Adipositas - Ursachen, Folgeerkrankungen, Therapie 2025; 19(01): 18-25
DOI: 10.1055/a-2492-9415
Review

Sarkopene Adipositas im Alter: Ursachen, Folgen und Behandlungsansätze

Sarcopenic obesity in old age: causes, consequences and treatment
Michaela Rippl
1   Medizinische Klinik und Poliklinik IV, Geriatrie, LMU Klinikum München, München, Deutschland
,
Michael Drey
1   Medizinische Klinik und Poliklinik IV, Geriatrie, LMU Klinikum München, München, Deutschland
,
Sabine Schluessel
1   Medizinische Klinik und Poliklinik IV, Geriatrie, LMU Klinikum München, München, Deutschland
› Institutsangaben

Zusammenfassung

Adipositas ist ein bekanntes Gesundheitsproblem, das durch das gleichzeitige Vorliegen einer Sarkopenie, also einem Verlust von Muskelmasse und -kraft, verstärkt wird. Vor allem Hochaltrige sind häufiger von negativen Gesundheitsfolgen wie Mobilitätseinschränkungen, chronischen Erkrankungen, kognitiven Defiziten, reduzierter Lebensqualität und erhöhtem Mortalitätsrisiko betroffen. In Deutschland liegt die Prävalenz bei über 65-Jährigen bei 4,5%. Ursachen sind biologische Faktoren wie altersbedingter Muskelabbau, chronische Entzündungen, hormonelle Veränderungen (z. B. Hormonmangel) sowie ein sitzender Lebensstil und hochkalorische Ernährung. Laut ESPEN-EASO sollten alle über 70-Jährigen und Patient*innen und solche mit chronischen Erkrankungen auf sarkopene Adipositas untersucht werden. Zur Diagnosestellung werden Muskelkraft und Körperzusammensetzung (mittels DXA oder BIA) gemessen. Im Staging werden bereits entstandene Folgeerkrankungen erfasst. Therapeutisch sind Krafttraining und proteinreiche Ernährung zentral. Präventiv sollten Adipositas und Sarkopenie durch regelmäßige Bewegung und ausgewogene Ernährung verhindert werden.

Abstract

Obesity is a recognized health issue, but its impact increases when combined with sarcopenia, characterized by a loss of muscle mass and strength. This condition primarily affects older adults, leading to mobility limitations, chronic diseases, cognitive decline, reduced quality of life, and higher mortality risk. In Germany, the prevalence of sarcopenic obesity is estimated at 4.5% among individuals aged 65 or older. Contributing factors include biological processes like age-related muscle loss, chronic inflammation, hormonal changes (e. g., deficiencies), and lifestyle factors such as physical inactivity and high-calorie diets. ESPEN-EASO recommends screening for sarcopenic obesity in all patients aged 70 or older and those with chronic diseases. Diagnosis involves measuring muscle strength and body composition (by DXA or BIA). Staging identifies secondary diseases caused by sarcopenic obesity. Key treatments include resistance training to enhance muscle strength and a high-protein diet. Prevention focuses on regular exercise and a balanced diet, especially in older adults.



Publikationsverlauf

Artikel online veröffentlicht:
28. Februar 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wei S, Nguyen TT, Zhang Y. et al. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol (Lausanne) 2023; 14: 1185221
  • 2 Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018; 14: 513-537
  • 3 Schaupp A, Martini S, Schmidmaier R. et al. Diagnostic and therapeutic approach to sarcopenia. Z Gerontol Geriatr 2021; 54: 717-724
  • 4 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
  • 5 Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894 i-xii 1-253
  • 6 Schluessel S, Huemer MT, Peters A. et al. Sarcopenic obesity using the ESPEN and EASO consensus statement criteria of 2022 - Results from the German KORA-Age study. Obes Res Clin Pract 2023; 17: 349-352
  • 7 Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019; 92: 6-10
  • 8 Nilwik R. et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 2013; 48: 492-498
  • 9 Donini LM, Busetto L, Bischoff SC. et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes Facts 2022; 15: 321-335
  • 10 Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci 2020; 21: 494
  • 11 Franceschi C, Bonafé M, Valensin S. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-254
  • 12 Kob R, Bollheimer LC, Bertsch T. et al. Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis?. Biogerontology 2015; 16: 15-29
  • 13 Choi S, Chon J, Yoo MC. et al. The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study. Medicina (Kaunas) 2024; 60: 754
  • 14 Ferrari U, Schmidmaier R, Jung T. et al. IGF-I/IGFBP3/ALS Deficiency in Sarcopenia: Low GHBP Suggests GH Resistance in a Subgroup of Geriatric Patients. J Clin Endocrinol Metab 2021; 106: e1698-e1707
  • 15 Moore DR, Chruchward-Venne TY, Witard O. et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 2015; 70: 57-62
  • 16 Ida S, Kaneko R, Murata K. SARC-F for Screening of Sarcopenia Among Older Adults: A Meta-analysis of Screening Test Accuracy. J Am Med Dir Assoc 2018; 19: 685-689
  • 17 Scott D, Blyth F, Naganathan V. et al. Sarcopenia prevalence and functional outcomes in older men with obesity: Comparing the use of the EWGSOP2 sarcopenia versus ESPEN-EASO sarcopenic obesity consensus definitions. Clin Nutr 2023; 42: 1610-1618
  • 20 Zhou YY, Wang JF, Yao Q. et al. Prevalence of sarcopenic obesity in patients with diabetes and adverse outcomes: A systematic review and meta-analysis. Clin Nutr ESPEN 2023; 58: 128-135
  • 21 Ulugerger Avci G, Kanat BB, Can G. et al. The impact of sarcopenia and obesity on mortality of older adults: five years results. Ir J Med Sci 2023; 192: 2209-2216
  • 22 Someya Y, Tamura Y, Kaga H. et al. Sarcopenic obesity is associated with cognitive impairment in community-dwelling older adults: The Bunkyo Health Study. Clin Nutr 2022; 41: 1046-1051
  • 23 Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. Biology (Basel) 2024; 13: 719
  • 24 Gadelha AB, Paiva FML, Gauche R. et al. Effects of resistance training on sarcopenic obesity index in older women: A randomized controlled trial. Arch Gerontol Geriatr 2016; 65: 168-173
  • 25 Kirk B, Mooney K, Amirabdollahian F. et al. Exercise and Dietary-Protein as a Countermeasure to Skeletal Muscle Weakness: Liverpool Hope University – Sarcopenia Aging Trial (LHU-SAT). Front Physiol 2019; 10: 445
  • 26 Lim C, Kim HJ, Morton RW. et al. Resistance Exercise-induced Changes in Muscle Phenotype Are Load Dependent. Med Sci Sports Exerc 2019; 51: 2578-2585
  • 27 Van Roie E, Delecluse C, Coudyzer W. et al. Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Gerontol 2013; 48: 1351-1361
  • 28 Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13: 811751
  • 29 McKendry J, Burrier BS, Lim C. et al. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020; 12: 2057
  • 30 Traylor DA, Gorissen SHM, Phillips SM. Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance?. Adv Nutr 2018; 9: 171-182
  • 31 Kim IY, Schutzler S, Schrader A. et al. Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults. Am J Physiol Endocrinol Metab 2015; 308: E21-E28
  • 32 Van Elswyk ME, Weatherford CA, McNeill SH. A Systematic Review of Renal Health in Healthy Individuals Associated with Protein Intake above the US Recommended Daily Allowance in Randomized Controlled Trials and Observational Studies. Adv Nutr 2018; 9: 404-418
  • 33 Shams-White MM, CHung M, Du M. et al. Dietary protein and bone health: a systematic review and meta-analysis from the National Osteoporosis Foundation 1,2. The American Journal of Clinical Nutrition 2017; 105: 1528-1543
  • 34 Otsuka R, Kato Y, Tange C. et al. Protein intake per day and at each daily meal and skeletal muscle mass declines among older community dwellers in Japan. Public Health Nutr 2020; 23: 1090-1097
  • 35 McGrath R, Stastny S, Casperson S. et al. Daily Protein Intake and Distribution of Daily Protein Consumed Decreases Odds for Functional Disability in Older Americans. J Aging Health 2020; 32: 1075-1083
  • 36 Tieland M, Franssen R, Dullemeijer C. et al. The Impact of Dietary Protein or Amino Acid Supplementation on Muscle Mass and Strength in Elderly People: Individual Participant Data and Meta-Analysis of RCT's. J Nutr Health Aging 2017; 21: 994-1001
  • 37 Gielen E, Beckwée D, Delaere A. et al. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr Rev 2021; 79: 121-147
  • 38 Devries MC, McGlory C, Bolster DR. et al. Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women. J Nutr 2018; 148: 1088-1095
  • 39 Plotkin DL, DElcastillo K, Van Every DW. et al. Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int J Sport Nutr Exerc Metab 2021; 31: 292-301
  • 40 Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017; 45: 1105-1115
  • 41 Smith GI, Atherton P, Reeds DN. et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 2011; 93: 402-412
  • 42 Chilibeck PD, Kaviani M, Candow DG. et al. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med 2017; 8: 213-226
  • 43 Chang MC, Choo YJ. Effects of Whey Protein, Leucine, and Vitamin D Supplementation in Patients with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients 2023; 15: 521
  • 44 Liao CD, Tsauo JY, Wu YT. et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 1078-1091
  • 45 Eglseer D, Traxler M, Schoufour JD. et al. Nutritional and exercise interventions in individuals with sarcopenic obesity around retirement age: a systematic review and meta-analysis. Nutr Rev 2023; 81: 1077-1090
  • 46 Areta JL, Burke LM, Camera DM. et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab 2014; 306: E989-E997
  • 47 McCarthy D, Berg A. Weight Loss Strategies and the Risk of Skeletal Muscle Mass Loss. Nutrients 2021; 13: 2473
  • 48 Villareal DT, Aguirre L, Gurney AB. et al. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N Engl J Med 2017; 376: 1943-1955
  • 49 Porter Starr KN, Pieper CF, Orenduff MC. et al. Improved Function With Enhanced Protein Intake per Meal: A Pilot Study of Weight Reduction in Frail, Obese Older Adults. J Gerontol A Biol Sci Med Sci 2016; 71: 1369-1375
  • 50 Ren Q, Chen S, Chen X. et al. An Effective Glucagon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skeletal Muscle Metabolism. Drug Des Devel Ther 2022; 16: 3723-3735
  • 51 Hope DCD, Tan TM. Skeletal muscle loss and sarcopenia in obesity pharmacotherapy. Nat Rev Endocrinol 2024; 20: 695-696
  • 52 Mastino D, Robert M, Betry C. et al. Bariatric Surgery Outcomes in Sarcopenic Obesity. Obes Surg 2016; 26: 2355-2362
  • 53 Bowers M, Cucchiaro B, Reid J. et al. Non-steroidal anti-inflammatory drugs for treatment of cancer cachexia: A systematic review. J Cachexia Sarcopenia Muscle 2023; 14: 2473-2497
  • 54 Trappe TA, Ratchford SM, Brower BE. et al. COX Inhibitor Influence on Skeletal Muscle Fiber Size and Metabolic Adaptations to Resistance Exercise in Older Adults. J Gerontol A Biol Sci Med Sci 2016; 71: 1289-1294
  • 55 Ng Tang Fui M, Prendergast LA, Dupuis P. et al. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med 2016; 14: 153
  • 56 O'Connell MD, Roberts SA, Sriniva-Shankar U. et al. Do the effects of testosterone on muscle strength, physical function, body composition, and quality of life persist six months after treatment in intermediate-frail and frail elderly men?. J Clin Endocrinol Metab 2011; 96: 454-458
  • 57 Lincoff AM, Bhasin S, Flevaris P. et al. Cardiovascular Safety of Testosterone-Replacement Therapy. N Engl J Med 2023; 389: 107-117
  • 58 Papanicolaou DA, Ather SN, Zhu H. et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging 2013; 17: 533-543
  • 59 Lach-Trifilieff E, Minetti GC, Sheppard K. et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Bio 2014; 34: 606-618
  • 60 Sencan C, Dost FS, Bulut EA. et al. DPP4 inhibitors as a potential therapeutic option for sarcopenia: A 6-month follow-up study in diabetic older patients. Exp Gerontol 2022; 164: 111832
  • 61 Kemmler W, Weissenfels A, Teschler A. et al. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin Interv Aging 2017; 12: 1503-1513
  • 62 Cai Z, Yang Y, Xie W. et al. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther 2022; 13: 28
  • 63 Aggio DA, Sartini C, Papacosta O. et al. Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men. Prev Med 2016; 91: 264-272
  • 64 Petroni ML, Caletti MT, Grave RD. et al. Prevention and Treatment of Sarcopenic Obesity in Women. Nutrients 2019; 11: 1302
  • 65 WHO. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020
  • 66 Abiri B, Hosseinpanah F, Seifi Z. et al. The Implication of Nutrition on the Prevention and Improvement of Age-Related Sarcopenic Obesity: A Systematic Review. J Nutr Health Aging 2023; 27: 842-852