunzi. The research activity of Prof. Ruffo is mainly in the following fields: (1) Pt and Pd complexes in low oxidation states, (2) asymmetric catalysis, (3) the study of cationic hydrocarbyl/olefin complexes of Pt(II) and Pd(II), (4) the design of glycoconjugate Pt complexes with biological activities, and (5) the design of green catalytic methodologies for the conversion of residual biomass.
Fine chemicals are desirable targets within the modern chemical industry. Their synthesis often entails a series of intricate steps for the sequential formation of C–C, C–H and C–X bonds, including stereoselective transformations, protection/deprotection protocols, and extensive purification procedures. Such processes demand considerable investments of time, energy, and auxiliary resources. Consequently, the resultant manufacturing procedures frequently do not meet the sustainability standards required for large-scale development.
The search for green methodologies, oriented towards optimizing synthetic procedures, represents a continual objective of current research. In this context, catalysis offers a promising opportunity for simplifying the synthesis of target molecules. The research efforts in this domain have already produced significant fruit, with virtually all organic reactions now featuring catalytic variants that offer notable advantages in terms of energy and materials consumption.
Nonetheless, many catalytic processes of paramount synthetic importance encounter constraints due to their reliance on solvents possessing specific physicochemical properties. Often, these solvents come burdened with unfavorable attributes stemming from their production methods, hazardous nature, toxicity, and environmental impacts. Polar aprotic solvents such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and acetonitrile serve as illustrative examples; albeit indispensable in reactions that form C–C, C–H and C–X bonds, they are accompanied by one or more of the aforementioned unfavorable attributes. The significance of these drawbacks is underscored by the actions of numerous manufacturers that have introduced their own guidelines and are promoting greener options in the market.
New types of solvents have been proposed, with structures and functions focused on sustainability and reducing the environmental impact of chemical reactions. These have been termed ‘neoteric’ solvents. They often originate from residual biomass, e.g., through the refinement and conversion of lignocellulosic fractions. Examples include γ-valerolactone (GVL), ethyl lactate (EL), and Cyrene™. Alternatively, some are derived from oily fractions of plants or fruits, such as limonene. Additionally, new solvents of non-biomass origin have been proposed, such as methyl tert-butyl ether (MTBE) and tert-amyl alcohol.
Academic researchers are actively involved in demonstrating the applicability of these alternative solvents in key catalytic processes of synthetic relevance, often claiming their synthetic advantages over traditional ones, and their versatility across a broader spectrum of chemical transformations.
Our research group is deeply engaged in this emerging field of research. We have recently introduced a novel class of solvents obtained through the ketalization of lactic acid, and have showcased their efficacy in both the Heck reaction and in energy storage applications.
Considering the above information, this Graphical Review aims to thoroughly examine the primary findings related to the utilization of neoteric solvents (Figure [1]) in catalyzed coupling reactions. The exclusion of established solvents, such as ethanol and ethyl acetate, is intentional since their widespread use does not classify them as neoteric. The insights gained from this systematic investigation underscore the fact that further steps are being taken towards the full adoption of the principles of green chemistry.






































































#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Byrne F, Jin S, Sherwood J, Rob McElroy C, Farmer TJ, Clark JH, Hunt AJ. Solvents from Waste . In Bio-Based Solvents . Jérôme F, Luque R. John Wiley & Sons; Hoboken: 2017. 49
- 1b Campos JF, Berteina-Raboin S. Catalysts 2022; 12: 48
- 1c Kong D, Dolzhenko AV. Sustainable Chem. Pharm. 2022; 25: 100591
- 1d Wang Y, Dai M, Luo G, Fan J, Clark JH, Zhang S. Chemistry 2023; 5: 2322
- 1e Ghorai S, Nanda D, Ghosh A, Dash PS. Mol. Catal. 2024; 553: 113720
- 1f Aricò F, Aldoshin AS, Tundo P. ChemSusChem 2017; 10: 53
- 1g Sajid M, Farooq U, Bary G, Azim MM, Zhao X. Green Chem. 2021; 23: 9198
- 1h Leita BA, Warden AC, Burke N, O’Shea MS, Trimm D. Green Chem. 2010; 12: 70
- 1i Zhang J, Zhu A, Xu W, Li D, Zhang Y, Duan Z, Wang Y. Chem. Eng. Res. Des. 2021; 174: 386
- 1j Watanabe K, Yamagiwa N, Torisawa Y. Org. Process Res. Dev. 2007; 11: 251
- 1k Shukla K, Srivastava VC. Catal. Rev. 2017; 59: 1
- 1l Melchiorre M, Esposito R, Di Serio M, Abbate G, Lampasi A, Balducci A, Ruffo F. Energies 2021; 14: 4250
- 1m Voutyritsa E, Triandafillidi I, Kokotos CG. Synthesis 2017; 49: 917
- 1n De Schouwer F, Adriaansen S, Claes L, De Vos DE. Green Chem. 2017; 19: 4919
- 1o Leal-Duaso A, Caballero M, Urriolabeitia A, Mayoral JA, García JI, Pires E. Green Chem. 2017; 19: 4176
- 1p Fache F, Jacquot L, Lemaire M. Tetrahedron Lett. 1994; 35: 3313
- 1q Ramachandran PV, Choudhary S. J. Org. Chem. 2023; 88: 15956
- 1r Haus MO, Winter B, Fleitmann L, Palkovits R, Bardow A. Green Chem. 2022; 24: 6671
- 1s Leiva K, Garcia R, Sepulveda C, Laurenti D, Geantet C, Vrinat M, Garcia-Fierro J, Escalona N. Catal. Today 2017; 296: 228
- 1t Rajabi F. Tetrahedron Lett. 2009; 50: 395
- 1u Hibbard JP, Yam JG, Alsalek EB, Bahamonde A. J. Org. Chem. 2022; 87: 12036
- 2a Wan J.-P, Wang C, Zhou R, Liu Y. RSC Adv. 2012; 2: 8789
- 2b Edwards GA, Trafford MA, Hamilton AE, Buxton AM, Bardeaux MC, Chalker JM. J. Org. Chem. 2014; 79: 2094
- 3 Ramgren SD, Hie L, Ye Y, Garg NK. Org. Lett. 2013; 15: 3950
- 4a Mondal M, Bora U. New J. Chem. 2016; 40: 3119
- 4b Campos JF, Scherrmann M.-C, Berteina-Raboin S. Green Chem. 2019; 21: 1531
- 5 Wilson KL, Murray J, Jamieson CWatson A. J. B. Synlett 2018; 29: 650
- 6a Sullivan C, Zhang Y, Xu G, Christianson L, Luengo F, Halkoski T, Gao P. Green Chem. 2022; 24: 7184
- 6b Gautam P, Gupta R, Bhanage BM. Eur. J. Org. Chem. 2017; 3431
- 7a Wilson KL, Murray J, Sneddon HF, Jamieson C, Watson AJ. B. Synlett 2018; 29: 2293
- 7b Valentini F, Di Erasmo B, Ciani M, Chen S, Gu Y, Vaccaro L. Green Chem. 2024; 26: 4871
- 8a Lei P, Mu Y, Wang Y, Wang Y, Ma Z, Feng J, Liu X, Szostak M. ACS Sustainable Chem. Eng. 2020; 9: 552
- 8b Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
- 9a Smoleń M, Kędziorek M, Grela K. Catal. Commun. 2014; 44: 80
- 9b Smoleń M, Marczyk A, Kośnik W, Trzaskowski B, Kajetanowicz A, Grela K. Eur. J. Org. Chem. 2019; 640
- 9c Smoleń M, Kośnik W, Gajda R, Woźniak K, Skoczeń A, Kajetanowicz A, Grela K. Chem. Eur. J. 2018; 24: 15372
- 10a Planer S, Jana A, Grela K. ChemSusChem 2019; 12: 4655
- 10b Nienałtowski T, Krzesinski P, Baumert ME, Skoczen A, Suska-Kauf E, Pawlowska J, Kajetanowicz A, Grela K. ACS Sustainable Chem. Eng. 2020; 8: 18215
- 11 Granato AV, Santos AG, dos Santos EN. ChemSusChem 2017; 10: 1832
- 12a Shin HG, Lee HS, Hong EJ, Kim JG. Bull. Korean Chem. Soc. 2021; 42: 502
- 12b Dolzhenko AV. Sustainable Chem. Pharm. 2020; 18: 100322
- 13a Leitch JA, Wilson PB, McMullin CL, Mahon MF, Bhonoah Y, Williams IH, Frost CG. ACS Catal. 2016; 6: 5520
- 13b Leitch JA, Cook HP, Bhonoah Y, Frost CG. J. Org. Chem. 2016; 81: 10081
- 14a Matsidik R, Luzio A, Hameury S, Komber H, McNeill CR, Caironi M, Sommer M. J. Mater. Chem. C 2016; 4: 10371
- 14b Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RP. H, Melkonyan FS, Facchetti A, Marks TJ. Macromolecules 2018; 51: 9140
- 14c Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
- 15a Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
- 15b Fumagalli F, Warratz S, Zhang S.-K, Rogge T, Zhu C, Stückl AC, Ackermann L. Chem. Eur. J. 2018; 24: 3984
- 15c Mo J, Messinis AM, Oliveira JC. A, Demeshko S, Meyer F, Ackermann L. ACS Catal. 2021; 11: 1053
- 15d Friis SD, Johansson MJ, Ackermann L. Nat. Chem. 2020; 12: 511
- 16a Messinis AM, Finger LH, Hu L, Ackermann L. J. Am. Chem. Soc. 2020; 142: 13102
- 16b Bu Q, Rogge T, Kotek V, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 765
- 16c Tabasso S, Calcio Gaudino E, Rinaldi L, Ledoux A, Larini P, Cravotto G. New J. Chem. 2017; 41: 9210
- 17a Bechtoldt A, Baumert ME, Vaccaro L, Ackermann L. Green Chem. 2018; 20: 398
- 17b Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
- 18a Bu Q, Gońka E, Kuciński K, Ackermann L. Chem. Eur. J. 2019; 25: 2213
- 18b Cabrero-Antonino JR, Adam R, Junge K, Beller M. Chem. Sci. 2017; 8: 6439
- 19a Ye L, Thompson BC. ACS Macro Lett. 2021; 10: 714
- 19b Santoro S, Ferlin F, Luciani L, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 1601
- 19c Gandeepan P, Kaplaneris N, Santoro S, Vaccaro L, Ackermann L. ACS Sustainable Chem. Eng. 2019; 7: 8023
- 19d Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 19e Bijoy R, Agarwala P, Roy L, Thorat BN. Org. Process Res. Dev. 2021; 26: 480
- 19f Deshmukh D, Vagadiya N, Jagtap S, Malasane P. Synthesis 2024; 56: 2329
- 19g Strappaveccia G, Luciani L, Bartollini E, Marrocchi A, Pizzo F, Vaccaro L. Green Chem. 2015; 17: 1071
- 20a Fodor D, Kégl T, Tukacs JM, Horváth AK, Mika LT. ACS Sustainable Chem. Eng. 2020; 8: 9926
- 20b Mahmoudi H, Valentini F, Ferlin F, Bivona LA, Anastasiou I, Fusaro L, Aprile C, Marrocchi A, Vaccaro L. Green Chem. 2019; 21: 355
- 20c Bagherzadeh M, Mahmoudi H, Ataie S, Bahjati M, Kia R, Raithby PR, Vaccaro L. Mol. Catal. 2019; 474: 110406
- 21 Stini NA, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2023; 21: 351
- 22a Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739
- 22b Melchiorre M, Budzelaar PH. M, Cucciolito ME, Esposito R, Santagata E, Ruffo F. Green Chem. 2023; 25: 2790
- 22c Sangon S, Supanchaiyamat N, Sherwood J, McElroy CR, Hunt AJ. React. Chem. Eng. 2020; 5: 1798
- 23a Leal-Duaso A, Mayoral JA, Pires E. ACS Sustainable Chem. Eng. 2020; 8: 13076
- 23b Ferrazzano L, Martelli G, Fantoni T, Daka A, Corbisiero D, Viola A, Ricci A, Cabri W, Tolomelli A. Org. Lett. 2020; 22: 3969
- 24a Fantoni T, Bernardoni S, Mattellone A, Martelli G, Ferrazzano L, Cantelmi P, Corbisiero D, Tolomelli A, Cabri W, Vacondio F, Ferlenghi F, Mor M, Ricci A. ChemSusChem 2021; 14: 2591
- 24b Ismalaj E, Strappaveccia G, Ballerini E, Elisei F, Piermatti O, Gelman D, Vaccaro L. ACS Sustainable Chem. Eng. 2014; 2: 2461
- 25a Liu Y, Voloshkin VA, Scattolin T, Peng M, Van Hecke K, Nolan SP, Cazin CS. J. Eur. J. Org. Chem. 2022; e202200309
- 25b Clark JS. K, Ferguson MJ, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 6391
- 26a Liu Y, Scattolin T, Gobbo A, Beliš M, Van Hecke K, Nolan SP, Cazin CS. J. Eur. J. Inorg. Chem. 2021; e202100840
- 26b Pithani S, Malmgren M, Aurell C.-J, Nikitidis G, Friis SD. Org. Process Res. Dev. 2019; 23: 1752
- 27 Fine Nathel NF, Kim J, Hie L, Jiang X, Garg NK. ACS Catal. 2014; 4: 3289
- 28a Park NH, Teverovskiy G, Buchwald SL. Org. Lett. 2014; 16: 220
- 28b Clark JS. K, Voth CN, Ferguson MJ, Stradiotto M. Organometallics 2017; 36: 679
- 29 Zinser CM, Warren KG, Nahra F, Al-Majid A, Barakat A, Islam MS, Nolan SP, Cazin CS. J. Organometallics 2019; 38: 2812
- 30a Monguchi Y, Kitamoto K, Ikawa T, Maegawa T, Sajiki H. Adv. Synth. Catal. 2008; 350: 2767
- 30b Campos JF, Cailler M, Claudel R, Prot B, Besson T, Berteina-Raboin S. Molecules 2021; 26: 1074
- 31a Ostrowska S, Palio L, Czapik A, Bhandary S, Kwit M, Van Hecke K, Nolan SP. Catalysts 2023; 13: 559
- 31b Campos JF, Berteina-Raboin S. Catalysts 2019; 9: 840
- 32 Campos JF, Pacheco-Benichou A, Fruit C, Besson T, Berteina-Raboin S. Synthesis 2020; 52: 3071
Corresponding Author
Publication History
Received: 11 October 2024
Accepted after revision: 07 November 2024
Accepted Manuscript online:
08 November 2024
Article published online:
20 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Byrne F, Jin S, Sherwood J, Rob McElroy C, Farmer TJ, Clark JH, Hunt AJ. Solvents from Waste . In Bio-Based Solvents . Jérôme F, Luque R. John Wiley & Sons; Hoboken: 2017. 49
- 1b Campos JF, Berteina-Raboin S. Catalysts 2022; 12: 48
- 1c Kong D, Dolzhenko AV. Sustainable Chem. Pharm. 2022; 25: 100591
- 1d Wang Y, Dai M, Luo G, Fan J, Clark JH, Zhang S. Chemistry 2023; 5: 2322
- 1e Ghorai S, Nanda D, Ghosh A, Dash PS. Mol. Catal. 2024; 553: 113720
- 1f Aricò F, Aldoshin AS, Tundo P. ChemSusChem 2017; 10: 53
- 1g Sajid M, Farooq U, Bary G, Azim MM, Zhao X. Green Chem. 2021; 23: 9198
- 1h Leita BA, Warden AC, Burke N, O’Shea MS, Trimm D. Green Chem. 2010; 12: 70
- 1i Zhang J, Zhu A, Xu W, Li D, Zhang Y, Duan Z, Wang Y. Chem. Eng. Res. Des. 2021; 174: 386
- 1j Watanabe K, Yamagiwa N, Torisawa Y. Org. Process Res. Dev. 2007; 11: 251
- 1k Shukla K, Srivastava VC. Catal. Rev. 2017; 59: 1
- 1l Melchiorre M, Esposito R, Di Serio M, Abbate G, Lampasi A, Balducci A, Ruffo F. Energies 2021; 14: 4250
- 1m Voutyritsa E, Triandafillidi I, Kokotos CG. Synthesis 2017; 49: 917
- 1n De Schouwer F, Adriaansen S, Claes L, De Vos DE. Green Chem. 2017; 19: 4919
- 1o Leal-Duaso A, Caballero M, Urriolabeitia A, Mayoral JA, García JI, Pires E. Green Chem. 2017; 19: 4176
- 1p Fache F, Jacquot L, Lemaire M. Tetrahedron Lett. 1994; 35: 3313
- 1q Ramachandran PV, Choudhary S. J. Org. Chem. 2023; 88: 15956
- 1r Haus MO, Winter B, Fleitmann L, Palkovits R, Bardow A. Green Chem. 2022; 24: 6671
- 1s Leiva K, Garcia R, Sepulveda C, Laurenti D, Geantet C, Vrinat M, Garcia-Fierro J, Escalona N. Catal. Today 2017; 296: 228
- 1t Rajabi F. Tetrahedron Lett. 2009; 50: 395
- 1u Hibbard JP, Yam JG, Alsalek EB, Bahamonde A. J. Org. Chem. 2022; 87: 12036
- 2a Wan J.-P, Wang C, Zhou R, Liu Y. RSC Adv. 2012; 2: 8789
- 2b Edwards GA, Trafford MA, Hamilton AE, Buxton AM, Bardeaux MC, Chalker JM. J. Org. Chem. 2014; 79: 2094
- 3 Ramgren SD, Hie L, Ye Y, Garg NK. Org. Lett. 2013; 15: 3950
- 4a Mondal M, Bora U. New J. Chem. 2016; 40: 3119
- 4b Campos JF, Scherrmann M.-C, Berteina-Raboin S. Green Chem. 2019; 21: 1531
- 5 Wilson KL, Murray J, Jamieson CWatson A. J. B. Synlett 2018; 29: 650
- 6a Sullivan C, Zhang Y, Xu G, Christianson L, Luengo F, Halkoski T, Gao P. Green Chem. 2022; 24: 7184
- 6b Gautam P, Gupta R, Bhanage BM. Eur. J. Org. Chem. 2017; 3431
- 7a Wilson KL, Murray J, Sneddon HF, Jamieson C, Watson AJ. B. Synlett 2018; 29: 2293
- 7b Valentini F, Di Erasmo B, Ciani M, Chen S, Gu Y, Vaccaro L. Green Chem. 2024; 26: 4871
- 8a Lei P, Mu Y, Wang Y, Wang Y, Ma Z, Feng J, Liu X, Szostak M. ACS Sustainable Chem. Eng. 2020; 9: 552
- 8b Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
- 9a Smoleń M, Kędziorek M, Grela K. Catal. Commun. 2014; 44: 80
- 9b Smoleń M, Marczyk A, Kośnik W, Trzaskowski B, Kajetanowicz A, Grela K. Eur. J. Org. Chem. 2019; 640
- 9c Smoleń M, Kośnik W, Gajda R, Woźniak K, Skoczeń A, Kajetanowicz A, Grela K. Chem. Eur. J. 2018; 24: 15372
- 10a Planer S, Jana A, Grela K. ChemSusChem 2019; 12: 4655
- 10b Nienałtowski T, Krzesinski P, Baumert ME, Skoczen A, Suska-Kauf E, Pawlowska J, Kajetanowicz A, Grela K. ACS Sustainable Chem. Eng. 2020; 8: 18215
- 11 Granato AV, Santos AG, dos Santos EN. ChemSusChem 2017; 10: 1832
- 12a Shin HG, Lee HS, Hong EJ, Kim JG. Bull. Korean Chem. Soc. 2021; 42: 502
- 12b Dolzhenko AV. Sustainable Chem. Pharm. 2020; 18: 100322
- 13a Leitch JA, Wilson PB, McMullin CL, Mahon MF, Bhonoah Y, Williams IH, Frost CG. ACS Catal. 2016; 6: 5520
- 13b Leitch JA, Cook HP, Bhonoah Y, Frost CG. J. Org. Chem. 2016; 81: 10081
- 14a Matsidik R, Luzio A, Hameury S, Komber H, McNeill CR, Caironi M, Sommer M. J. Mater. Chem. C 2016; 4: 10371
- 14b Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RP. H, Melkonyan FS, Facchetti A, Marks TJ. Macromolecules 2018; 51: 9140
- 14c Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
- 15a Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
- 15b Fumagalli F, Warratz S, Zhang S.-K, Rogge T, Zhu C, Stückl AC, Ackermann L. Chem. Eur. J. 2018; 24: 3984
- 15c Mo J, Messinis AM, Oliveira JC. A, Demeshko S, Meyer F, Ackermann L. ACS Catal. 2021; 11: 1053
- 15d Friis SD, Johansson MJ, Ackermann L. Nat. Chem. 2020; 12: 511
- 16a Messinis AM, Finger LH, Hu L, Ackermann L. J. Am. Chem. Soc. 2020; 142: 13102
- 16b Bu Q, Rogge T, Kotek V, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 765
- 16c Tabasso S, Calcio Gaudino E, Rinaldi L, Ledoux A, Larini P, Cravotto G. New J. Chem. 2017; 41: 9210
- 17a Bechtoldt A, Baumert ME, Vaccaro L, Ackermann L. Green Chem. 2018; 20: 398
- 17b Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
- 18a Bu Q, Gońka E, Kuciński K, Ackermann L. Chem. Eur. J. 2019; 25: 2213
- 18b Cabrero-Antonino JR, Adam R, Junge K, Beller M. Chem. Sci. 2017; 8: 6439
- 19a Ye L, Thompson BC. ACS Macro Lett. 2021; 10: 714
- 19b Santoro S, Ferlin F, Luciani L, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 1601
- 19c Gandeepan P, Kaplaneris N, Santoro S, Vaccaro L, Ackermann L. ACS Sustainable Chem. Eng. 2019; 7: 8023
- 19d Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 19e Bijoy R, Agarwala P, Roy L, Thorat BN. Org. Process Res. Dev. 2021; 26: 480
- 19f Deshmukh D, Vagadiya N, Jagtap S, Malasane P. Synthesis 2024; 56: 2329
- 19g Strappaveccia G, Luciani L, Bartollini E, Marrocchi A, Pizzo F, Vaccaro L. Green Chem. 2015; 17: 1071
- 20a Fodor D, Kégl T, Tukacs JM, Horváth AK, Mika LT. ACS Sustainable Chem. Eng. 2020; 8: 9926
- 20b Mahmoudi H, Valentini F, Ferlin F, Bivona LA, Anastasiou I, Fusaro L, Aprile C, Marrocchi A, Vaccaro L. Green Chem. 2019; 21: 355
- 20c Bagherzadeh M, Mahmoudi H, Ataie S, Bahjati M, Kia R, Raithby PR, Vaccaro L. Mol. Catal. 2019; 474: 110406
- 21 Stini NA, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2023; 21: 351
- 22a Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739
- 22b Melchiorre M, Budzelaar PH. M, Cucciolito ME, Esposito R, Santagata E, Ruffo F. Green Chem. 2023; 25: 2790
- 22c Sangon S, Supanchaiyamat N, Sherwood J, McElroy CR, Hunt AJ. React. Chem. Eng. 2020; 5: 1798
- 23a Leal-Duaso A, Mayoral JA, Pires E. ACS Sustainable Chem. Eng. 2020; 8: 13076
- 23b Ferrazzano L, Martelli G, Fantoni T, Daka A, Corbisiero D, Viola A, Ricci A, Cabri W, Tolomelli A. Org. Lett. 2020; 22: 3969
- 24a Fantoni T, Bernardoni S, Mattellone A, Martelli G, Ferrazzano L, Cantelmi P, Corbisiero D, Tolomelli A, Cabri W, Vacondio F, Ferlenghi F, Mor M, Ricci A. ChemSusChem 2021; 14: 2591
- 24b Ismalaj E, Strappaveccia G, Ballerini E, Elisei F, Piermatti O, Gelman D, Vaccaro L. ACS Sustainable Chem. Eng. 2014; 2: 2461
- 25a Liu Y, Voloshkin VA, Scattolin T, Peng M, Van Hecke K, Nolan SP, Cazin CS. J. Eur. J. Org. Chem. 2022; e202200309
- 25b Clark JS. K, Ferguson MJ, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 6391
- 26a Liu Y, Scattolin T, Gobbo A, Beliš M, Van Hecke K, Nolan SP, Cazin CS. J. Eur. J. Inorg. Chem. 2021; e202100840
- 26b Pithani S, Malmgren M, Aurell C.-J, Nikitidis G, Friis SD. Org. Process Res. Dev. 2019; 23: 1752
- 27 Fine Nathel NF, Kim J, Hie L, Jiang X, Garg NK. ACS Catal. 2014; 4: 3289
- 28a Park NH, Teverovskiy G, Buchwald SL. Org. Lett. 2014; 16: 220
- 28b Clark JS. K, Voth CN, Ferguson MJ, Stradiotto M. Organometallics 2017; 36: 679
- 29 Zinser CM, Warren KG, Nahra F, Al-Majid A, Barakat A, Islam MS, Nolan SP, Cazin CS. J. Organometallics 2019; 38: 2812
- 30a Monguchi Y, Kitamoto K, Ikawa T, Maegawa T, Sajiki H. Adv. Synth. Catal. 2008; 350: 2767
- 30b Campos JF, Cailler M, Claudel R, Prot B, Besson T, Berteina-Raboin S. Molecules 2021; 26: 1074
- 31a Ostrowska S, Palio L, Czapik A, Bhandary S, Kwit M, Van Hecke K, Nolan SP. Catalysts 2023; 13: 559
- 31b Campos JF, Berteina-Raboin S. Catalysts 2019; 9: 840
- 32 Campos JF, Pacheco-Benichou A, Fruit C, Besson T, Berteina-Raboin S. Synthesis 2020; 52: 3071















































































