Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2025; 57(04): 846-854
DOI: 10.1055/a-2492-3780
DOI: 10.1055/a-2492-3780
paper
Reductive Synthesis of Azoxypyridines from Nitropyridines Using Hydroxides in Alcoholic Media
Italian Ministry for University and Research (MUR, PRIN 2020, 2020AEX4TA project).

Abstract
The partial reduction of nitroarenes with hydroxides in alcoholic media is a venerable yet very direct approach to the synthesis of symmetrical azoxyarenes. Herein, the first application of this method to nitropyridines is disclosed, presenting its adaptation with these challenging but important substrates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2492-3780.
- Supporting Information
Primary Data
- Primary data for this article are available online at https://zenodo.org/record/7595596#.ZD0y1_zP0i9
- Primary Data
Publication History
Received: 15 October 2024
Accepted after revision: 28 November 2024
Accepted Manuscript online:
28 November 2024
Article published online:
13 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Shukla A, Tiwari RP, Singh PK. Online J. Chem. 2021; 1: 18
- 2 Zhang J, Shreeve JM. J. Am. Chem. Soc. 2014; 136: 4437
- 3 He H.-Y, Niikura H, Du Y.-L, Ryan KS. Chem. Soc. Rev. 2022; 51: 2991
- 4 Ding L, Ndejouong BL. S. T, Maier A, Fiebig H.-H, Hertweck C. J. Nat. Prod. 2012; 75: 1729
- 5 Zhang D, Cui X, Yang F, Zhang Q, Zhu Y, Wu Y. Org. Chem. Front. 2015; 2: 951
- 6 Huisgen R, Gambra FP. Tetrahedron Lett. 1982; 23: 55
- 7 Merino E. Chem. Soc. Rev. 2011; 40: 3835
- 8a Angelaud R, Reynolds M, Venkatramani C, Savage S, Trafelet H, Landmesser T, Demel P, Levis M, Ruha O, Rueckert B, Jaeggi H. Org. Process Res. Dev. 2016; 20: 1509
- 8b Bornadel A, Bisagni S, Pushpanath A, Slabu I, LePaih J, Cherney AH, Mennen SM, Hedley SJ, Tedrow J, Dominguez B. Org. Process Res. Dev. 2021; 25: 648
- 8c Lebl R, Bachmann S, Tosatti P, Sedelmeier J, Püntener K, Williams JD, Kappe CO. Org. Process Res. Dev. 2021; 25: 1988
- 9 Rück-Braun K, Priewisch B. In Science of Synthesis, Volume 31. Ramsden C. A; : 2007. 14. 1401
- 10a Zhang Y, Yang W, Wang S, Shua H, Li X, Fan S, Feng Y. Adv. Synth. Catal. 2023; 365: 2400
- 10b Sadatnabi A, Mohamadighader N, Nematollahi D. Org. Lett. 2021; 23: 6488
- 10c Qin Y, Jiang Y, Wei X, Ma Y, Liao H, Peng Q, Dai S, Wang Z, Zhao X, Hou Z. New J. Chem. 2023; 47: 14380
- 10d Wang J, Yu X, Shi C, Lin D, Li J, Jin H, Chen X, Wang S. Adv. Synth. Catal. 2019; 361: 3525
- 10e Yan Z, Xie X, Song Q, Ma F, Sui X, Huo Z, Ma M. Green Chem. 2020; 22: 1301
- 10f Doherty S, Knight JG, Backhouse T, Summers RJ, Abood E, Simpson W, Paget W, Bourne RA, Chamberlain TW, Stones R, Lovelock KR. J, Seymour JM, Isaacs MA, Hardacre C, Daly H, Rees NH. ACS Catal. 2019; 9: 4777
- 10g Belligund K, Mathew T, Hunt JR, Nirmalchandar A, Haiges R, Dawlaty J, Prakash GK. S. J. Am. Chem. Soc. 2019; 141: 15921
- 10h Yaghoubian A, Hodgson GK, Adler MJ, Impellizzeri S. Org. Biomol. Chem. 2022; 20: 7332
- 10i Tan H, Liu X, Su J, Wang Y, Gu X, Yang D, Waclawik ER, Zhu H, Zheng Z. Sci. Rep. 2019; 9: 1280
- 10j Yuan Z, Huang L, Liu Y, Sun Y, Wang G, Li X, Lercher JA, Zhang Z. Angew. Chem. Int. Ed. 2024; 63: e202317339
- 10k Liu L, Concepción P, Corma A. J. Catal. 2019; 369: 312
- 10l Xia S, Li W, Chen H, Zhu C, Han J, Xie J. J. Am. Chem. Soc. 2023; 145: 26756
- 11a Singh B, Mandelli D, Pescarmona PP. ChemCatChem 2020; 12: 593
- 11b Voutyritsa E, Theodorou A, Kokotoua MG, Kokotos CG. Green Chem. 2017; 19: 1291
- 11c Ke L, Zhu G, Qian H, Xiang G, Chen Q, Chen Z. Org. Lett. 2019; 21: 4008
- 12a Zinin N. J. Prakt. Chem. 1845; 36: 93
- 12b Bigelow HE. Chem. Rev. 1931; 9: 117
- 12c Oae S, Fukumoto T, Yamagami M. Bull. Chem. Soc. Jpn. 1963; 36: 728
- 12d Gund SH, Shelkar RS, Nagarkar JM. RSC Adv. 2014; 4: 42947
- 12e Liu Y, Liu B, Guo A, Dong Z, Jin S, Lu Y. Synth. Commun. 2012; 42: 2201
- 12f Ma R, Zhang R, Qiu H, Xie J, Ma Y. Synthesis 2024; 56: 851
- 12g Zhang R, Ma R, Chen R, Wang L, Ma Y. J. Org. Chem. 2024; 89: 1846
- 12h Zanardi A, Mata JA, Peris E. Chem. Eur. J. 2010; 16: 10502
- 12i Gholinejad M, Esmailoghli H, Sansano JM. Can. J. Chem. 2020; 98: 244
- 13a Xu F, Chen J, Xie X, Cheng P, Yu Z, Su W. Org. Process Res. Dev. 2020; 24: 2252
- 13b Arunachalam PN, Kuppusamy P, Ganesan S, Krishnamoorthy S, Nimje RY, Jarugu LB, Chikkananjaiah NK, Reddy CA, Anjanappa P, Botlagunta M, Vanteru S, Maddala N, Shankar M, Nair S, Hynes J, Santella JB. III, Carter PH, Rampulla R, Vetrichelvan M, Gupta A, Gupta AK, Arvind Mathur A. Org. Process Res. Dev. 2019; 23: 912
- 14a Bertuzzi G, Sinisi A, Caruana L, Mazzanti A, Fochi M, Bernardi L. ACS Catal. 2016; 6: 6473
- 14b Bertuzzi G, Sinisi A, Pecorari D, Caruana L, Mazzanti A, Bernardi L, Fochi M. Org. Lett. 2017; 19: 834
- 14c Bertuzzi G, Bernardi L, Fochi M. Catalysts 2018; 8: 632
- 14d Bertuzzi G, Pecorari D, Bernardi L, Fochi M. Chem. Commun. 2018; 54: 3977
- 14e Bakke J. J. Heterocycl. Chem. 2005; 42: 463
- 15 Yutilov YM, Svertilova IA. Chem. Heterocycl. Compd. 1986; 22: 80
- 16a Bassani A, Prato M, Rampazzo P, Quintily U, Scorrano G. J. Org. Chem. 1980; 45: 2263
- 16b Paradisi C, Scorrano G. Acc. Chem. Res. 1999; 32: 958
- 16c Russell GA, Geels EJ. J. Am. Chem. Soc. 1965; 87: 122
- 17 Hauck AE, Giam CS. Synth. Commun. 1978; 8: 109
- 18 The IUPAC nomenclature refers to these compounds as 5-nitropyridines [e.g., 3-methyl-5-nitropyridine (1d)]. However, for clarity, we refer to these compounds as 3-nitropyridines.
- 19 Rück-Braun K, Priewisch B. In Science of Synthesis, Volume 31. 2007. Ramsden CA. 1402
- 20 Chen Y.-F, Chen J, Lin L.-J, Chuang GJ. J. Org. Chem. 2017; 82: 11626
- 21 Ogata Y, Mibae J. J. Org. Chem. 1962; 27: 2048
- 22a Augustine RL. Catal. Today 1997; 37: 419
- 22b Makaryan JA, Savchenko VI. Stud. Surf. Sci. Catal. 1993; 75: 2439
- 23 Ma R, Zhang R, Xia H, Wang L, Ma Y. Eur. J. Org. Chem. 2024; e202400089
- 24a Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Angew. Chem. Int. Ed. 2021; 60: 19207
- 24b Panday S, Hazra A, Gupta P, Manna S, Laha JK. Org. Biomol. Chem. 2024; 22: 5790
- 25 For a more detailed discussion, see the Supporting Information.
- 26 Recognizing the potential to steer the reaction towards the reduction versus SNAr with the hindered t-BuOH/t-BuOK combination, we tried these conditions with unsuccessful substrates 1a, 1j, and 1-chloro-5-nitropyridine. However, no reactivity was observed with these pyridines.
- 27 Gottlieb HE, Kottlyar V, Nudelman AJ. J. Org. Chem. 1997; 62: 7512
For some recent examples of reductive approaches, see:
For some examples of oxidative approaches, see:
For an example of metal-catalyzed nitroarene reduction by hydrogen transfer from alcohols, see:
For an approach to nitroarene reduction using a naturally occurring material as catalyst, see:
For some examples, see:
For our work on pyridine derivatives, see:
For a review on nitropyridines, see: